Sedimentary Stylolites Roughness Inversion Enables the Quantification of the Eroded Thickness of Deccan Trap Above the Bagh Group, Narmada Basin, India
Abstract
1. Introduction
2. Geological Context
2.1. Lithostratigraphy of the Bagh Group
2.2. Facies Constituting the Carbonate of Bagh Group
3. Materials and Methods
3.1. Stylolites in the Carbonate of Bagh Group
3.2. Methodology for Stress Inversion
3.3. Applicability to the Bagh Group Formations
4. Results
5. Interpretation
6. Discussion
6.1. Burial Depth
6.2. About the Duration of Stylolite Development
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stockdale, P.B. Stylolites: Their Nature and Origin; Indiana University Studies: Bloomington, IN, USA, 1922; Volume 9. [Google Scholar]
- Railsback, L.B. Lithologic controls on morphology of pressure-dissolution surfaces (stylolites and dissolution seams) in Paleozoic carbonate rocks from the mideastern United States. J. Sediment. Res. 1993, 63, 513–522. [Google Scholar] [CrossRef]
- Toussaint, R.; Aharonov, E.; Koehn, D.; Gratier, J.P.; Ebner, M.; Baud, P.; Rolland, A.; Renard, F. Stylolites: A review. J. Struct. Geol. 2018, 114, 163–195. [Google Scholar] [CrossRef]
- Koehn, D.; Rood, M.P.; Beaudoin, N.; Chung, P.; Bons, P.D.; Gomez-Rivas, E. A new stylolite classification scheme to estimate compaction and local permeability variations. Sediment. Geol. 2016, 346, 60–71. [Google Scholar] [CrossRef]
- Park, W.C.; Schot, E.H. Stylolites; their nature and origin. J. Sediment. Res. 1968, 38, 175–191. [Google Scholar] [CrossRef]
- Stockdale, P.B. Stylolites, primary or secondary? J. Sediment. Res. 1943, 13, 3–12. [Google Scholar] [CrossRef]
- Renard, F.; Schmittbuhl, J.; Gratier, J.P.; Meakin, P.; Merino, E. Three-dimensional roughness of stylolites in limestones. J. Geophys. Res. Solid Earth 2004, 109, B3. [Google Scholar] [CrossRef]
- Beaudoin, N.; Gasparrini, M.; David, M.E.; Lacombe, O.; Koehn, D. Bedding-parallel stylolites as a tool to unravel maximum burial depth in sedimentary basins: Application to Middle Jurassic carbonate reservoirs in the Paris basin, France. GSA Bull. 2019, 131, 1239–1254. [Google Scholar] [CrossRef]
- Magni, S.; Martín-Martín, J.D.; Bons, P.D.; Gomez-Rivas, E. Stylolites in Carbonate Rocks: Morphological Variability According to the Host Rock Texture. Minerals 2025, 15, 132. [Google Scholar] [CrossRef]
- Gomez-Rivas, E.; Martín-Martín, J.D.; Bons, P.D.; Koehn, D.; Griera, A.; Travé, A.; Llorens, M.G.; Humphrey, E.; Neilson, J. Stylolites and stylolite networks as primary controls on the geometry and distribution of carbonate diagenetic alterations. Mar. Pet. Geol. 2022, 136, 105444. [Google Scholar] [CrossRef]
- Heap, M.J.; Baud, P.; Reuschlé, T.; Meredith, P.G. Stylolites in limestones: Barriers to fluid flow? Geology 2014, 42, 51–54. [Google Scholar] [CrossRef]
- Heap, M.; Reuschlé, T.; Baud, P.; Renard, F.; Iezzi, G. The permeability of stylolite-bearing limestone. J. Struct. Geol. 2018, 116, 81–93. [Google Scholar] [CrossRef]
