Small Genomes, Big Disruptions: Parvoviruses and the DNA Damage Response
Abstract
:1. Introduction
2. Global Cellular DDR Pathways and Parvovirus Replication
2.1. Parvovirus Replication Centers
2.2. Parvovirus Replication and ATM Signaling
2.3. Parvovirus Infection and ATR Signaling
2.4. Parvovirus Replication and DNA-PK Signaling
3. Association of DDR Proteins with Parvovirus Genomes
3.1. Consequences of Parvovirus-Induced DDR and Immune Activation
3.2. Regulation of Parvovirus Gene Expression by DDR Factors
3.3. Transcriptional Regulation of Parvovirus-Induced Cell Cycle Defects
3.4. Induction of Host Cell Genome Instability by RPA Exhaustion
4. AAV Life Cycle and DDR Signals
4.1. Introduction to AAV’s Interaction with the Host DDR
4.2. Manipulation of DDR Signals to Benefit AAV
4.2.1. Adenovirus-Mediated Manipulation of DDR for AAV Replication
4.2.2. HSV-Mediated Manipulation of DDR for AAV Replication
4.2.3. Radiation-Induced Manipulation of DDR for AAV Replication
5. Association of Parvovirus Genomes with Cellular DDR Sites
6. Additional Mechanisms of Cellular DDR Activation by Parvoviruses
7. Outstanding Questions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
DDR | DNA Damage Response |
MVM | Minute Virus of Mice |
B19V | human parvovirus B19 |
HBoV1 | human bocavirus 1 |
AAV | Adeno-Associated Virus Type 2 |
rAAV | recombinant Adeno-Associated Virus |
PIKK | Phosphatidyl-inositol-3-kinase-like-kinases |
ATM | Ataxia-Telangiectasia Mutated |
ATR | ATM and Rad3-related |
DNA-PK | DNA-dependent Protein Kinase |
H-1PV | H-1 rodent parvovirus |
CPV | Canine parvovirus |
APAR | Autonomous Parvovirus-Associated Replication |
CHK2 | Checkpoint kinase 2 |
CHK1 | Checkpoint kinase 1 |
P53 | protein 53 |
DSBs | double-strand breaks |
SSBs | single-strand breaks |
ssDNA | single-stranded DNA |
MRN | MRE11-RAD50-NBS1 |
BRCA1 | Breast Cancer gene 1 |
H2AX | H2A histone family member X |
NHEJ | Non-Homologous End Joining |
HR | Homologous Recombination |
53BP1 | P53-binding protein 1 |
RPA | Replication protein A |
TopBP1 | topoisomerase IIbeta-binding protein 1 |
ATRIP | ATR-interacting protein |
NS1 | non-structural protein 1 |
TLS | translesion synthesis |
ROS | reactive oxygen species |
TLR9 | Toll-Like Receptor 9 |
IFN | Type-I interferon signaling |
PARP1 | poly(ADP-ribose) polymerase 1 |
ITR | inverted terminal repeats |
ES cells | embryonic stem cells |
Ad | Adenovirus |
VA RNA | Viral-associated RNA |
PCNA | Proliferating Cell Nuclear Antigen |
cGAS | cyclic GMP-AMP synthase |
STING | stimulator of interferon genes |
STAT | signal transducer and activator of transcription |
References
- Cotmore, S.F.; Tattersall, P. Parvovirus diversity and dna damage responses. Cold Spring Harb. Perspect. Biol. 2013, 5, a012989. [Google Scholar] [CrossRef] [PubMed]
- Cotmore, S.F.; Agbandje-McKenna, M.; Chiorini, J.A.; Mukha, D.V.; Pintel, D.J.; Qiu, J.; Soderlund-Venermo, M.; Tattersall, P.; Tijssen, P.; Gatherer, D.; et al. The family parvoviridae. Arch. Virol. 2014, 159, 1239–1247. [Google Scholar] [CrossRef] [PubMed]
- Nüesch, J.P.; Lachmann, S.; Rommelaere, J. Selective alterations of the host cell architecture upon infection with parvovirus minute virus of mice. Virology 2005, 331, 159–174. [Google Scholar]
- Geoffroy, M.C.; Salvetti, A. Helper functions required for wild type and recombinant adeno-associated virus growth. Curr. Gene Ther. 2005, 5, 265–271. [Google Scholar] [CrossRef]
- Meier, A.F.; Fraefel, C.; Seyffert, M. The interplay between adeno-associated virus and its helper viruses. Viruses 2020, 12, 662. [Google Scholar] [CrossRef] [PubMed]
- Justice, J.L.; Verhalen, B.; Jiang, M. Polyomavirus interaction with the dna damage response. Virol. Sin. 2015, 30, 122–129. [Google Scholar] [CrossRef]
- Moody, C.A.; Laimins, L.A. Human papillomaviruses activate the atm dna damage pathway for viral genome amplification upon differentiation. PLoS Pathog. 2009, 5, e1000605. [Google Scholar]
- Gillespie, K.A.; Mehta, K.P.; Laimins, L.A.; Moody, C.A. Human papillomaviruses recruit cellular dna repair and homologous recombination factors to viral replication centers. J. Virol. 2012, 86, 9520–9526. [Google Scholar]
- Stracker, T.H.; Carson, C.T.; Weitzman, M.D. Adenovirus oncoproteins inactivate the mre11-rad50-nbs1 dna repair complex. Nature 2002, 418, 348–352. [Google Scholar]
- Shah, G.A.; O’Shea, C.C. Viral and cellular genomes activate distinct dna damage responses. Cell 2015, 162, 987–1002. [Google Scholar]
