Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (322)

Search Parameters:
Keywords = Virotherapy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1748 KiB  
Review
Neutrophil Dynamics in Response to Cancer Therapies
by Huazhen Xu, Xiaojun Chen, Yuqing Lu, Nihao Sun, Karis E. Weisgerber, Manzhu Xu and Ren-Yuan Bai
Cancers 2025, 17(15), 2593; https://doi.org/10.3390/cancers17152593 (registering DOI) - 7 Aug 2025
Abstract
Neutrophils are increasingly recognized as key players in the tumor microenvironment (TME), displaying functional plasticity that enables them to either promote or inhibit cancer progression. Depending on environmental cues, tumor-associated neutrophils (TANs) may polarize toward antitumor “N1” or protumor “N2” phenotypes, exerting diverse [...] Read more.
Neutrophils are increasingly recognized as key players in the tumor microenvironment (TME), displaying functional plasticity that enables them to either promote or inhibit cancer progression. Depending on environmental cues, tumor-associated neutrophils (TANs) may polarize toward antitumor “N1” or protumor “N2” phenotypes, exerting diverse effects on tumor growth, metastasis, immune modulation, and treatment response. While previous studies have focused on the pathological roles of TANs in cancer, less attention has been given to how cancer therapies themselves influence the behavior of TANs. This review provides a comprehensive synthesis of current knowledge regarding the dynamics of TANs in response to major cancer treatment modalities, including chemotherapy, radiotherapy, cell-based immunotherapies, and oncolytic viral and bacterial therapies. We discuss how these therapies influence TAN recruitment, polarization, and effector functions within the TME, and highlight key molecular regulators involved. By consolidating mechanistic and translational insights, this review emphasizes the potential to therapeutically reprogram TANs to enhance treatment efficacy. A deeper understanding of context-dependent TAN roles will be essential for developing more effective, neutrophil-informed cancer therapies. Full article
(This article belongs to the Special Issue The Role of Neutrophils in Tumor Progression and Metastasis)
Show Figures

Figure 1

15 pages, 1636 KiB  
Article
The Immunoproteasome Is Expressed but Dispensable for a Leukemia Infected Cell Vaccine
by Delphine Béland, Victor Mullins-Dansereau, Karen Geoffroy, Mélissa Viens, Kim Leclerc Desaulniers and Marie-Claude Bourgeois-Daigneault
Vaccines 2025, 13(8), 835; https://doi.org/10.3390/vaccines13080835 - 5 Aug 2025
Abstract
Background/Objectives: Leukemia is associated with high recurrence rates and cancer vaccines are emerging as a promising immunotherapy against the disease. Here, we investigate the mechanism of action by which a personalized vaccine made from leukemia cells infected with an oncolytic virus (ICV) induces [...] Read more.
Background/Objectives: Leukemia is associated with high recurrence rates and cancer vaccines are emerging as a promising immunotherapy against the disease. Here, we investigate the mechanism of action by which a personalized vaccine made from leukemia cells infected with an oncolytic virus (ICV) induces anti-tumor immunity. Methods: Using the L1210 murine model, leukemia cells were infected and irradiated to create the ICV. The CRISPR-Cas9 system was used to engineer knockout cells to test in treatment efficacy studies. Results: We found that pro-inflammatory interferons (IFNs) that are produced by infected vaccine cells induce the immunoproteasome (ImP), a specialized proteasome subtype that is found in immune cells. Interestingly, we show that while a vaccine using the oncolytic vesicular stomatitis virus (oVSV) completely protects against tumor challenge, the wild-type (wt) virus, which does not induce the ImP, is not as effective. To delineate the contribution of the ImP for vaccine efficacy, we generated ImP-knockout cell lines and found no differences in treatment efficacy compared to wild-type cells. Furthermore, an ICV using another murine leukemia model that expresses the ImP only when infected by an IFN gamma-encoding variant of the virus demonstrated similar efficacy as the parental virus. Conclusions: Taken together, our data show that ImP expression by vaccine cells was not required for the efficacy of leukemia ICVs. Full article
(This article belongs to the Special Issue Personalised Cancer Vaccines)
Show Figures

