Geomechanical Characterization of Unwelded Volcanic Bimrock Materials for Sustainable Slopes: Application to Road Instability Problems in the Western Cordillera of Ecuador
Abstract
1. Introduction
2. Geomechanical Characterization Proposed for Unwelded Volcanic Bimrocks Slopes
2.1. Material Description and Volcanic Deposit Classification
2.2. Characteristic Dimension and Block Size Range
2.3. VBP Computation
2.4. Rock Blocks Characterization
2.5. Matrix Analyses
3. Application to the Ecuadorian Andes
3.1. Background and Vases Studies Selected
- S-PB1, “Penipe-Baños” road at K32.
- S-PB2, “Penipe-Baños” road at K4.
- S-E490, “Riobamba” E-490 road at K7.
- S-E20, “Aloag–Tandapi” E-20 road at K34
3.2. Geomechanical Characterization of the Slopes Studied
4. Analysis and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Raymond, L.A. Classification of Melanges, Melanges: Their Nature, Origin, and Significance, 1st ed.; The Geological Society of America, Inc.: Boulder, CO, USA, 1984. [Google Scholar]
- Medley, E. The Engineering Charaterization of Melanges and Similar Block in Matriz (Bimrocks). Ph.D. Thesis, University of California at Berkeley, Berkeley, CA, USA, 17 July 1994. [Google Scholar]
- Morales Romero, S.O. Methodological Guidelines for the Characterization of Mixtures Materials Soil-Rock Bimsoils Type. Master’s Thesis, Complutense University of Madrid, Madrid, Spain, 10 July 2022. [Google Scholar]
- Medley, E.; Sanz, P. Characterization of Bimrocks (Rock/Soil Mixtures) with Application to Slope Stability Problems. In Proceedings of the Eurock 2004 and the 53rd Geomechanics Colloquium, Salzburg, Austria, 7–9 October 2004. [Google Scholar]
- Lindquist, E.S.; Medley, E. The engineering significance of the scale-independence of some Franciscan melanges in California, USA. In Proceedings of the 35th U.S Symposium on Rock Mechanics, USRMS, Reno, NV, USA, 5–7 June 1995. [Google Scholar]
- Lindquist, E.S.; Goodman, R.E. Strength and deformation properties of a physical model melange. In Proceedings of the 1st North American Rock Mechanics Symposium, Austin, TX, USA, 1–3 June 1994. [Google Scholar]
- Medley, D.; Zekkos, D. Geopractitioner approaches to working with antisocial mélanges. In Mélanges: Processes of Formation and Societal Significance; Wakabayashi, J., Dilek, Y., Eds.; The Geological Society of America: Boulder, CO, USA, 2011. [Google Scholar]
- Sonmez, H.; Kasapoglu, K.E.; Coskun, A.; Tunusluoglu, C.; Medley, E.W.; Zimmerman, R.W. A Conceptual empirical approach for the overall strength of unwelded. In Proceedings of the ISRM Regional Symposium Eurock, Dubrovnik, Croatia, 29–31 October 2009. [Google Scholar]
- Sonmez, H.; Tuncay, C.; Gokceoglu, C. Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara Agglomerate. J. Rock Mech. Mining Sci. 2004, 41, 717–729. [Google Scholar] [CrossRef]
- Kalender, A.; Sonmez, H.; Medley, E.; Tunusluoglu, C.; Kasapoglu, K.E. An approach to predicting the overall strengths of unwelded bimrocks and bimsoils. Eng. Geol. 2014, 183, 65–79. [Google Scholar] [CrossRef]
- Wen-Jie, X.; Qiang, X.; Rui-Lin, H. Study on the shear strength of soil–rock mixture by large scale direct shear test. Int. J. Rock Mech. Min. Sci. 2011, 48, 1235–1247. [Google Scholar] [CrossRef]
- Sonmez, H.; Gokceoglu, C.; Medley, E.W.; Tuncay, E.; Nefeslioglu, H.A. Estimating the uniaxial compressive strength of a volcanic bimrock. Int. J. Rock Mech. Min. Sci. 2006, 43, 554–561. [Google Scholar] [CrossRef]
- Sonmez, H.; Altinsoy, H.; Gokceoglu, C.; Medley, E.W. Considerations in developing an empirical strength criterion for bimrocks. In Proceedings of the 4th Asian Rock Mechanics Symposium (ARMS 2006), Singapore, 6–10 November 2006. [Google Scholar]