- Schmittbuhl, J.; Renard, F.; Gratier, J.P.; Toussaint, R. Roughness of stylolites: Implications of 3D high resolution topography measurements. Phys. Rev. Lett. 2004, 93, 238501. [Google Scholar] [CrossRef]
- Ebner, M.; Koehn, D.; Toussaint, R.; Renard, F.; Schmittbuhl, J. Stress sensitivity of stylolite morphology. Earth Planet. Sci. Lett. 2009, 277, 394–398. [Google Scholar] [CrossRef]
- Rolland, Y.; Perincek, D.; Kaymakci, N.; Sosson, M.; Barrier, E.; Avagyan, A. Evidence for ∼80–75 Ma subduction jump during Anatolide–Tauride–Armenian block accretion and ∼48 Ma Arabia–Eurasia collision in lesser caucasus–East Anatolia. J. Geodyn. 2012, 56, 76–85. [Google Scholar] [CrossRef]
- Bertotti, G.; de Graaf, S.; Bisdom, K.; Oskam, B.; Vonhof, H.B.; Bezerra, F.H.; Reijmer, J.J.; Cazarin, C.L. Fracturing and fluid-flow during post-rift subsidence in carbonates of the Jandaíra Formation, Potiguar Basin, NE Brazil. Basin Res. 2017, 29, 836–853. [Google Scholar] [CrossRef]
- Beaudoin, N.; Lacombe, O.; Koehn, D.; David, M.E.; Farrell, N.; Healy, D. Vertical stress history and paleoburial in foreland basins unravelled by stylolite roughness paleopiezometry: Insights from bedding-parallel stylolites in the Bighorn Basin, Wyoming, USA. J. Struct. Geol. 2020, 136, 104061. [Google Scholar] [CrossRef]
- Beaudoin, N.E.; Koehn, D.; Aharonov, E.; Billi, A.; Daeron, M.; Boyce, A. Reconstruction of the Temperature Conditions of Burial-Related Pressure Solution by Clumped Isotopes Validates the Analysis of Sedimentary Stylolites Roughness as a Reliable Depth Gauge. Minerals 2025, 15, 73. [Google Scholar] [CrossRef]
- Bah, B.; Beaudoin, N.E.; Lacombe, O.; Girard, J.P.; Gout, C.; Godeau, N.; Deschamps, P. Multi-proxy reconstruction of the burial history and porosity evolution of the TOCA carbonate formation in the Lower Congo basin (South West Africa). Mar. Pet. Geol. 2023, 148, 106018. [Google Scholar] [CrossRef]
- Zeboudj, A.; Bah, B.; Lacombe, O.; Beaudoin, N.E.; Gout, C.; Godeau, N.; Girard, J.P.; Deschamps, P. Depicting past stress history at passive margins: A combination of calcite twinning and stylolite roughness paleopiezometry in supra-salt Sendji deep carbonates, Lower Congo Basin, west Africa. Mar. Pet. Geol. 2023, 152, 106219. [Google Scholar] [CrossRef]
- Labeur, A.; Beaudoin, N.E.; Lacombe, O.; Gout, C.; Callot, J.P. Constraining the onset of orogenic contraction in fold-and-thrust belts using sedimentary stylolite populations (Umbria-Marche Apennines, Italy). J. Struct. Geol. 2024, 182, 105098. [Google Scholar] [CrossRef]
- Beaudoin, N.; Koehn, D.; Lacombe, O.; Lecouty, A.; Billi, A.; Aharonov, E.; Parlangeau, C. Fingerprinting stress: Stylolite and calcite twinning paleopiezometry revealing the complexity of progressive stress patterns during folding—The case of the Monte Nero anticline in the Apennines, Italy. Tectonics 2016, 35, 1687–1712. [Google Scholar] [CrossRef]