Figure 1

26 pages, 3179 KiB  
Review
Glioblastoma: A Multidisciplinary Approach to Its Pathophysiology, Treatment, and Innovative Therapeutic Strategies
by Felipe Esparza-Salazar, Renata Murguiondo-Pérez, Gabriela Cano-Herrera, Maria F. Bautista-Gonzalez, Ericka C. Loza-López, Amairani Méndez-Vionet, Ximena A. Van-Tienhoven, Alejandro Chumaceiro-Natera, Emmanuel Simental-Aldaba and Antonio Ibarra
Biomedicines 2025, 13(8), 1882; https://doi.org/10.3390/biomedicines13081882 - 2 Aug 2025
Viewed by 255
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by rapid progression, profound heterogeneity, and resistance to conventional therapies. This review provides an integrated overview of GBM’s pathophysiology, highlighting key mechanisms such as neuroinflammation, genetic alterations (e.g., EGFR, PDGFRA), the tumor microenvironment, [...] Read more.
Glioblastoma (GBM) is the most aggressive primary brain tumor, characterized by rapid progression, profound heterogeneity, and resistance to conventional therapies. This review provides an integrated overview of GBM’s pathophysiology, highlighting key mechanisms such as neuroinflammation, genetic alterations (e.g., EGFR, PDGFRA), the tumor microenvironment, microbiome interactions, and molecular dysregulations involving gangliosides and sphingolipids. Current diagnostic strategies, including imaging, histopathology, immunohistochemistry, and emerging liquid biopsy techniques, are explored for their role in improving early detection and monitoring. Treatment remains challenging, with standard therapies—surgery, radiotherapy, and temozolomide—offering limited survival benefits. Innovative therapies are increasingly being explored and implemented, including immune checkpoint inhibitors, CAR-T cell therapy, dendritic and peptide vaccines, and oncolytic virotherapy. Advances in nanotechnology and personalized medicine, such as individualized multimodal immunotherapy and NanoTherm therapy, are also discussed as strategies to overcome the blood–brain barrier and tumor heterogeneity. Additionally, stem cell-based approaches show promise in targeted drug delivery and immune modulation. Non-conventional strategies such as ketogenic diets and palliative care are also evaluated for their adjunctive potential. While novel therapies hold promise, GBM’s complexity demands continued interdisciplinary research to improve prognosis, treatment response, and patient quality of life. This review underscores the urgent need for personalized, multimodal strategies in combating this devastating malignancy. Full article
Show Figures

Figure 1

11 pages, 3264 KiB  
Article
An Oncolytic Vaccinia Virus Expressing Aphrocallistes Vastus Lectin Modulates Hepatocellular Carcinoma Metabolism via ACSS2/TFEB-Mediated Autophagy and Lipid Accumulation
by Qiang Wang, Simeng Zhou, Yin Wang, Yajun Gao, Yanrong Zhou, Ting Ye, Gongchu Li and Kan Chen
Mar. Drugs 2025, 23(8), 297; https://doi.org/10.3390/md23080297 - 24 Jul 2025
Viewed by 359
Abstract
Hepatocellular carcinoma (HCC) remains a therapeutic challenge due to metabolic plasticity and drug resistance. Oncolytic viruses (OVs), such as thymidine kinase-deleted vaccinia virus (oncoVV), selectively lyse tumors while stimulating antitumor immunity, however, their metabolic interplay with cancer cells is poorly understood. Here, we [...] Read more.
Hepatocellular carcinoma (HCC) remains a therapeutic challenge due to metabolic plasticity and drug resistance. Oncolytic viruses (OVs), such as thymidine kinase-deleted vaccinia virus (oncoVV), selectively lyse tumors while stimulating antitumor immunity, however, their metabolic interplay with cancer cells is poorly understood. Here, we engineered an oncoVV-expressing Aphrocallistes vastus lectin (oncoVV-AVL) and uncovered its unique ability to exploit the ACSS2/TFEB axis, driving metabolic competition in HCC. In vitro, oncoVV-AVL triggered cell autophagy and lipid accumulation (3.4–5.7-fold upregulation of FASN and ACC1) while suppressing glucose uptake (41–63% higher extracellular glucose and 33–34% reduced lactate). Mechanistically, oncoVV-AVL upregulated acetyl-CoA synthetase 2 (ACSS2), promoting its nuclear translocation and interaction with transcription factor EB (TFEB) to concurrently activate lipogenesis and autophagic flux. The pharmacological inhibition of ACSS2 abolished these effects, confirming its central role. In vivo, oncoVV-AVL suppressed tumor growth while inducing lipid deposition (2-fold triglyceride increase), systemic hypoglycemia (42% glucose reduction), and autophagy activation (elevated LC3B-II/I ratios). This study establishes ACSS2 as a metabolic checkpoint in OV therapy, providing a rationale for combining oncolytic virotherapy with metabolic modulators in HCC. Full article
(This article belongs to the Special Issue Marine Glycobiology)
Show Figures