- Coli, M.; Berry, P.; Boldini, D. In situ non-conventional shear tests for the mechanical characterisation of a bimrock. Int. J. Rock Mech. Min. Sci 2011, 48, 95–102. [Google Scholar] [CrossRef]
- Kahraman, S.; Alber, M. Estimating unconfined compressive strength and elastic modulus of a fault breccia mixture of weak blocks and strong matrix. Int. J. Rock Mech. Min. Sci. 2006, 43, 1277–1287. [Google Scholar] [CrossRef]
- Jiménez-Rodríguez, R. Ingeniería de Rocas. Caracterización de Macizos Rocosos y Teoría de Bloques para Estabilidad de Taludes: Un Enfoque Probabilístico, 1st ed.; Ibergarceta Publicaciones, S.L.: Madrid, Spain, 2015. [Google Scholar]
- Goodman, R.E.; Shi, G.-h. Block Theory and Its Application to Rock Engineering; Prentice-Hall: Englewood Cliffs, CA, USA, 1985. [Google Scholar]
- Hudson, J.A.; Priest, S.D. Discontinuities and rock mass geometry. Int. J. Rock Mech. Min. Sci. 1979, 16, 339–362. [Google Scholar] [CrossRef]
- Sonmez, H.; Ercanoglu, M.; Kalender, A.; Dagdelenler, G.; Tunusluoglu, C. Predicting uniaxial compressive strength and deformation modulus of volcanic bimrock considering engineering dimension. Int. J. Rock Mech. Min. Sci 2016, 86, 91–103. [Google Scholar] [CrossRef]
- Nikolaidis, G.; Saroglou, C. Engineering geological characterisation of block-in-matrix rocks. BGSG Bull. Geol. Soc. Greece 2016, 50, 874–884. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, Y.; Ma, W.; Wang, Z.; Li, G. Effects of rock block content and confining pressure on dynamic characteristics of soil-rock mixtures. Eng. Geol. 2021, 280, 105963. [Google Scholar] [CrossRef]
- Napoli, M.L.; Barbero, M.; Ravera, E.; Scavia, C. A stochastic approach to slope stability analysis in bimrocks. Int. J. Rock Mech. Min. Sci. 2018, 1, 41–49. [Google Scholar] [CrossRef]
- Napoli, M.L.; Barbero, M.; Scavia, C. Effects of block shape and inclination on the stability of melange bimrocks. Bull. Eng. Geol. Environ. 2021, 80, 7457–7466. [Google Scholar] [CrossRef]
- Napoli, M.L.; Barbero, M.; Scavia, C. Tunneling in heterogeneous rock masses with a block-in-matrix fabric. Int. J. Rock Mech. Min. Sci. 2021, 138, 1365–1609. [Google Scholar] [CrossRef]
- Afifipour, M.; Moarefvand, P. Mechanical behavior of bimrocks having high rock block proportion. Int. J. Rock Mech. Min. Sci. 2014, 65, 40–48. [Google Scholar] [CrossRef]
- Alonso-Pandavenes, O.; Torres, G.; Torrijo, F.J.; Garzón-Roca, J. Basement tectonic structure and sediment thickness of a valley defined using HVSR geophysical investigation, Azuela valley, Ecuador. Bull. Eng. Geol. Environ. 2022, 81, 210. [Google Scholar] [CrossRef]
- Alonso-Pandavenes, O.; Torrijo, F.J.; Garzón-Roca, J.; Gracia, A. Early Investigation of a Landslide Sliding Surface by HVSR and VES Geophysical Techniques Combined, a Case Study in Guarumales (Ecuador). Appl. Sci. 2023, 13, 1023. [Google Scholar] [CrossRef]
- Alonso-Pandavenes, O.; Bernal, D.; Torrijo, F.J.; Garzón-Roca, J. A Comparative Analysis for Defining the Sliding Surface and Internal Structure in an Active Landslide Using the HVSR Passive Geophysical Technique in Pujilí (Cotopaxi), Ecuador. Land 2023, 12, 921. [Google Scholar] [CrossRef]
- Torrijo, F.J.; Álvarez, S.; Garzón-Roca, J. A Case Study of a Macro-Landslide in the High Mountain Areas of the Ecuadorian Andes: “La Cría” at the Azuay Province (Ecuador). Land 2024, 13, 2047. [Google Scholar] [CrossRef]
- Alonso-Pandavenes, O.; Torrijo, F.J.; Garzón-Roca, J. Sustainable management of landslides in Ecuador: Leveraging geophysical surveys for effective risk reduction. Sustainability 2024, 16, 10797. [Google Scholar] [CrossRef]
- Ponce-Zambrano, M.R.; Ibadango, C.E.; Merino, J.; Cervantes, H.; Ortiz, J. Application of support methodologies in low shear strength materials on the Calacali-Nanegalito route. In Proceedings of the 1st Chilean Conference of Rock Mechanics, Santiago de, Chile, Chile, 22–24 November 2023. [Google Scholar]
- Flentje, P.; Chowdhury, R. Resilience and Sustainability in the Management of Landslides. Proc. Inst. Civ. Eng.—Eng. Sustain. 2018, 171, 3–14. [Google Scholar] [CrossRef]
- Cobos, G.; Eguibar, M.A.; Torrijo, F.J.; Garzón-Roca, J. A Case Study of a Large Unstable Mass Stabilization: “El Portalet” Pass at the Central Spanish Pyrenees. Appl. Sci. 2021, 11, 7176. [Google Scholar] [CrossRef]
- Azadi, H.; Petrescu, D.C.; Petrescu-Mag, R.M.; Ozunu, A. Special Issue: Environmental Risk Mitigation for Sustainable Land Use Development. Land Use Policy 2020, 95, 104488. [Google Scholar] [CrossRef]
- Mineo, S.; Pappalardo, G.; Mangiameli, M.; Campolo, S.; Mussumeci, G. Rockfall Analysis for Preliminary Hazard Assessment of the Cliff of Taormina Saracen Castle (Sicily). Sustainability 2018, 10, 417. [Google Scholar] [CrossRef]
- Mineo, S.; Pappalardo, G. Sustainable Fruition of Cultural Heritage in Areas Affected by Rockfalls. Sustainability 2020, 12, 296. [Google Scholar] [CrossRef]
- Mineo, S.; Pappalardo, G.; Onorato, S. Geomechanical Characterization of a Rock Cliff Hosting a Cultural Heritage through Ground and UAV Rock Mass Surveys for Its Sustainable Fruition. Sustainability 2021, 12, 924. [Google Scholar] [CrossRef]
- ASTM D2488; Standard Practice for Description and Identification of Soils (Visual-Manual Procedures). American Society of Testing Materials: West Conshohocken, PA, USA, 2018.
- Murcia, M.F.; Borrero, C.A.; Pardo, N.; Alvarado, G.A.; Arnosio, M.; Scolamacchia, T. Volcaniclastic deposits: Terminology and concepts for a classification in Spanish. Rev. Geol. Am. Cent. 2013, 48, 15–39. [Google Scholar]
- Bernard, B.; Takarada, S., S.; Andrade, D.; Dufresne, A. Terminology and Strategy to Describe Large Volcanic Landslides and Debris Avalanches. In Volcanic Debris Avalanches; Matteo Roverato, A., Dufresne, J.P., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Etinger, S.; Mothes, P.; Paris, P.; Schilling, S. The 1877 lahar deposits on the eastern flank of Cotopaxi volcano. Géomorphologie Relief Process. Environ. 2007, 13, 271–280. [Google Scholar] [CrossRef]
- Ulusay, R. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014; Springer: Cham, Switzerland, 2015. [Google Scholar]
- ASTM D7263; Standard Test Methods for Laboratory Determination of Density and Unit Weight of Soil Specimens. American Society of Testing Materials: West Conshohocken, PA, USA, 2021.
- ASTM D1556; Standard Test Method for Density and Unit Weight of Soil in Place by Sand-Cone Method. American Society of Testing Materials: West Conshohocken, PA, USA, 2024.
- ASTM D2216; Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. American Society of Testing Materials: West Conshohocken, PA, USA, 2017.
- ASTM D422; Standard Test Method for Particle-Size Analysis of Soils. American Society of Testing Materials: West Conshohocken, PA, USA, 2014.
- ASTM D4318; Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. American Society of Testing Materials: West Conshohocken, PA, USA, 2018.
- ASTM D2487; Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System). American Society of Testing Materials: West Conshohocken, PA, USA, 2020.
- ASTM D3080; Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. American Society of Testing Materials: West Conshohocken, PA, USA, 2012.
- ASTM D4767; Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils. American Society of Testing Materials: West Conshohocken, PA, USA, 2020.