- Labeur, A.; Beaudoin, N.E.; Lacombe, O.; Emmanuel, L.; Petracchini, L.; Daëron, M.; Klimowicz, S.; Callot, J.P. Burial-deformation history of folded rocks unraveled by fracture analysis, stylolite paleopiezometry and vein cement geochemistry: A case study in the Cingoli Anticline (Umbria-Marche, Northern Apennines). Geosciences 2021, 11, 135. [Google Scholar] [CrossRef]
- Ruidas, D.K.; Pomoni-Papaioannou, F.A.; Banerjee, S.; Gangopadhyay, T.K. Petrographical and geochemical constraints on carbonate diagenesis in an epeiric platform deposit: Late Cretaceous Bagh Group in central India. Carbonates Evaporites 2020, 35, 1–21. [Google Scholar] [CrossRef]
- Karcz, Z.; Scholz, C.H. The fractal geometry of some stylolites from the Calcare Massiccio Formation, Italy. J. Struct. Geol. 2003, 25, 1301–1316. [Google Scholar] [CrossRef]
- Ebner, M.; Koehn, D.; Toussaint, R.; Renard, F. The influence of rock heterogeneity on the scaling properties of simulated and natural stylolites. J. Struct. Geol. 2009, 31, 72–82. [Google Scholar] [CrossRef]
- Rolland, A.; Toussaint, R.; Baud, P.; Conil, N.; Landrein, P. Morphological analysis of stylolites for paleostress estimation in limestones. Int. J. Rock Mech. Min. Sci. 2014, 67, 212–225. [Google Scholar] [CrossRef]
- Shanker, R. Thermal and Crustal Structure of “SONATA”. A Zone of Mid Continental Rifting in Indian Shield. J. Geol. Soc. India 1991, 37, 211–220. [Google Scholar] [CrossRef]
- Tewari, H.C. A tectonic model of the Narmada region. Curr. Sci. 2001, 80, 873–878. [Google Scholar]
- Shanker, R. Neotectonic Activity along the Tapti-Satpura Lineament in Central India. Indian Miner. 1987, 41, 19–30. [Google Scholar]
- Mishra, D.C.; Kumar, S.R. Characteristics of faults associated with Narmada–Son lineament and rock types in Jabalpur sector. Curr. Sci. 1998, 75, 308–310. [Google Scholar]
- Ruidas, D.K.; Zijlstra, J.J.P. The hardgrounds of the Turonian–Coniacian carbonates of the Bagh Group of central India. J. Earth Syst. Sci. 2023, 132, 27. [Google Scholar] [CrossRef]
- Valdiya, K.S.; Sanwal, J. Satpura horst and Narmada–Tapi grabens. In Developments in Earth Surface Processes; Elsevier: Amsterdam, The Netherlands, 2017; Volume 22, pp. 237–247. [Google Scholar]
- Murty, T.V.V.G.R.K.; Mishra, S.K. The Narmada-Son lineament and the structure of the Narmada rift system. J. Geol. Soc. India 1981, 22, 112–120. [Google Scholar] [CrossRef]
- Valdiya, K.S. Tectonic framework of India: A review and interpretation of recent structural and tectonic studies. Bull. Geophys. Res. 1973, 11, 79–114. [Google Scholar]
- Patro, B.P.K.; Sarma, S.V.S. Trap thickness and the subtrappean structures related to mode of eruption in the Deccan Plateau of India: Results from magnetotellurics. Earth Planets Space 2007, 59, 75–81. [Google Scholar] [CrossRef]
- Akhtar, K.; Khan, D.A. A tidal island model for carbonate sedimentation: Karondia Limestone of Cretaceous Narmada basin, India. J. Geol. Soc. India 1997, 50, 481–489. [Google Scholar] [CrossRef]
- Gangopadhyay, T.K.; Bardhan, S. Dimorphism and a new record of Barroisiceras De Grossouvre (Ammonoidea) from the Coniacian of Bagh, central India. Can. J. Earth Sci. 2000, 37, 1377–1387. [Google Scholar] [CrossRef]
- Jaitly, A.K.; Ajane, R. Comments on Placenticeras mintoi (Vredenburg 1906) from the Bagh Beds (Late Cretaceous), Central India with special reference to turonian nodular limestone horizon. J. Geol. Soc. India 2013, 81, 565–574. [Google Scholar] [CrossRef]
- Ruidas, D.K.; Paul, S.; Gangopadhyay, T.K. A reappraisal of stratigraphy of Bagh Group of rocks in Dhar District, Madhya Pradesh with an outline of origin of nodularity of Nodular Limestone Formation. J. Geol. Soc. India 2018, 92, 19–26. [Google Scholar] [CrossRef]
- Beaudoin, N.; Lacombe, O. Recent and future trends in paleopiezometry in the diagenetic domain: Insights into the tectonic paleostress and burial depth history of fold-and-thrust belts and sedimentary basins. J. Struct. Geol. 2018, 114, 357–365. [Google Scholar] [CrossRef]
- Regnet, J.B.; David, C.; Robion, P.; Menéndez, B. Microstructures and physical properties in carbonate rocks: A comprehensive review. Mar. Pet. Geol. 2019, 103, 366–376. [Google Scholar] [CrossRef]
- Katz, O.; Reches, Z.E.; Roegiers, J.C. Evaluation of mechanical rock properties using a Schmidt Hammer. Int. J. Rock Mech. Min. Sci. 2000, 37, 723–728. [Google Scholar] [CrossRef]
- Wright, K.; Cygan, R.T.; Slater, B. Structure of the (101ī4) surfaces of calcite, dolomite and magnesite under wet and dry conditions. Phys. Chem. Chem. Phys. 2001, 3, 839–844. [Google Scholar] [CrossRef]
- Clark, S.P. Handbook of Physical Constants; Geological Society of America: Boulder, CO, USA, 1966. [Google Scholar]
- Andrews, L.M.; Railsback, L.B. Controls on stylolite development: Morphologic, lithologic, and temporal evidence from bedding-parallel and transverse stylolites from the US Appalachians. J. Geol. 1997, 105, 59–73. [Google Scholar] [CrossRef]
- Lacombe, O.; Beaudoin, N.E.; Hoareau, G.; Labeur, A.; Pecheyran, C.; Callot, J.P. Dating folding beyond folding, from layer-parallel shortening to fold tightening, using mesostructures: Lessons from the Apennines, Pyrenees, and Rocky Mountains. Solid Earth 2021, 12, 2145–2157. [Google Scholar] [CrossRef]
- Courtillot, V.; Besse, J.; Vandamme, D.; Montigny, R.; Jaeger, J.J.; Cappetta, H. Deccan flood basalts at the Cretaceous/Tertiary boundary? Earth Planet. Sci. Lett. 1986, 80, 361–374. [Google Scholar] [CrossRef]
- Self, S.; Mittal, T.; Dole, G.; Vanderkluysen, L. Toward understanding Deccan volcanism. Annu. Rev. Earth Planet. Sci. 2022, 50, 477–506. [Google Scholar] [CrossRef]
- Chenet, A.L.; Fluteau, F.; Courtillot, V.; Gérard, M.; Subbarao, K.V. Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: Results from a 1200-m-thick section in the Mahabaleshwar escarpment. J. Geophys. Res. Solid Earth 2008, 113, B4. [Google Scholar] [CrossRef]
- Laronne Ben-Itzhak, L.; Aharonov, Z.E.; Karcz, M.K.; Toussaint, R. Sedimentary Stylolite Networks and Connectivity in Limestone: Large-Scale Field Observations and Implications for Structure Evolution. J. Struct. Geol. 2014, 63, 106–123. [Google Scholar] [CrossRef]
- Zeboudj, A.; Lacombe, O.; Beaudoin, N.E.; Callot, J.-P.; Lamarche, J.; Guihou, A.; Hoareau, G. Sequence, Duration, Rate of Deformation and Paleostress Evolution during Fold Development: Insights from Fractures, Calcite Twins and U-Pb Calcite Geochronology in the Mirabeau Anticline (SE France). J. Struct. Geol. 2025, 199, 105460. [Google Scholar] [CrossRef]
Sample No. | Location | Lat (°N) and Long (°E) | Morphology Class | Stylolite Length (mm) | Crossover Length Lc (mm) | Paleostress * (MPa) | Depth * (m) |
---|---|---|---|---|---|---|---|
BG001 | Kasdana | 22.24 and 74.93 | 3 | 20 | 0.572 | 26 | 910 |
BG002 | Kasdana | 22.24 and 74.93 | 3 | 18 | 0.41 | 31 | 1090 |
BG003 | Kasdana | 22.24 and 74.93 | 3 | 18 | 0.32 | 35 | 1230 |
BG004 | Kasdana | 22.24 and 74.93 | 3 | 15 | 0.34 | 34 | 1200 |
BG005 | Kasdana | 22.24 and 74.93 | 3 | 25 | 0.748 | 23 | 810 |
BG006 | Kasdana | 22.24 and 74.93 | 3 | 16 | 0.596 | 26 | 910 |
BG007 | Kasdana | 22.24 and 74.93 | 3 | 20 | 1.225 | 18 | 630 |
BG008 | Kasdana | 22.24 and 74.93 | 3 | 20 | 0.864 | 21 | 740 |
BG009 | Kasdana | 22.24 and 74.93 | 2 | 25 | 0.609 | 25 | 880 |
BG010 | Kasdana | 22.24 and 74.93 | 3 | 25 | 0.89 | 21 | 740 |
BG011 | Kasdana | 22.24 and 74.93 | 3 | 14 | 0.572 | 26 | 910 |
BG012 | Karondia | 22.38 and 74.07 | 3 | 14 | 0.34 | 34 | 1200 |
BG013 | Karondia | 22.38 and 74.07 | 3 | 16 | 0.39 | 32 | 1120 |
BG014 | Karondia | 22.38 and 74.07 | 3 | 18 | 0.472 | 29 | 1020 |
BG015 | Zirabad | 22.41 and 75.07 | 2 | 18 | 1.27 | 18 | 630 |
BG016 | Zirabad | 22.41 and 75.07 | 3 | 20 | 0.47 | 29 | 1020 |
BG017 | Zirabad | 22.41 and 75.07 | 3 | 18 | 0.69 | 24 | 840 |
BG018 | Ratitalai | 22.40 and 75.05 | 3 | 30 | 0.830 | 22 | 770 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ruidas, D.K.; Beaudoin, N.E.; Thakur, S.; Musib, A.; Dey, G. Sedimentary Stylolites Roughness Inversion Enables the Quantification of the Eroded Thickness of Deccan Trap Above the Bagh Group, Narmada Basin, India. Minerals 2025, 15, 766. https://doi.org/10.3390/min15080766
Ruidas DK, Beaudoin NE, Thakur S, Musib A, Dey G. Sedimentary Stylolites Roughness Inversion Enables the Quantification of the Eroded Thickness of Deccan Trap Above the Bagh Group, Narmada Basin, India. Minerals. 2025; 15(8):766. https://doi.org/10.3390/min15080766
Chicago/Turabian StyleRuidas, Dhiren Kumar, Nicolas E. Beaudoin, Srabani Thakur, Aniruddha Musib, and Gourab Dey. 2025. "Sedimentary Stylolites Roughness Inversion Enables the Quantification of the Eroded Thickness of Deccan Trap Above the Bagh Group, Narmada Basin, India" Minerals 15, no. 8: 766. https://doi.org/10.3390/min15080766
APA StyleRuidas, D. K., Beaudoin, N. E., Thakur, S., Musib, A., & Dey, G. (2025). Sedimentary Stylolites Roughness Inversion Enables the Quantification of the Eroded Thickness of Deccan Trap Above the Bagh Group, Narmada Basin, India. Minerals, 15(8), 766. https://doi.org/10.3390/min15080766