Figure 1

73 pages, 19750 KiB  
Article
Transcriptomic Profiling of the Immune Response in Orthotopic Pancreatic Tumours Exposed to Combined Boiling Histotripsy and Oncolytic Reovirus Treatment
by Petros Mouratidis, Ricardo C. Ferreira, Selvakumar Anbalagan, Ritika Chauhan, Ian Rivens and Gail ter Haar
Pharmaceutics 2025, 17(8), 949; https://doi.org/10.3390/pharmaceutics17080949 - 22 Jul 2025
Viewed by 317
Abstract
Background: Boiling histotripsy (BH) uses high-amplitude, short-pulse focused ultrasound to disrupt tissue mechanically. Oncolytic virotherapy using reovirus has shown modest clinical benefit in pancreatic cancer patients. Here, reovirus and BH were used to treat pancreatic tumours, and their effects on the immune [...] Read more.
Background: Boiling histotripsy (BH) uses high-amplitude, short-pulse focused ultrasound to disrupt tissue mechanically. Oncolytic virotherapy using reovirus has shown modest clinical benefit in pancreatic cancer patients. Here, reovirus and BH were used to treat pancreatic tumours, and their effects on the immune transcriptome of these tumours were characterised. Methods: Orthotopic syngeneic murine pancreatic KPC tumours grown in immune-competent subjects, were allocated to control, reovirus, BH and combined BH and reovirus treatment groups. Acoustic cavitation was monitored using a passive broadband cavitation sensor. Treatment effects were assessed histologically with hematoxylin and eosin staining. Single-cell multi-omics combining whole-transcriptome analysis with the expression of surface-expressed immune proteins was used to assess the effects of treatments on tumoural leukocytes. Results: Acoustic cavitation was detected in all subjects exposed to BH, causing cellular disruption in tumours 6 h after treatment. Distinct cell clusters were identified in the pancreatic tumours 24 h post-treatment. These included neutrophils and cytotoxic T cells overexpressing genes associated with an N2-like and an exhaustion phenotype, respectively. Reovirus decreased macrophages, and BH decreased regulatory T cells compared to controls. The combined treatments increased neutrophils and the ratio of various immune cells to Treg. All treatments overexpressed genes associated with an innate immune response, while ultrasound treatments downregulated genes associated with the transporter associated with antigen processing (TAP) complex. Conclusions: Our results show that the combined BH and reovirus treatments maximise the overexpression of genes associated with the innate immune response compared to that seen with each individual treatment, and illustrate the anti-immune phenotype of key immune cells in the pancreatic tumour microenvironment. Full article
Show Figures

Figure 1

16 pages, 2340 KiB  
Article
Single-Cell Transcriptomic Changes in Patient-Derived Glioma and U87 Glioblastoma Cell Cultures Infected with the Oncolytic Virus VV-GMCSF-Lact
by Dmitriy V. Semenov, Natalia S. Vasileva, Maxim E. Menyailo, Sergey V. Mishinov, Yulya I. Savinovskaya, Alisa B. Ageenko, Anna S. Chesnokova, Maya A. Dymova, Grigory A. Stepanov, Galina V. Kochneva, Vladimir A. Richter and Elena V. Kuligina
Int. J. Mol. Sci. 2025, 26(14), 6983; https://doi.org/10.3390/ijms26146983 - 20 Jul 2025
Viewed by 481
Abstract
Oncolytic virotherapy is a rapidly evolving approach to cancer treatment. Our group previously designed VV-GMCSF-Lact, a recombinant oncolytic vaccinia virus targeting solid tumors including gliomas. In this study, we used single-cell RNA sequencing to compare transcriptional responses in human glioma cells, non-malignant brain [...] Read more.
Oncolytic virotherapy is a rapidly evolving approach to cancer treatment. Our group previously designed VV-GMCSF-Lact, a recombinant oncolytic vaccinia virus targeting solid tumors including gliomas. In this study, we used single-cell RNA sequencing to compare transcriptional responses in human glioma cells, non-malignant brain cells, and immortalized glioblastoma U87 MG cells following infection with this oncolytic virus. We found that proneural glioblastoma cells and microglia-like cells from patient-derived glioma cultures were the most susceptible to VV-GMCSF-Lact. Increased expressions of histones, translational regulators, and ribosomal proteins positively correlated with viral load at the transcript level. Furthermore, higher viral loads were accompanied by a large-scale downregulation of genes involved in mitochondrial translation, metabolism, and oxidative phosphorylation. Levels of early vaccinia virus transcripts are also positively correlated with infection intensity, suggesting that the fate of cells is determined at the early stage of infection. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

18 pages, 3297 KiB  
Article
Evaluation of Apoptosis and Cytotoxicity Induction Using a Recombinant Newcastle Disease Virus Expressing Human IFN-γ in Human Prostate Cancer Cells In Vitro
by Aldo Rojas-Neyra, Katherine Calderón, Brigith Carbajal-Lévano, Gloria Guerrero-Fonseca, Gisela Isasi-Rivas, Ana Chumbe, Ray W. Izquierdo-Lara, Astrid Poma-Acevedo, Freddy Ygnacio, Dora Rios-Matos, Manolo Fernández-Sánchez and Manolo Fernández-Díaz
Biomedicines 2025, 13(7), 1710; https://doi.org/10.3390/biomedicines13071710 - 14 Jul 2025
Viewed by 1689
Abstract
Background/Objectives: Prostate cancer is the second most common type of cancer diagnosed in men. Various treatments for this cancer, such as radiation therapy, surgery, and systemic therapy, can cause side effects in patients; therefore, there is a need to develop new treatment [...] Read more.
Background/Objectives: Prostate cancer is the second most common type of cancer diagnosed in men. Various treatments for this cancer, such as radiation therapy, surgery, and systemic therapy, can cause side effects in patients; therefore, there is a need to develop new treatment alternatives. One promising approach is virotherapy, which involves using oncolytic viruses (OVs), such as the recombinant Newcastle disease virus (rNDV). Methods: We used the lentogenic rNDV rLS1 strain (the control virus) as our backbone to develop two highly fusogenic rNDVs: rFLCF5nt (the parental virus) and rFLCF5nt-IFN-γ (rFLCF5nt expressing human interferon-gamma (IFN-γ)). We evaluated their oncolytic properties in a prostate cancer cell line (DU145). Results: The results showed the expression and stability of the IFN-γ protein, as confirmed using Western blotting after ten passages in specific pathogen-free chicken embryo eggs using the IFN-γ-expressing virus. Additionally, we detected a significantly high oncolytic activity in DU145 cells infected with the parental virus or the IFN-γ-expressing virus using MTS (a cell viability assay) and Annexin V-PE assays compared with the control virus (p < 0.0001 for both). Conclusions: In conclusion, our data show that IFN-γ-expressing virus can decrease cell viability and induce apoptosis in human prostate cancer in vitro. Full article
(This article belongs to the Special Issue Oncolytic Viruses and Combinatorial Immunotherapy for Cancer)
Show Figures

Figure 1

41 pages, 2315 KiB  
Review
Vaccinia Virus—A Swiss Army Knife Against Cancer
by Marcin Stawowczyk, Yanqi Ye and Nanhai G. Chen
Cancers 2025, 17(14), 2324; https://doi.org/10.3390/cancers17142324 - 12 Jul 2025
Viewed by 638
Abstract
Despite significant advances in cancer therapy, the prognosis for patients with advanced, disseminated disease remains poor. This underscores the urgent need for novel treatments that not only eliminate tumor cells effectively but also stimulate a strong, durable anti-cancer immune response. Among emerging strategies, [...] Read more.
Despite significant advances in cancer therapy, the prognosis for patients with advanced, disseminated disease remains poor. This underscores the urgent need for novel treatments that not only eliminate tumor cells effectively but also stimulate a strong, durable anti-cancer immune response. Among emerging strategies, oncolytic viruses have shown exceptional promise due to their selective cytotoxicity and their ability to activate T cell-mediated immune responses. In this review, we focus on the vaccinia virus (VACV), a member of the Poxviridae family, which has emerged as a leading candidate in modern oncolytic immunotherapy. We examine the virus’s properties that enable it to evade antiviral defenses and serve as a versatile, potent oncolytic agent. Furthermore, we explore its interactions with various components of the immune system and how these contribute to the induction of a robust T cell-driven response. Finally, we assess current efforts to harness VACV for the treatment of various cancer types and highlight future directions where its application is most likely to succeed. Overall, our goal is to present VACV as a powerful and broadly applicable platform with the potential to transform the landscape of oncology. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Figure 1

25 pages, 1538 KiB  
Review
Cell Carriers for Oncolytic Virus Delivery: Prospects for Systemic Administration
by Viktoria A. Sarkisova, Alexandra A. Dalina, Daria O. Neymysheva, Martin A. Zenov, Galina V. Ilyinskaya and Peter M. Chumakov
Cancers 2025, 17(14), 2296; https://doi.org/10.3390/cancers17142296 - 10 Jul 2025
Viewed by 608
Abstract
Treatment of malignant diseases using oncolytic viruses (OVs) is currently considered a promising therapeutic approach. Initial encouraging results fueled a large number of clinical trials, showcasing favorable safety profiles of OVs—but therapeutic outcomes remain far from perfect. The efficacy of systemically administered OVs [...] Read more.
Treatment of malignant diseases using oncolytic viruses (OVs) is currently considered a promising therapeutic approach. Initial encouraging results fueled a large number of clinical trials, showcasing favorable safety profiles of OVs—but therapeutic outcomes remain far from perfect. The efficacy of systemically administered OVs is limited due to rapid immune clearance and suboptimal biodistribution, while locally administered OVs encounter an additional barrier of poor bioavailability. Cell-based carriers that can shield viral particles and provide tumor-targeted OV delivery, represent one of the potential ways to address these challenges. The feasibility of this approach was demonstrated using a broad range of cell types, including mesenchymal stem cells (MSCs), neural stem cells (NSCs), different subsets of immune cells, and cancer cell lines. The resulting spectrum of carriers can be viewed as a multifaceted tool, taking into account the specific properties, advantages, and limitations of each cell carrier type discussed in this review. Careful consideration of these features will provide the basis for successful development of cell-based OV delivery platforms. Full article
(This article belongs to the Special Issue Advances in Drug Delivery for Cancer Therapy)
Show Figures

Figure 1

27 pages, 796 KiB  
Review
Oncolytic Viruses as a Novel Therapeutic Approach for Colorectal Cancer: Mechanisms, Current Advances, and Future Directions
by Francisco Pérez-Domínguez, Claudia Quezada-Monrás, Leonardo Cárcamo, Juan P. Muñoz and Diego Carrillo-Beltrán
Cancers 2025, 17(11), 1854; https://doi.org/10.3390/cancers17111854 - 31 May 2025
Viewed by 1245
Abstract
This review provides an updated overview of oncolytic virotherapy as a promising therapeutic strategy for colorectal cancer (CRC), focusing on six key viral platforms: adenovirus, herpes simplex virus (HSV), reovirus, vesicular stomatitis virus (VSV), vaccinia virus (VV), and measles virus (MV). These viruses [...] Read more.
This review provides an updated overview of oncolytic virotherapy as a promising therapeutic strategy for colorectal cancer (CRC), focusing on six key viral platforms: adenovirus, herpes simplex virus (HSV), reovirus, vesicular stomatitis virus (VSV), vaccinia virus (VV), and measles virus (MV). These viruses exhibit tumor-selective replication and exert their effects through mechanisms such as direct oncolysis, the delivery of immunostimulatory genes (e.g., IL-12, IL-15, GM-CSF), the activation of innate and adaptive immune responses, and the remodeling of the tumor microenvironment. Preclinical and early clinical studies suggest that oncolytic viruses can enhance the efficacy of existing treatments, particularly in immunologically “cold” tumors such as microsatellite stable CRC, when used in combination with chemotherapy or immune checkpoint inhibitors. Despite encouraging results, several challenges remain, including antiviral immune clearance, tumor heterogeneity, and limitations in systemic delivery. Current research focuses on improving viral engineering, enhancing tumor targeting, and designing combinatorial strategies to overcome resistance and maximize clinical benefits. Overall, oncolytic viruses represent a versatile and evolving therapeutic class with the potential to address unmet clinical needs in CRC. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

18 pages, 674 KiB  
Review
Celebrating Ulrik Ringborg: Multi-Omics-Based Patient Stratification for Precision Cancer Treatment
by Maria-Veronica Teleanu, Annika Schneider, Claudia R. Ball, Mathias Felix Leber, Christoph Stange, Eva Krieghoff-Henning, Katja Beck, Christoph E. Heilig, Simon Kreutzfeldt, Bernhard Kuster, Daniel B. Lipka and Stefan Fröhling
Biomolecules 2025, 15(5), 693; https://doi.org/10.3390/biom15050693 - 10 May 2025
Viewed by 779
Abstract
Precision oncology is becoming a mainstay in the standard of care for cancer patients. Recent technological advancements have significantly lowered the cost of various tumor profiling approaches, broadening the reach of molecular diagnostics and improving patient access to precision oncology. In parallel, drug [...] Read more.
Precision oncology is becoming a mainstay in the standard of care for cancer patients. Recent technological advancements have significantly lowered the cost of various tumor profiling approaches, broadening the reach of molecular diagnostics and improving patient access to precision oncology. In parallel, drug development and discovery pipelines continue to evolve, driving targeted therapeutic options forward. Yet, not all patients harboring actionable molecular alterations respond to these interventions, and existing therapies do not cover the entire spectrum of potential molecular targets. In this review, we examine the current suite of omics technologies employed in clinical settings and underscore their roles in deepening our understanding of tumor biology and optimizing patient stratification for targeted treatments. We also highlight relevant precision oncology trials and share our own experiences using multi-omics data within a molecular tumor board framework. Finally, we discuss areas for future exploration aimed at propelling precision oncology to new heights. Full article
Show Figures

Figure 1

21 pages, 1382 KiB  
Review
Small Genomes, Big Disruptions: Parvoviruses and the DNA Damage Response
by Rhiannon R. Abrahams and Kinjal Majumder
Viruses 2025, 17(4), 494; https://doi.org/10.3390/v17040494 - 29 Mar 2025
Viewed by 1054
Abstract
Parvoviruses are small, single-stranded DNA viruses that have evolved sophisticated mechanisms to hijack host cell machinery for replication and persistence. One critical aspect of this interaction involves the manipulation of the host’s DNA Damage Response (DDR) pathways. While the viral genome is comparatively [...] Read more.
Parvoviruses are small, single-stranded DNA viruses that have evolved sophisticated mechanisms to hijack host cell machinery for replication and persistence. One critical aspect of this interaction involves the manipulation of the host’s DNA Damage Response (DDR) pathways. While the viral genome is comparatively simple, parvoviruses have developed strategies that cause significant DNA damage, activate DDR pathways, and disrupt the host cell cycle. This review will explore the impact of parvovirus infections on host genome stability, focusing on key viral species such as Adeno-Associated Virus (AAV), Minute Virus of Mice (MVM), and Human Bocavirus (HBoV), and their interactions with DDR proteins. Since parvoviruses are used as oncolytic agents and gene therapy vectors, a better understanding of cellular DDR pathways will aid in engineering potent anti-cancer agents and gene therapies for chronic diseases. Full article
(This article belongs to the Special Issue Advances in Parvovirus Research 2024)
Show Figures

Figure 1

24 pages, 4096 KiB  
Review
Gene and Cell Therapy for Sarcomas: A Review
by Sant P. Chawla, Skyler S. Pang, Darshit Jain, Samantha Jeffrey, Neal S. Chawla, Paul Y. Song, Frederick L. Hall and Erlinda M. Gordon
Cancers 2025, 17(7), 1125; https://doi.org/10.3390/cancers17071125 - 27 Mar 2025
Cited by 1 | Viewed by 1885
Abstract
Background: The heterogeneity of sarcomas and resulting distinct sub-type specific characteristics, their high recurrence rates, and tendency for distant metastasis, continue to present significant challenges to providing optimal treatments. Objective: To provide a comprehensive review of current literature and clinical trials [...] Read more.
Background: The heterogeneity of sarcomas and resulting distinct sub-type specific characteristics, their high recurrence rates, and tendency for distant metastasis, continue to present significant challenges to providing optimal treatments. Objective: To provide a comprehensive review of current literature and clinical trials in gene and cell therapies for sarcomas. Methods: A comprehensive literature search was conducted utilizing the following databases: PubMed, Medline, Google Scholar and clinicaltrials.gov. Search terms included “gene therapy”, “cell therapy”, “NK cell therapy, “CAR-T therapy”, “virotherapy”, “sarcoma”, “gene therapy”, and “solid tumors”. Additional sources were identified through manual searching for references of relevant studies. No language restrictions were set. The NCT number, study status, condition, and phase were noted for clinical trials. Results: There are only three gene and cell therapies for sarcomas that have been approved by a federal regulatory agency. Rexin-G: the first tumor-targeted gene therapy vector designed to target all advanced solid malignancies, including chemo-refractory osteosarcomas and soft tissue sarcomas, was approved by the Philippine FDA in 2007. Gendicine was the first oncolytic virus approved for intratumoral delivery in China in 2003. Afami-cel, an innovative chimeric antigen receptor (CAR) T cell therapy, was approved for synovial sarcoma in the United States in 2024. Other promising therapies are discussed in the text. Conclusions: The future of gene and cell therapy for sarcomas holds great promise, as research moves to late-stage clinical development. The integration of gene and cell therapies into standard sarcoma treatment protocols has the potential to significantly improve the quality of life and outcomes for patients with this rare and challenging group of cancers. Full article
(This article belongs to the Special Issue Gene and Cell Therapy for Cancers)
Show Figures

Figure 1

21 pages, 342 KiB  
Review
The Application of DNA Viruses to Biotechnology
by Adam J. Schieferecke, Nadia Kuxhausen Ralph and David V. Schaffer
Viruses 2025, 17(3), 414; https://doi.org/10.3390/v17030414 - 14 Mar 2025
Viewed by 1986
Abstract
The delivery of biomolecules to target cells has been a longstanding challenge in biotechnology. DNA viruses naturally evolved the ability to deliver genetic material to cells and modulate cellular processes. As such, they inherently possess requisite characteristics that have led to their extensive [...] Read more.
The delivery of biomolecules to target cells has been a longstanding challenge in biotechnology. DNA viruses naturally evolved the ability to deliver genetic material to cells and modulate cellular processes. As such, they inherently possess requisite characteristics that have led to their extensive study, engineering, and development as biotechnological tools. Here, we overview the application of DNA viruses to biotechnology, with specific implications in basic research, health, biomanufacturing, and agriculture. For each application, we review how an increasing understanding of virology and technological methods to genetically manipulate DNA viruses has enabled advances in these fields. Additionally, we highlight the remaining challenges to unlocking the full biotechnological potential of DNA viral technologies. Finally, we discuss the importance of balancing continued technological progress with ethical and biosafety considerations. Full article
(This article belongs to the Special Issue The Application of Viruses to Biotechnology 3.0)
30 pages, 978 KiB  
Article
A Mathematical Perspective on the Influence of Allee Effects in Oncolytic Virotherapy
by Eymard Hernández-López and Jin Wang
Mathematics 2025, 13(5), 744; https://doi.org/10.3390/math13050744 - 25 Feb 2025
Cited by 1 | Viewed by 647
Abstract
This article is concerned with the mathematical modeling of cancer virotherapy, emphasizing the impact of Allee effects on tumor cell growth. We propose a modeling framework that describes the complex interaction between tumor cells and oncolytic viruses. The efficacy of this therapy against [...] Read more.
This article is concerned with the mathematical modeling of cancer virotherapy, emphasizing the impact of Allee effects on tumor cell growth. We propose a modeling framework that describes the complex interaction between tumor cells and oncolytic viruses. The efficacy of this therapy against cancer is mathematically investigated. The analysis involves linear and logistic growth scenarios coupled with different Allee effects, including weak, strong, and hyper Allee forms. Critical points are identified, and their existence and stability are analyzed using dynamical system theories and bifurcation techniques. Also, bifurcation diagrams and numerical simulations are utilized to verify and extend analytical results. It is observed that Allee effects significantly influence the stability of the system and the conditions necessary for tumor control and eradication. Full article
(This article belongs to the Special Issue Mathematical Modeling and Data Science for Biology and Medicine)
Show Figures

Figure 1

Back to TopTop