- Aristizábal, E.; Riaño, F.; Jiménez-Ortiz, J. Rainfall thresholds as triggering factor in the Central cordillera of the Colombian Andes. Bol. Geol. 2022, 44, 183–197. [Google Scholar] [CrossRef]
- Pichincha Provincial Government, GPP. Developement and Management Territorial Plan of Manuel Cornejo Astorga–TANDAPI 2012–2025; GPP: Quito, Ecuador, 2012. [Google Scholar]
- Vallejo, C. Evolution of the Western Cordillera in the Andes of Ecuador (Late Cretaceous-Paleogene). PhD. Thesis, Eidgenössische Technische Hochschule ETH Zürich, Zurich, Switzerland, 2007. [Google Scholar]
- Hidalgo, S. Interacciones Entre Magmas Clásicas” y Adriáticas Calco-Alcalinali: Ejemplo del Complejo Volcánico Atacazo-Ninahuilca (Ecuador). PhD. Thesis, Université Blaise Pascal, Clermond, France, 2006. [Google Scholar]
- Santamaria, S.; Quidelleur, J.; Samaniego, P.; Audin, L.; Le Pennec, J. Timing of Quaternary volcanism and its relationship with tectonics in the central segment of the Ecuadorian Andes. J. Volcanol. Geotherm. Res. 2023, 442, 107895. [Google Scholar] [CrossRef]
- National Direction of Geology and Mining. National Geological Chart of Ecuador 1:100.000, Machachi Sheet; National Direction of Geology and Mining of Ecuador: Quito, Ecuador, 1978. [Google Scholar]
- Benjamin, B.; Andrade, D. Quaternary Volcanos in Continetal Ecuador; Institud de Recherche pour le Développement IRD: Marselle, France, 2016. [Google Scholar]
- Lindquist, E.S. The Strength and Deformation Properties of Mélange. Ph.D. Dissertation, Univesity of California at Berkeley, Berkeley, CA, USA, 1994. [Google Scholar]
- Nanclares, F.J. Mechanical Behavior of Granular Soils of Alluvial Origin. Ph.D. Dissertation, National Unversity of Colombia, Bogotá, Colombia, 2018. [Google Scholar]
- SENPLADES Plan Nacional para el Buen Vivir 2017–2021. 2017. Available online: https://www.gobiernoelectronico.gob.ec/wp-content/uploads/downloads/2017/09/Plan-Nacional-para-el-Buen-Vivir-2017-2021.pdf (accessed on 22 September 2024).
- Puente-Sotomayor, F.; Egas, A.; Teller, J. Land Policies for Landslide Risk Reduction in Andean Cities. Habitat Int. 2021, 107, 102298. [Google Scholar] [CrossRef]
Debris Avalanche | Pyroclastic Flows | Lahar | |
---|---|---|---|
Morphology | Irregular deposit dominated by the presence of hummocks and scars; result of volcanic edifices collapse, associated or not with eruptions; heterogeneous and heterometric blocks transported without completely disintegrating during movement | Pyroclastic fragments; blocks, bombs, lapilli, ash; identification of the sequence of deposits and their relationship to each other; layered structures | Subhorizontal morphology; dense flow of fragments and water. |
Texture | Poorly sorted deposits; wide grain size distribution; presence of metric blocks | Granulometry, shape and degree of organization of the fragments; decreasing or inverse degree | Angular blocks in a sand-silt-clay matrix |
Structure | Fractured blocks retain interlocking fitting; presence of jigsaw-fits and/or jigsaw-cracks; intrablock destruction structures sub coherent fracturing during transport, without total loss of its original morphology | Layers, lenses and contacts; agglomerates, consisting mainly of blocks, volcanic breccias; ignimbrites | Chaotic, mixture of materials |
Composition | Multiple lithologies found; dacite fragments if coming from dome, and andesites, basalts and sedimentary lithics if coming from the volcano base | Varied; one lithology dominates | Composed of water, ash and rock fragments of various sizes and lithologies |
Other | Blocks scattered on the surface or buried within the body of the avalanche; low mobility; chaotic matrix; large blocks | Stratigraphic sequence; porosity low mobility; large blocks not common | High mobility; high water common; small blocks dominate, but may include boulders up to 30 cm or more |
Year | Month | Location (K. Point) | Instability | Trigger Factor 2 | Casualties | |
---|---|---|---|---|---|---|
No. | Type 1 | |||||
2012 | Mar | 40–70 | 12 | RF | EQ; RF; ER | 0 |
2013 | Feb; Apr; May | 40–70 | 1 | LD | EQ; RF; ER | 0 |
2014 | Mar; Apr | 28 | 2 | LD | RF | 0 |
2015 | Apr | 28 | 2 | LD | RF | 11 |
2016 | Jan; Apr; May | 34 | 3 | RF and LD | RF | 0 |
2017 | Apr; May; Jun | 48; 56; 63 | 3 | RF and LD | RF | 0 |
2018–2019 | Jan; Feb; Nov; Dec | 48–57 | 4 | RF | EQ; RF; ER | 2 |
2020 | Jan; Jun | 54 | 2 | RF | EQ; RF; ER | 0 |
2021 | Mar; Apr | 45 | 2 | LD | RF | 0 |
2022 | Feb; Apr; May | 27; 30; 79 | 3 | RF | RF | 0 |
2023 | Mar; Apr; Nov | 32; 43; 51; 83 | 5 | RF and LD | RF | 2 |
Slope | S-PB1 | S-PB2 | S-E490 | S-E20 |
---|---|---|---|---|
Total height (m) | 17 | 35 | 8 | 47 |
Slope angle (°) | 70 | 65 | 70 | 70 |
Bimrock deposit thickness (m) | 17 | 3 | 7 | 17 |
Volcanic deposit | Debris avalanche | Pyroclastic flow | Debris avalanche | Debris avalanche |
Description | Jigsaw crack, 2 facies, andesite and andesites with vesiculates, blocks > 20 cm | Rounded blocks from pyroclastic flows and the incorporation of clasts from other series. | Diameter of clasts 16 cm in the larger rock and 0.5 cm in the smaller rock | Andesite rock clasts, silty sandy matrix, size less than 0.1 cm–500 cm |
Lc (cm) | 17 | 3 | 7 | 17 |
Block size range (cm) | 0.85–12.75 | 0.15–2.25 | 0.35–5.25 | 0.85–12.75 |
VBP (%) | 85 | 27 | 55 | 75 |
Block rocks UCS (MPa) | 93 | 57 | 45 | 87 |
Block rocks friction angle (°) | 31 | 48 | 35 | 35 |
Block rocks unit weight (kN/m3) | 21.3 | 21.7 | 20.2 | 22.7 |
Matrix unit weight (kN/m3) | 20.7 | 27.8 | 24.2 | 19.4 |
Chemical Compound | Samples Taken at S-E490 | Santamaría et al. [55] Results 1 | ||||
---|---|---|---|---|---|---|
SiO2 | 59.30 | 54.30 | 62.28 | 54.84 | 58.97 | 57.56 |
FeO | 7.64 | 7.49 | 6.06 | 8.63 | 7.42 | 7.71 |
Al2O3 | 16.50 | 15.80 | 16.27 | 16.79 | 17.53 | 17.30 |
CaO | 2.15 | 1.12 | 5.48 | 8.15 | 6.57 | 6.74 |
MgO | 1.50 | 1.10 | 2.62 | 5.63 | 3.15 | 3.93 |
Na2O | 3.30 | 4.35 | 3.96 | 3.81 | 4.18 | 4.27 |
K2O | 1.04 | 0.97 | 1.48 | 0.97 | 1.17 | 1.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponce-Zambrano, M.; Garzón-Roca, J.; Torrijo, F.J.; Alonso-Pandavenes, O. Geomechanical Characterization of Unwelded Volcanic Bimrock Materials for Sustainable Slopes: Application to Road Instability Problems in the Western Cordillera of Ecuador. Sustainability 2025, 17, 7080. https://doi.org/10.3390/su17157080
Ponce-Zambrano M, Garzón-Roca J, Torrijo FJ, Alonso-Pandavenes O. Geomechanical Characterization of Unwelded Volcanic Bimrock Materials for Sustainable Slopes: Application to Road Instability Problems in the Western Cordillera of Ecuador. Sustainability. 2025; 17(15):7080. https://doi.org/10.3390/su17157080
Chicago/Turabian StylePonce-Zambrano, Marlon, Julio Garzón-Roca, Francisco J. Torrijo, and Olegario Alonso-Pandavenes. 2025. "Geomechanical Characterization of Unwelded Volcanic Bimrock Materials for Sustainable Slopes: Application to Road Instability Problems in the Western Cordillera of Ecuador" Sustainability 17, no. 15: 7080. https://doi.org/10.3390/su17157080
APA StylePonce-Zambrano, M., Garzón-Roca, J., Torrijo, F. J., & Alonso-Pandavenes, O. (2025). Geomechanical Characterization of Unwelded Volcanic Bimrock Materials for Sustainable Slopes: Application to Road Instability Problems in the Western Cordillera of Ecuador. Sustainability, 17(15), 7080. https://doi.org/10.3390/su17157080