- Evans, J.D.; Hearing, P. Relocalization of the mre11-rad50-nbs1 complex by the adenovirus e4 orf3 protein is required for viral replication. J. Virol. 2005, 79, 6207–6215. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, R.A.; Lakdawala, S.S.; Eshleman, H.D.; Russell, M.R.; Carson, C.T.; Weitzman, M.D. Distinct requirements of adenovirus e1b55k protein for degradation of cellular substrates. J. Virol. 2008, 82, 9043–9055. [Google Scholar] [CrossRef] [PubMed]
- Blackford, A.N.; Jackson, S.P. Atm, atr, and dna-pk: The trinity at the heart of the dna damage response. Mol. Cell 2017, 66, 801–817. [Google Scholar]
- Pancholi, N.J.; Price, A.M.; Weitzman, M.D. Take your pikk: Tumour viruses and dna damage response pathways. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160269. [Google Scholar] [CrossRef]
- Majumder, K.; Wang, J.; Boftsi, M.; Fuller, M.S.; Rede, J.E.; Joshi, T.; Pintel, D.J. Parvovirus minute virus of mice interacts with sites of cellular dna damage to establish and amplify its lytic infection. eLife 2018, 7, e37750. [Google Scholar] [CrossRef]
- Yakobson, B.; Hrynko, T.A.; Peak, M.J.; Winocour, E. Replication of adeno-associated virus in cells irradiated with uv light at 254 nm. J. Virol. 1989, 63, 1023–1030. [Google Scholar] [CrossRef]
- Smith-Moore, S.; Neil, S.J.D.; Fraefel, C.; Linden, R.M.; Bollen, M.; Rowe, H.M.; Henckaerts, E. Adeno-associated virus rep proteins antagonize phosphatase pp1 to counteract kap1 repression of the latent viral genome. Proc. Natl. Acad. Sci. USA 2018, 115, E3529–E3538. [Google Scholar]
- Mattola, S.; Salokas, K.; Aho, V.; Mäntylä, E.; Salminen, S.; Hakanen, S.; Niskanen, E.A.; Svirskaite, J.; Ihalainen, T.O.; Airenne, K.J.; et al. Parvovirus nonstructural protein 2 interacts with chromatin-regulating cellular proteins. PLoS Pathog. 2022, 18, e1010353. [Google Scholar] [CrossRef]
- Nüesch, J.P.; Rommelaere, J. Ns1 interaction with ckii alpha: Novel protein complex mediating parvovirus-induced cytotoxicity. J. Virol. 2006, 80, 4729–4739. [Google Scholar] [CrossRef]
- Nüesch, J.P.; Rommelaere, J. A viral adaptor protein modulating casein kinase ii activity induces cytopathic effects in permissive cells. Proc. Natl. Acad. Sci. USA 2007, 104, 12482–12487. [Google Scholar] [PubMed]
- Nash, K.; Chen, W.; Salganik, M.; Muzyczka, N. Identification of cellular proteins that interact with the adeno-associated virus rep protein. J. Virol. 2009, 83, 454–469. [Google Scholar]
- Luo, Y.; Qiu, J. Parvovirus infection-induced dna damage response. Future Virol. 2013, 8, 245–257. [Google Scholar] [PubMed]
- Itah, R.; Tal, J.; Davis, C. Host cell specificity of minute virus of mice in the developing mouse embryo. J. Virol. 2004, 78, 9474–9486. [Google Scholar]
- Gil-Ranedo, J.; Gallego-García, C.; Almendral, J.M. Viral targeting of glioblastoma stem cells with patient-specific genetic and post-translational p53 deregulations. Cell Rep. 2021, 36, 109673. [Google Scholar]
- Marchini, A.; Bonifati, S.; Scott, E.M.; Angelova, A.L.; Rommelaere, J. Oncolytic parvoviruses: From basic virology to clinical applications. Virol. J. 2015, 12, 6. [Google Scholar] [PubMed]
- Young, P.J.; Jensen, K.T.; Burger, L.R.; Pintel, D.J.; Lorson, C.L. Minute virus of mice ns1 interacts with the smn protein, and they colocalize in novel nuclear bodies induced by parvovirus infection. J. Virol. 2002, 76, 3892–3904. [Google Scholar]
- Bashir, T.; Horlein, R.; Rommelaere, J.; Willwand, K. Cyclin a activates the dna polymerase delta -dependent elongation machinery in vitro: A parvovirus dna replication model. Proc. Natl. Acad. Sci. USA 2000, 97, 5522–5527. [Google Scholar] [CrossRef] [PubMed]
- Bashir, T.; Rommelaere, J.; Cziepluch, C. In vivo accumulation of cyclin a and cellular replication factors in autonomous parvovirus minute virus of mice-associated replication bodies. J. Virol. 2001, 75, 4394–4398. [Google Scholar]
- Cziepluch, C.; Lampel, S.; Grewenig, A.; Grund, C.; Lichter, P.; Rommelaere, J. H-1 parvovirus-associated replication bodies: A distinct virus-induced nuclear structure. J. Virol. 2000, 74, 4807–4815. [Google Scholar]
- Ruiz, Z.; Mihaylov, I.S.; Cotmore, S.F.; Tattersall, P. Recruitment of dna replication and damage response proteins to viral replication centers during infection with ns2 mutants of minute virus of mice (mvm). Virology 2011, 410, 375–384. [Google Scholar]
- Schwartz, R.A.; Palacios, J.A.; Cassell, G.D.; Adam, S.; Giacca, M.; Weitzman, M.D. The mre11/rad50/nbs1 complex limits adeno-associated virus transduction and replication. J. Virol. 2007, 81, 12936–12945. [Google Scholar] [CrossRef] [PubMed]
- Boftsi, M.; Majumder, K.; Burger, L.R.; