Genesis of Basalts of the Raohe Subduction–Accretion Complex in the Wandashan Block, NE China, and Its Inspirations for Evolution of the Paleo-Pacific Ocean
Abstract
1. Introduction
2. Regional Geological Background
3. Sampling Location and Petrographic Features
3.1. Sampling Location of This Study
3.2. Petrographic Features
4. Analytical Methods
4.1. Zircon U-Pb Dating
4.2. Major and Trace Element Analyses
5. Results
5.1. Zircon U-Pb Ages
5.2. Major and Trace Element Characteristics
5.2.1. Late Triassic Basalts
5.2.2. Middle Jurassic Basalts
5.2.3. Early Cretaceous Basalts
6. Discussion
6.1. The Eras of Basalts in the Raohe Subduction–Accretion Complex
6.2. Characteristics and Petrogenesis of Basalts
6.3. Definition of the Raohe Subduction–Accretion Complex and Constraints on the Ocean–Continent Transition Process
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, F.Y.; Sun, D.Y.; Ge, W.C.; Zhang, Y.B.; Grant, M.L.; Wilde, S.A.; Jahn, B.M. Geochronology of the Phanerozoic granitoids in northeastern China. J. Asian Earth Sci. 2011, 41, 1–30. [Google Scholar] [CrossRef]
- Wilde, S.A.; Zhou, J.B. The late Paleozoic to Mesozoic evolution of the eastern margin of the Central Asian Orogenic Belt in China. J. Asian Earth Sci. 2015, 113, 909–921. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Guo, Y.; Zeng, Z.; Fu, Q.L.; Pu, J.B. Dynamic evolution of the Mesozoic-Cenozoic basins in the northeastern China. Earth Sci. Front. 2015, 22, 88–98. [Google Scholar]
- Xu, W.L.; Sun, C.Y.; Tang, J.; Luan, J.P.; Wang, F. Basement Nature and Tectonic Evolution of the Xing’an-Mongolian Orogenic Belt. Earth Sci. 2019, 44, 1620–1646. [Google Scholar]
- Liu, J.X.; Liu, C.; Deng, J.F.; Luo, Z.H.; He, G.Q.; Liu, Q. Igneous Records of Mongolia-Okhotsk Ocean Subduction: Evidence from Granitoids in the Greater Khingan Mountains. Mineral 2023, 13, 493. [Google Scholar] [CrossRef]
- Wang, X.Z. Marine Mesozoic Stratigraphy within the Mesozoic Fold Belt of Raohe, Northeast China. Chin. J. Geol. (Sci. Geol. Sin.) 1959, 2, 50–51. [Google Scholar]
- Li, W.K.; Han, J.X.; Zhang, S.X.; Meng, F.Y. Basic Geological Characteristics of the Upper Paleozoic in the Northern Section of the Nadanhada Range. Collect. Chin. Acad. Geol. Sci. 1979, 1, 104–120. [Google Scholar]
- Huang, J.Q.; Ren, J.S. The Tectonics of China and Its Evolution; Science Press: Beijing, China, 1980. [Google Scholar]
- Li, X.B.; Guo, Z.X.; Yang, Y.T.; Song, C.C.; He, S. A short-lived but significant Mongol-Okhotsk collisional orogeny in latest Jurassic-earliest Cretaceous. Gondwana Res. 2015, 28, 1096–1116. [Google Scholar]
- Li, G.Y.; Zhou, J.B.; Li, H.D.; Chen, Z.; Wang, H.Y.; Wang, B. The transition of the Late Paleozoic tectonic regime in eastern Jilin and Heilongjiang provinces: Constraints from the double accretionary complex and island arc magmatic rock belts in the Jiamusi-Khanka Block. ACTA Petrol. Sin. 2022, 38, 2743–2761. [Google Scholar]
- Pan, G.T.; Xiao, Q.H.; Zhang, K.X.; Yin, F.G.; Ren, F.; Peng, Z.M.; Wang, J.X. Recognition of the Oceanic Subduction-Accretion Zones from the Orogenic Belt in Continents and Its Important Scientific Significance. Earth Sci. 2019, 44, 1544–1561. [Google Scholar]
- Li, C.Y.; Wang, Q.; Liu, X.Y.; Tang, Y.Q. Tectonic Evolution of Asia. Bull. Chin. Acad. Geol. Sci. 1984, 3, 9–17. [Google Scholar]
- The First Regional Geological Survey Team of Heilongjiang Provincial Bureau of Geology and Mineral Resources. 1:200,000 Xiao Jiahe Commune Sheet, Raohe County Sheet, and Zhenbao Island Sheet Regional Geological Survey; The First Regional Geological Survey Team of Heilongjiang Provincial Bureau of Geology and Mineral Resources: Harbin, China, 1987. [Google Scholar]
- Cheng, R.Y.; Wu, F.Y.; Ge, W.C.; Sun, D.Y.; Liu, X.M.; Yang, J.H. Emplacement age of the Raohe Complex in eastern Heilongjiang Province and tectonic evolution of eastern Part of Northeastern China. Acta Petrol. Sin. 2006, 22, 353–376. [Google Scholar]
- Zhou, J.B.; Cao, J.L.; Wilde, S.A.; Zhao, G.C.; Zhang, J.J.; Wang, B. Paleo-Pacific subduction-accretion: Evidence from Geochemical and U-Pb zircon dating of the Nadanhada accretionary complex, NE China. Tectonics 2014, 33, 2444–2466. [Google Scholar] [CrossRef]
- Zhang, Q. Some Problems Concerning the Ophiolite Study. Acta Petrol. Sin. 1995, S1, 228–240. [Google Scholar]
- Shao, J.A.; Tang, K.D. Northeast China Terranes and the Evolution of the Northeast Asian Continental Margin; Seismological Press: Beijing, China, 1995. [Google Scholar]
- Wu, F.Y.; Ji, W.Q.; Wang, J.G.; Liu, C.Z.; Chung, S.L.; Clift, P.D. Zircon U-Pb and Hf isotopic constraints on the onset time of India-Asia collision. Am. J. Sci. 2000, 314, 548–579. [Google Scholar] [CrossRef]
- Ge, W.C.; Sui, Z.M.; Wu, F.Y.; Zhang, J.H.; Xu, X.C.; Cheng, R.Y. Zircon U-Pb ages, Hf isotopic characteristics and their implications of the Early Paleozoic granites in the northeastern Da Hinggan Mts., northeastern China. Acta Petrol. Sin. 2007, 23, 423–440. [Google Scholar]
- Lan, H.Y.; Li, S.Z.; Li, X.Y.; Guo, L.L.; Suo, Y.H.; Li, J.; Wang, P.C.; Zhao, S.J.; Yu, S.Y.; Liu, B.; et al. Indosinian deformation in eastern North China: Implications for continental deep subduction polarity. Earth Sci. Front. 2017, 24, 185–199. [Google Scholar]
- Han, W.; Zhou, J.B. Paleo-Pacific subduction-accretion: Geochemical and geochronology constaints from the Raohe accretionary complex, NE China. Acta Petrol. Sin. 2020, 36, 703–725. [Google Scholar] [CrossRef]
- BGMRH (Bureau of Geology and Mineral Resources of Heilongjiang Province). Research Report on the Early to Middle Mesozoic Geological Characteristics of the Wandashan Area in Northeastern Heilongjiang Province; Research Institute of Regional Geological Survey of Heilongjiang: Harbin, China, 1987. [Google Scholar]
- RIRGSH (Research Institute of Regional Geological Survey of Heilongjiang). Heilongjiang Provincial Regional Geological Record Report; Research Institute of Regional Geological Survey of Heilongjiang: Harbin, China, 2018. [Google Scholar]
- Liu, C.; Deng, J.F.; Luo, Z.H.; Tian, S.P.; Zhang, Y.; Zhong, C.T.; Selby, D.; Zhao, H.D. Post-batholith metallogenesis: Evidence from Luming super large molybdenite deposit in Lesser Xing’an Range. Acta Petrol. Sin. 2014, 30, 3400–3418. [Google Scholar]
- Zhou, J.B.; Pu, X.G.; Hou, H.S.; Han, W.; Cao, J.L.; Li, G.Y. The Mesozoic accretionary complex in NE China and its tectonic implications for the subduction of the Paleo-Pacific plate beneath the Eurasia. Acta Petrol. Sin. 2018, 34, 2845–2856. [Google Scholar]
- Xu, W.L.; Wang, Y.N.; Wang, F.; Tang, J.; Long, X.Y.; Dong, Y.; Li, Y.; Zhang, X.Z. Evolution of western Pacific subduction zones: Constraints from accretionary complexes in NE Asian continental margin. Geol. Rev. 2022, 68, 1–17. [Google Scholar]
- He, S.; Sun, X.M.; Zhang, X.Q.; Wan, K.; Zheng, H.; Li, D.Z. Geological and geochemical characteristics of Raohe pillow basalts of Heilongjiang Province and its tectonic implication. Glob. Geol. 2016, 35, 942–954. [Google Scholar]
- Zhang, G.B. Study on Metallogenic System of Wandashan Massif Eastern Heilongjiang Province. Ph.D. Thesis, Jilin University, Changchun, China, 2014. [Google Scholar]
- Zeng, Z.; Sun, L.; Zhang, X.Z.; Cui, W.L.; Jiang, L. Zircon U-Pb Chronology and Geochemistry of the Pillow Basalts from Raohe Complex: Geological Implications. Geol. Resour. 2019, 28, 119–127. [Google Scholar]
- Tian, D.J. Geological-Geochemical Composition and Evolution of the Wanda Mountain Orogenic Belt. Master’s Thesis, Jilin University, Changchun, China, 2007. [Google Scholar]
- Liang, Y.; Zheng, H.; Li, H.; Algeo, T.J.; Sun, X.M. Late Paleozoic-Mesozoic subduction and accretion of the Paleo-Pacific Plate: Insights from ophiolitic rocks in the Wandashan accretionary complex, NE China. Geosci. Front. 2021, 12, 177–197. [Google Scholar] [CrossRef]
- Zhou, L.Y.; Wang, Y.; Wang, N. Syn-tectonic magmatic emplacement in Wanda Mountain, northeast China: A response to the Late Mesozoic sinistral strike slip motion. Geol. Bull. China 2015, 34, 400–418. [Google Scholar]
- Rudnick, R.L.; Shan, G.; Ling, W.L.; Liu, Y.S.; McDonough, W.F. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China craton. Lithos 2004, 77, 609–637. [Google Scholar] [CrossRef]
- Eric, A.K. Middlemost. Naming Materials in the Magma/Igneous Rock System. Earth Sci. Rev. 1994, 37, 215–224. [Google Scholar] [CrossRef]
- Peccerillo, R.; Taylor, S.R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contrib. Mineral. Petrol. 1976, 58, 63–81. [Google Scholar] [CrossRef]
- Le Maitre, R.W. Igneous Rocks, A Classification and Glossary of Terms, 2nd ed.; Cambridge University Press: Cambridge, UK, 2002; pp. 1–236. [Google Scholar]
- Deng, J.F.; Feng, Y.F.; Di, Y.J.; Liu, C.; Xiao, Q.H.; Su, S.G.; Xiao, Q.H.; Zhao, G.C.; Dai, M.; Duan, P.X. Crustal convergent and accretional consumption zones, and continent-continent collisional orogenes and subduction-accretional orgenes: Records from the igneous petrotectonic assemblages. Earth Sci. Front. 2016, 23, 34–41. [Google Scholar]
- Winchester, J.A.; Floyd, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem. Geol. 1977, 20, 325–343. [Google Scholar] [CrossRef]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins; Saunders, A.D., Norry, M.J., Eds.; Geological Society, London, Special Publications: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar]
- Boynton, W.V. Geochemistry of the rare earth elements: Meteorite studies. In Rare Earth Element Geochemistry; Henderson, P., Ed.; Elsevier: Amsterdam, The Netherlands, 1984; pp. 63–114. [Google Scholar]
- Sun, M.D.; Xu, Y.G.; Chen, H.L. Subaqueous volcanism in the Paleo-Pacific Ocean based on Jurassic basaltic tuff and pillow basalt in the Raohe Complex, NE China. Sci. China Earth Sci. 2018, 61, 1042–1056. [Google Scholar] [CrossRef]
- Zhang, K.X.; He, W.H.; Jin, J.S.; Wang, J.X.; Xu, Y.D.; Zhang, X.H.; Yu, Y.; Lin, Q.X.; Luo, M.S.; Ji, J.L.; et al. Application of OPS to the Division of Tectonic-Strata Regions in Orogenic Belts. Earth Sci. 2020, 45, 2305–2325. [Google Scholar]
- Zhang, K.X.; He, W.H.; Xu, Y.D. Explanatory Note of the Sedimentary Tectonic Map of China (1:250,000); Geological Publishing House: Beijing, China, 2018. [Google Scholar]
- Isozaki, Y.; Maruyama, S.; Furuoka, F. Accreted oceanic materials in Japan. Tectonophysics 1990, 181, 179–205. [Google Scholar] [CrossRef]
- Li, G.M.; Zhang, L.K.; Wu, J.Y.; Xie, C.M.; Zhu, L.D.; Han, F.L. Reestablishment and scientific significance of the Ocean plate geology in the Southern Tibet Plateau, China. Sediment. Geol. Tethyan Geol. 2020, 40, 1–14. [Google Scholar]
- Zhang, K.X.; He, W.H.; Xu, Y.D.; Zhang, X.H.; Song, B.W.; Kou, X.H.; Wang, G.C. Reconstruction of main types for oceanic plate strata in the subduction-accretionary complex and feature of sequence for each type: An example from the Qinghai-Tibet Tethyan Permian strata. Sediment. Geol. Tethyan Geol. 2021, 41, 137–151. [Google Scholar]
- Li, T.D.; Xiao, Q.H.; Pan, G.T.; Lu, S.N.; Ding, X.Z.; Liu, Y. A Consideration about the Development of Ocean Plate Geology. Earth Sci. 2019, 44, 1141–1151. [Google Scholar]
- Dilek, Y. Neotethyan Ophiolites and Their Geodynamic Evolution During the Mesozoic: A Global Overview. Acta Geol. Sin. 2020, 94, 76–77. [Google Scholar] [CrossRef]
- Bernard, B. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 1999, 46, 605–626. [Google Scholar] [CrossRef]
- Deng, J.F.; Liu, C.; Di, Y.J.; Feng, Y.F.; Su, S.G.; Xiao, Q.H. Magmatic Arc and Ocean-Continent Transition: Discussion. Geol. Rev. 2015, 61, 474–484. [Google Scholar]
- Wu, F.Y.; Wang, J.G.; Liu, C.Z.; Liu, T.; Zhang, C.; Ji, W.Q. Intra-oceanic arc: Its formation and evolution. Acta Petrol. Sin. 2019, 35, 1–15. [Google Scholar]
- Defant, M.J.; Drummond, M.S. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 1990, 347, 662–665. [Google Scholar] [CrossRef]
- Castillo, P.R. Adakite petrogenesis. Lithos 2012, 134, 304–316. [Google Scholar] [CrossRef]
- Pearce, J.A.; Norry, M.J. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contrib. Mineral. Petrol. 1979, 69, 33–47. [Google Scholar] [CrossRef]
- Pearce, J.A.; Cann, J.R. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth Planet. Sci. Lett. 1973, 19, 290–300. [Google Scholar] [CrossRef]
- Pearce, J.A.; Van Der Laan Sieger, R.; Arculus, R.J.; Murton, B.J.; Ishii, T.; Peate, D.W.; Parkinson, I.J. Boninite and harzburgite from Leg 125 (Bonin-Mariana Forearc): A case study of magma genesis during the initial stages of subduction. Proc. Ocean. Drill. Program Sci. Results 1992, 125, 623–659. [Google Scholar]
- Dilek, Y.; Furnes, H. Ophiolites and Their Origins. Elements 2014, 10, 93–100. [Google Scholar] [CrossRef]
- Dilek, Y.; Furnes, H. Ophiolite genesis and global tectonics: Geochemical and tectonic fingerprinting of ancient oceanic lithosphere. Geol. Soc. Am. Bull. 2011, 123, 387–411. [Google Scholar] [CrossRef]
- Raymond, A.L. What is Franciscan?: Revisited. Int. Geol. Rev. 2018, 60, 1968–2030. [Google Scholar] [CrossRef]
- Wakabayashi, J. Sedimentary compared to tectonically-deformed serpentinites and tectonic serpentinite mélanges at outcrop to petrographic scales: Unambiguous and disputed examples from California. Gondwana Res. 2019, 74, 51–67. [Google Scholar] [CrossRef]
- Hong, K.C.; Wang, F.; Zhang, S.W.; Xu, W.L.; Wang, Y.N.; Yang, D.B. Oligocene melting of subducted mélange and its mantle dynamics in northeast Asia. Geology 2024, 52, 539–544. [Google Scholar] [CrossRef]
- Reagan, M.K.; Ishizuka, O.; Stern, R.J.; Kelley, K.A.; Ohara, Y.; Bilchert-Toft, J.; Bloomer, S.H.; Cash, J.; Fryer, P.; Han-an, B.B.; et al. Forh-arc basalts and subduction initiation in the Izu-Bonin-Mariana system. Geochem. Geophys. Geosyst. 2010, 11, 1525–2027. [Google Scholar] [CrossRef]
- Wu, F.Y.; John, B.M.; Wilde, S.; Sun, D.Y. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China. Tectonophysics 2000, 328, 89–113. [Google Scholar] [CrossRef]
- Yang, X.P.; Zhong, H.; Yang, Y.J.; Jiang, B.; Qian, C.; Ma, Y.F.; Zhang, C. Research progress on the subduction-accretion complex: Reconstruction of the tectonic framework of the Great Xing’an Range. Earth Sci. Front. 2022, 29, 94–114. [Google Scholar]
Sample No. | U | Th | Th/U | Isotopicratios Corrected for Common Pb | Age (Ma) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(10−6) | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | |||
DDC2019729-1.1 | 779 | 221 | 0.28 | 0.04908 | 0.00119 | 0.12499 | 0.00305 | 0.01850 | 0.00020 | 151 | 57 | 120 | 3 | 118 | 1 |
DDC2019729-1.2 | 880 | 363 | 0.41 | 0.04860 | 0.00107 | 0.12244 | 0.00285 | 0.01828 | 0.00020 | 129 | 52 | 117 | 3 | 117 | 1 |
DDC2019729-1.3 | 76 | 39 | 0.51 | 0.11503 | 0.00156 | 5.33835 | 0.07870 | 0.33659 | 0.00360 | 1880 | 24 | 1875 | 28 | 1870 | 20 |
DDC2019729-1.4 | 644 | 116 | 0.18 | 0.08911 | 0.00228 | 0.20779 | 0.00539 | 0.01690 | 0.00017 | 1407 | 49 | 192 | 5 | 108 | 1 |
DDC2019729-1.5 | 137 | 41 | 0.30 | 0.06687 | 0.00118 | 1.30215 | 0.02569 | 0.14093 | 0.00156 | 834 | 37 | 847 | 17 | 850 | 9 |
DDC2019729-1.6 | 951 | 7 | 0.01 | 0.11380 | 0.00144 | 5.30898 | 0.07173 | 0.33836 | 0.00345 | 1861 | 23 | 1870 | 25 | 1879 | 19 |
DDC2019729-1.7 | 261 | 272 | 1.04 | 0.05762 | 0.00115 | 0.48033 | 0.00976 | 0.06050 | 0.00061 | 515 | 44 | 398 | 8 | 379 | 4 |
DDC2019729-1.8 | 345 | 44 | 0.13 | 0.05315 | 0.00242 | 0.13758 | 0.00630 | 0.01880 | 0.00019 | 335 | 103 | 131 | 6 | 120 | 1 |
DDC2019729-1.9 | 288 | 74 | 0.26 | 0.11308 | 0.00147 | 3.91293 | 0.05639 | 0.25097 | 0.00276 | 1849 | 23 | 1616 | 23 | 1443 | 16 |
DDC2019729-1.10 | 598 | 155 | 0.26 | 0.11488 | 0.00149 | 4.22284 | 0.05735 | 0.26658 | 0.00261 | 1878 | 23 | 1678 | 23 | 1523 | 15 |
DDC2019729-1.11 | 681 | 87 | 0.13 | 0.05243 | 0.00129 | 0.13472 | 0.00334 | 0.01865 | 0.00018 | 304 | 56 | 128 | 3 | 119 | 1 |
DDC2019729-1.12 | 664 | 250 | 0.38 | 0.04638 | 0.00133 | 0.11676 | 0.00335 | 0.01835 | 0.00019 | 18 | 69 | 112 | 3 | 117 | 1 |
DDC2019729-1.13 | 571 | 182 | 0.32 | 0.07735 | 0.00099 | 1.87524 | 0.02693 | 0.17573 | 0.00190 | 1130 | 26 | 1072 | 15 | 1044 | 11 |
DDC2019729-1.14 | 307 | 188 | 0.61 | 0.04398 | 0.00557 | 0.05375 | 0.00665 | 0.00879 | 0.00010 | -- | -- | 53 | 7 | 56 | 1 |
DDC2019729-1.15 | 417 | 117 | 0.28 | 0.05137 | 0.00216 | 0.12543 | 0.00531 | 0.01774 | 0.00017 | 257 | 97 | 120 | 5 | 113 | 1 |
DDC2019729-1.16 | 670 | 249 | 0.37 | 0.07905 | 0.00101 | 1.78124 | 0.02412 | 0.16353 | 0.00166 | 1173 | 25 | 1039 | 14 | 976 | 10 |
DDC2019729-1.17 | 75 | 43 | 0.57 | 0.17932 | 0.00238 | 11.81498 | 0.17328 | 0.47751 | 0.00511 | 2647 | 22 | 2590 | 38 | 2516 | 27 |
DDC2019729-1.18 | 334 | 178 | 0.53 | 0.16371 | 0.00212 | 10.10926 | 0.14029 | 0.44793 | 0.00460 | 2494 | 22 | 2445 | 34 | 2386 | 24 |
DDC2019729-1.19 | 484 | 117 | 0.24 | 0.05126 | 0.00179 | 0.13053 | 0.00458 | 0.01850 | 0.00018 | 252 | 80 | 125 | 4 | 118 | 1 |
Sampling Number | Lithology | Age | SiO2 | TiO2 | Al2O3 | TFe2O3 | MnO | MgO | CaO | Na2O | K2O | P2O5 | LOI | Mg# | References |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ωB/% | |||||||||||||||
DDC2019729-1 | Pillow basalt | 117.5 ± 2.1 Ma | 43.49 | 2.68 | 9.82 | 14.22 | 0.19 | 13.24 | 9.92 | 1.93 | 0.09 | 0.30 | 1.60 | 70.39 | This study |
DDC2019729-2 | 44.09 | 9.90 | 2.75 | 13.68 | 0.20 | 12.90 | 9.91 | 2.00 | 0.09 | 0.31 | 3.90 | 70.66 | |||
15HLJ28a | Basalt | 168 ± 2 Ma | 48.03 | 2.49 | 11.52 | 14.80 | 0.24 | 7.67 | 9.07 | 2.98 | 0.60 | 0.73 | 1.57 | 56.96 | [29] |
15HLJ28b | 44.36 | 3.34 | 12.10 | 13.62 | 0.16 | 9.19 | 9.46 | 2.99 | 0.29 | 0.80 | 2.87 | 63.28 | |||
15HLJ28c | 45.19 | 3.09 | 12.62 | 12.51 | 0.15 | 9.63 | 9.08 | 3.08 | 0.26 | 0.73 | 3.08 | 66.28 | |||
15HLJ28d | 49.82 | 2.70 | 13.90 | 10.52 | 0.21 | 6.17 | 8.86 | 4.31 | 0.32 | 0.61 | 1.50 | 59.96 | |||
04H-70 | Basaltic andesite | 167 ± 1 Ma | 51.70 | 2.78 | 12.14 | 10.22 | 0.15 | 5.68 | 10.49 | 3.54 | 0.30 | 0.34 | 3.51 | 58.66 | [15] |
04H-71 | 50.93 | 3.39 | 13.77 | 12.01 | 0.21 | 3.65 | 9.22 | 3.15 | 0.47 | 0.59 | 3.80 | 43.69 | |||
04H-72 | 51.06 | 3.34 | 13.96 | 11.58 | 0.16 | 4.58 | 9.16 | 3.95 | 0.79 | 0.48 | 0.68 | 59.14 | |||
04H-73 | Basalt | 48.46 | 3.00 | 12.27 | 13.33 | 0.19 | 6.48 | 11.34 | 2.67 | 0.75 | 0.35 | 0.86 | 53.91 | ||
04H-80 | 48.82 | 3.03 | 12.00 | 14.73 | 0.19 | 7.43 | 7.45 | 3.07 | 0.16 | 0.35 | 2.48 | 60.12 | |||
04H-81 | 48.86 | 2.47 | 10.62 | 12.53 | 0.17 | 9.29 | 9.76 | 2.96 | 0.09 | 0.27 | 2.68 | 68.68 | |||
04H-82 | 49.43 | 2.49 | 10.55 | 12.71 | 0.16 | 9.41 | 8.92 | 2.92 | 0.20 | 0.28 | 2.63 | 68.86 | |||
04H-83 | 49.00 | 2.42 | 10.48 | 12.56 | 0.17 | 9.32 | 9.64 | 2.90 | 0.16 | 0.27 | 2.78 | 68.80 | |||
04H-84 | 49.18 | 2.49 | 10.63 | 12.77 | 0.17 | 9.32 | 9.33 | 2.98 | 0.11 | 0.30 | 2.45 | 68.34 | |||
14JH40-1 | Basalt | 166 ± 2 Ma | 48.11 | 2.96 | 14.60 | 10.00 | 0.33 | 5.56 | 9.18 | 2.14 | 2.28 | 2.81 | 1.96 | 58.67 | [21] |
14JH40-2 | 49.79 | 2.27 | 14.30 | 9.74 | 0.27 | 4.74 | 9.81 | 2.98 | 1.39 | 2.17 | 2.40 | 55.41 | |||
14JH40-3 | 49.20 | 2.51 | 14.57 | 10.76 | 0.36 | 4.91 | 8.98 | 2.25 | 1.29 | 2.77 | 2.25 | 53.82 | |||
14JH40-4 | 47.25 | 2.91 | 14.83 | 10.62 | 0.33 | 5.77 | 9.01 | 2.52 | 1.90 | 2.61 | 2.27 | 58.11 | |||
14JH40-5 | 50.54 | 2.45 | 14.83 | 9.74 | 0.29 | 3.62 | 10.30 | 1.71 | 2.02 | 1.86 | 2.25 | 48.69 | |||
14JH40-6 | 49.41 | 3.08 | 13.70 | 10.15 | 0.36 | 4.98 | 9.78 | 2.11 | 1.86 | 2.38 | 2.39 | 55.61 | |||
14JH41-1 | 50.59 | 2.59 | 14.61 | 8.40 | 0.33 | 4.77 | 9.40 | 2.01 | 2.48 | 2.37 | 2.36 | 59.18 | |||
14JH41-2 | 50.39 | 2.82 | 14.91 | 9.43 | 0.33 | 5.49 | 8.96 | 2.13 | 1.14 | 2.61 | 1.98 | 59.78 | |||
14JH41-3 | 46.92 | 3.36 | 14.60 | 10.69 | 0.37 | 5.81 | 9.89 | 2.62 | 1.33 | 2.96 | 1.34 | 58.12 | |||
14JH41-4 | 50.14 | 2.60 | 13.57 | 9.83 | 0.31 | 4.91 | 9.85 | 1.61 | 2.87 | 2.10 | 2.05 | 56.05 | |||
14JH41-5 | 46.98 | 3.48 | 14.43 | 10.66 | 0.43 | 6.12 | 9.96 | 1.74 | 1.47 | 3.02 | 1.19 | 59.45 | |||
14JH41-6 | 49.95 | 2.64 | 13.23 | 9.56 | 0.32 | 6.41 | 10.11 | 1.78 | 1.49 | 2.23 | 2.08 | 63.13 | |||
BLQ-1 | Picro-basalt | 222 ± 10 Ma | 44.50 | 0.78 | 5.36 | 15.79 | 0.14 | 20.90 | 12.35 | 0.40 | 0.02 | 0.01 | 3.93 | 77.17 | [28] |
BLQ-2 | 43.00 | 1.00 | 4.95 | 20.56 | 0.17 | 23.00 | 8.80 | 0.32 | 0.01 | 0.01 | 4.65 | 74.07 | |||
BLQ-3 | 43.30 | 0.65 | 3.08 | 21.28 | 0.19 | 26.00 | 9.60 | 0.25 | 0.01 | 0.02 | 2.45 | 75.73 | |||
BLQ-4 | 42.00 | 1.66 | 5.41 | 17.78 | 0.17 | 22.90 | 9.64 | 0.32 | 0.01 | 0.05 | 4.48 | 76.69 | |||
BLQ-8 | 44.80 | 0.73 | 2.54 | 17.48 | 0.17 | 25.80 | 11.45 | 0.21 | 0.01 | 0.01 | 1.83 | 79.03 | |||
BLQ-9 | 44.60 | 0.72 | 4.58 | 15.23 | 0.15 | 22.90 | 13.25 | 0.23 | 0.01 | 0.01 | 3.06 | 79.34 |
No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | ||||||||||||
Sampling Number | DDC2019729-1.1 | DDC2019729-1.2 | 15HLJ28a | 15HLJ28b | 15HLJ28c | 15HLJ28d | 04H-70 | 04H-71 | 04H-72 | 04H-73 | 04H-80 | 04H-81 | 04H-82 | 04H-83 | 04H-84 | ||||||||||||
Lithology | Pillow basalt | Basalt | Basaltic andesite | Basalt | |||||||||||||||||||||||
Age | 117.5 ± 2.1 Ma | 168 ± 2 Ma | 167 ± 1 Ma | ||||||||||||||||||||||||
Rb | 4.24 | 17.20 | 16.40 | 6.20 | 6.70 | 7.30 | 6.00 | 12.00 | 14.00 | 13.00 | 6.00 | 4.00 | 6.00 | 5.00 | 5.00 | ||||||||||||
Ba | 21.68 | 24.60 | 261.00 | 93.90 | 63.20 | 236.00 | 116.00 | 172.00 | 310.00 | 300.00 | 64.00 | 51.40 | 59.20 | 61.10 | 44.80 | ||||||||||||
Th | 2.51 | 4.02 | 6.21 | 5.75 | 5.56 | 5.23 | 3.84 | 5.18 | 2.69 | 4.00 | 2.35 | 1.51 | 1.89 | 2.16 | 1.98 | ||||||||||||
U | 0.63 | 0.79 | 0.92 | 1.80 | 1.66 | 1.46 | 0.87 | 0.81 | 0.51 | 0.86 | 0.28 | 0.47 | 0.45 | 0.39 | 0.38 | ||||||||||||
Nb | 28.12 | 25.80 | 69.80 | 73.40 | 67.50 | 59.60 | 29.30 | 34.30 | 29.50 | 43.50 | 29.60 | 21.40 | 24.90 | 25.00 | 23.90 | ||||||||||||
Ta | 2.17 | 1.82 | 4.40 | 4.70 | 4.40 | 3.60 | 1.79 | 2.70 | 1.75 | 2.58 | 1.86 | 1.53 | 1.46 | 1.53 | 1.45 | ||||||||||||
La | 20.55 | 22.20 | 52.50 | 59.00 | 52.60 | 46.10 | 21.42 | 36.70 | 23.79 | 35.15 | 40.09 | 19.31 | 19.64 | 18.69 | 23.91 | ||||||||||||
Ce | 40.61 | 41.10 | 109.10 | 114.50 | 107.50 | 87.70 | 43.82 | 82.46 | 50.93 | 70.12 | 69.14 | 41.53 | 42.50 | 39.52 | 45.77 | ||||||||||||
Nd | 27.62 | 25.10 | 48.30 | 53.90 | 50.00 | 39.60 | 28.51 | 48.38 | 33.32 | 40.42 | 32.13 | 26.13 | 26.51 | 25.53 | 28.33 | ||||||||||||
Sr | 149.14 | 142.00 | 337.00 | 289.00 | 236.00 | 553.00 | 218.00 | 552.00 | 466.00 | 282.00 | 264.00 | 255.00 | 306.00 | 332.00 | 204.00 | ||||||||||||
Sm | 6.41 | 5.76 | 10.05 | 11.80 | 10.50 | 8.29 | 6.35 | 10.35 | 7.07 | 8.62 | 6.15 | 5.88 | 6.03 | 5.91 | 6.13 | ||||||||||||
Hf | 6.11 | 4.93 | 6.40 | 8.00 | 6.80 | 5.50 | 4.40 | 6.70 | 5.40 | 7.70 | 4.60 | 3.40 | 4.30 | 3.60 | 4.00 | ||||||||||||
Zr | 213.95 | 173.00 | 317.00 | 353.00 | 309.00 | 246.00 | 195.00 | 311.00 | 208.00 | 271.00 | 211.00 | 172.00 | 177.00 | 169.00 | 174.00 | ||||||||||||
Eu | 1.85 | 1.70 | 3.30 | 3.93 | 3.46 | 2.94 | 2.16 | 3.00 | 2.49 | 2.77 | 1.96 | 1.94 | 1.97 | 1.96 | 2.09 | ||||||||||||
Y | 25.68 | 22.40 | 33.30 | 35.60 | 33.90 | 32.30 | 27.94 | 35.74 | 30.42 | 27.60 | 41.88 | 21.27 | 22.19 | 21.76 | 21.98 | ||||||||||||
Yb | 2.16 | 1.84 | 1.81 | 1.83 | 1.91 | 1.96 | 1.96 | 2.70 | 2.28 | 2.27 | 2.07 | 1.93 | 1.90 | 1.89 | 1.94 | ||||||||||||
Lu | 0.30 | 0.27 | 0.25 | 0.24 | 0.26 | 0.26 | 0.29 | 0.37 | 0.33 | 0.31 | 0.30 | 0.28 | 0.27 | 0.27 | 0.28 | ||||||||||||
Pr | 6.35 | 5.64 | 11.75 | 13.10 | 12.20 | 9.97 | 6.44 | 11.09 | 7.38 | 9.98 | 8.69 | 6.21 | 6.40 | 5.93 | 6.71 | ||||||||||||
Gd | 5.60 | 5.28 | 9.98 | 11.15 | 10.10 | 8.92 | 6.50 | 9.51 | 7.36 | 8.19 | 6.01 | 6.05 | 6.03 | 5.98 | 6.22 | ||||||||||||
Tb | 1.01 | 0.88 | 1.25 | 1.41 | 1.38 | 1.17 | 1.03 | 1.43 | 1.15 | 1.28 | 0.90 | 0.93 | 0.96 | 0.95 | 0.97 | ||||||||||||
Dy | 5.51 | 4.99 | 6.55 | 7.71 | 7.32 | 6.69 | 5.46 | 7.72 | 6.16 | 6.74 | 5.14 | 5.16 | 5.27 | 5.13 | 5.34 | ||||||||||||
Ho | 0.98 | 0.86 | 1.19 | 1.29 | 1.24 | 1.11 | 0.99 | 1.37 | 1.12 | 1.23 | 0.97 | 0.95 | 0.95 | 0.91 | 0.98 | ||||||||||||
Er | 2.46 | 2.26 | 2.71 | 2.87 | 2.93 | 2.73 | 2.42 | 3.36 | 2.79 | 2.93 | 2.58 | 2.42 | 2.44 | 2.32 | 2.42 | ||||||||||||
Tm | 0.36 | 0.33 | 0.35 | 0.36 | 0.36 | 0.38 | 0.33 | 0.48 | 0.41 | 0.40 | 0.37 | 0.35 | 0.34 | 0.34 | 0.33 | ||||||||||||
References | This study | [29] | [15] | ||||||||||||||||||||||||
No. | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 | 33 | |||||||||
Sampling Number | 14JH40-1 | 14JH40-2 | 14JH40-3 | 14JH40-4 | 14JH40-5 | 14JH40-6 | 14JH41-1 | 14JH41-2 | 14JH41-3 | 14JH41-4 | 14JH41-5 | 14JH41-6 | BLQ-1 | BLQ-2 | BLQ-3 | BLQ-4 | BLQ-8 | BLQ-9 | |||||||||
Lithology | Basalt | Picro-basalt | |||||||||||||||||||||||||
Age | 166 ± 2 Ma | 222 ± 10 Ma | |||||||||||||||||||||||||
Rb | 101.00 | 114.00 | 119.00 | 125.00 | 119.00 | 122.00 | 85.90 | 99.30 | 123.00 | 110.00 | 120.00 | 129.00 | 0.60 | 0.80 | 0.40 | 0.50 | 0.40 | 0.80 | |||||||||
Ba | 1220.00 | 1460.00 | 1880.00 | 1780.00 | 1570.00 | 1680.00 | 1370.00 | 1170.00 | 1490.00 | 1930.00 | 1180.00 | 1310.00 | 9.30 | 1.40 | 0.70 | 4.00 | 4.60 | 6.20 | |||||||||
Th | 29.70 | 28.40 | 27.60 | 28.30 | 27.60 | 27.30 | 28.00 | 27.40 | 27.60 | 28.40 | 28.20 | 26.40 | 0.09 | 0.05 | 0.06 | 0.18 | 0.05 | 0.10 | |||||||||
U | 8.72 | 7.85 | 8.03 | 7.52 | 7.98 | 7.83 | 8.67 | 8.20 | 9.08 | 9.21 | 7.91 | 7.26 | 0.05 | 0.05 | 0.08 | 0.08 | 0.40 | 0.07 | |||||||||
Nb | 218.00 | 242.00 | 252.00 | 242.00 | 230.00 | 238.00 | 210.00 | 213.00 | 215.00 | 222.00 | 214.00 | 196.00 | 1.30 | 1.20 | 0.20 | 2.90 | 0.20 | 0.40 | |||||||||
Ta | 14.80 | 14.56 | 14.64 | 14.16 | 15.04 | 13.84 | 14.40 | 12.56 | 14.24 | 14.80 | 14.00 | 12.96 | 0.10 | 0.10 | 0.10 | 0.20 | 0.10 | 0.10 | |||||||||
La | 195.00 | 184.00 | 185.00 | 175.00 | 160.00 | 161.00 | 172.00 | 155.00 | 152.00 | 146.00 | 158.00 | 147.00 | 2.40 | 1.20 | 1.80 | 2.60 | 2.80 | 2.70 | |||||||||
Ce | 367.00 | 336.00 | 334.00 | 324.00 | 290.00 | 296.00 | 302.00 | 317.00 | 317.00 | 311.00 | 322.00 | 294.00 | 6.00 | 3.00 | 4.30 | 6.40 | 6.30 | 6.40 | |||||||||
Nd | 159.00 | 146.00 | 141.00 | 152.00 | 137.00 | 133.00 | 140.00 | 142.00 | 138.00 | 138.00 | 149.00 | 138.00 | 4.60 | 2.50 | 3.30 | 4.80 | 4.80 | 4.50 | |||||||||
Sr | 1557.00 | 1602.00 | 1893.00 | 1837.00 | 1534.00 | 1590.00 | 1658.00 | 1322.00 | 1176.00 | 1187.00 | 1165.00 | 1165.00 | 61.60 | 82.30 | 46.00 | 46.80 | 35.00 | 46.50 | |||||||||
Sm | 29.70 | 28.00 | 27.60 | 27.40 | 27.20 | 24.90 | 26.80 | 26.60 | 26.20 | 26.50 | 28.40 | 26.20 | 1.52 | 0.89 | 1.11 | 1.60 | 1.46 | 1.42 | |||||||||
Hf | 19.10 | 17.90 | 18.60 | 17.10 | 17.90 | 17.50 | 17.80 | 17.40 | 17.50 | 18.30 | 18.70 | 16.70 | 0.90 | 0.70 | 0.60 | 1.40 | 0.90 | 0.90 | |||||||||
Zr | 1010.00 | 1060.00 | 1090.00 | 1070.00 | 925.00 | 985.00 | 1160.00 | 947.00 | 979.00 | 1030.00 | 997.00 | 940.00 | 19.00 | 20.00 | 16.00 | 43.00 | 18.00 | 21.00 | |||||||||
Eu | 8.90 | 8.59 | 8.81 | 8.69 | 8.24 | 7.38 | 8.07 | 8.08 | 7.65 | 7.31 | 8.46 | 7.55 | 0.56 | 0.32 | 0.41 | 0.66 | 0.52 | 0.53 | |||||||||
Y | 74.60 | 70.00 | 72.10 | 80.60 | 66.70 | 68.70 | 72.20 | 70.10 | 70.90 | 69.60 | 74.30 | 68.50 | 8.20 | 4.70 | 6.30 | 7.40 | 8.00 | 7.90 | |||||||||
Yb | 4.92 | 4.65 | 4.74 | 4.51 | 4.43 | 4.26 | 4.68 | 4.57 | 4.58 | 4.67 | 4.64 | 4.40 | 0.65 | 0.40 | 0.49 | 0.59 | 0.64 | 0.47 | |||||||||
Lu | 0.63 | 0.59 | 0.57 | 0.62 | 0.55 | 0.53 | 0.60 | 0.58 | 0.59 | 0.58 | 0.64 | 0.57 | 0.09 | 0.05 | 0.07 | 0.07 | 0.08 | 0.08 | |||||||||
Pr | 42.40 | 39.50 | 40.80 | 41.00 | 38.60 | 37.00 | 37.80 | 39.30 | 39.00 | 39.10 | 39.60 | 38.00 | 0.88 | 0.44 | 0.66 | 0.94 | 0.91 | 0.85 | |||||||||
Gd | 27.65 | 25.59 | 24.78 | 25.44 | 24.72 | 23.00 | 24.61 | 25.52 | 24.55 | 24.78 | 25.58 | 23.65 | 2.01 | 1.21 | 1.55 | 1.93 | 2.18 | 2.05 | |||||||||
Tb | 3.84 | 3.54 | 3.51 | 3.51 | 3.45 | 3.32 | 3.52 | 3.53 | 3.45 | 3.45 | 3.63 | 3.46 | 0.28 | 0.17 | 0.23 | 0.28 | 0.29 | 0.29 | |||||||||
Dy | 17.90 | 16.20 | 16.20 | 16.30 | 16.10 | 15.20 | 16.60 | 16.40 | 16.20 | 16.00 | 16.50 | 15.30 | 1.74 | 0.99 | 1.34 | 1.71 | 1.69 | 1.69 | |||||||||
Ho | 3.04 | 2.80 | 2.76 | 2.83 | 2.72 | 2.57 | 2.74 | 2.74 | 2.78 | 2.77 | 2.90 | 2.63 | 0.32 | 0.19 | 0.27 | 0.29 | 0.34 | 0.32 | |||||||||
Er | 7.26 | 7.00 | 7.08 | 7.08 | 6.69 | 6.45 | 6.91 | 6.86 | 6.75 | 6.82 | 7.30 | 6.76 | 0.82 | 0.51 | 0.66 | 0.78 | 0.77 | 0.80 | |||||||||
Tm | 0.87 | 0.82 | 0.84 | 0.86 | 0.78 | 0.74 | 0.81 | 0.77 | 0.81 | 0.81 | 0.86 | 0.78 | 0.11 | 0.08 | 0.09 | 0.11 | 0.12 | 0.11 | |||||||||
References | [21] | [28] |
Sample No. | U | Th | Th/U | Isotopicratios Corrected for Common Pb | Age (Ma) | References | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(10−6) | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | 207Pb/206Pb | 1σ | 207Pb/235U | 1σ | 206Pb/238U | 1σ | ||||
RH03-1-02 | 532 | 404 | 0.76 | 151 | 14 | 0.02684 | 2 | 151 | 14 | 171 | 3 | [41] | ||||
RH03-1-03 | 289 | 285 | 0.99 | 136 | 25 | 0.02596 | 2 | 136 | 25 | 165 | 3 | |||||
14JH-42-02 | 388 | 280 | 0.72 | 0.10989 | 0.257 | 1762 | 19 | 0.30840 | 0.450 | 1798 | 42 | 1762 | 19 | 1733 | 22 | [21] |
14JH-42-03 | 521 | 57 | 0.11 | 0.06826 | 0.431 | 756 | 32 | 0.11743 | 0.301 | 877 | 126 | 756 | 32 | 716 | 17 | |
14JH-42-04 | 76 | 67 | 0.88 | 0.14315 | 0.544 | 2260 | 34 | 0.41867 | 1.061 | 2266 | 64 | 2260 | 34 | 2255 | 48 | |
14JH-42-05 | 294 | 136 | 0.46 | 0.05234 | 0.696 | 292 | 32 | 0.04612 | 0.202 | 300 | 278 | 292 | 32 | 291 | 12 | |
14JH-42-08 | 554 | 67 | 0.12 | 0.06776 | 0.266 | 719 | 19 | 0.11018 | 0.186 | 861 | 79 | 719 | 19 | 674 | 11 | |
14JH-42-11 | 948 | 205 | 0.22 | 0.06739 | 0.257 | 704 | 18 | 0.10766 | 0.177 | 850 | 77 | 704 | 18 | 659 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Liu, C.; Liu, J.; Deng, J.; Tian, S. Genesis of Basalts of the Raohe Subduction–Accretion Complex in the Wandashan Block, NE China, and Its Inspirations for Evolution of the Paleo-Pacific Ocean. Appl. Sci. 2025, 15, 8139. https://doi.org/10.3390/app15158139
Liu Q, Liu C, Liu J, Deng J, Tian S. Genesis of Basalts of the Raohe Subduction–Accretion Complex in the Wandashan Block, NE China, and Its Inspirations for Evolution of the Paleo-Pacific Ocean. Applied Sciences. 2025; 15(15):8139. https://doi.org/10.3390/app15158139
Chicago/Turabian StyleLiu, Qing, Cui Liu, Jixu Liu, Jinfu Deng, and Shipan Tian. 2025. "Genesis of Basalts of the Raohe Subduction–Accretion Complex in the Wandashan Block, NE China, and Its Inspirations for Evolution of the Paleo-Pacific Ocean" Applied Sciences 15, no. 15: 8139. https://doi.org/10.3390/app15158139
APA StyleLiu, Q., Liu, C., Liu, J., Deng, J., & Tian, S. (2025). Genesis of Basalts of the Raohe Subduction–Accretion Complex in the Wandashan Block, NE China, and Its Inspirations for Evolution of the Paleo-Pacific Ocean. Applied Sciences, 15(15), 8139. https://doi.org/10.3390/app15158139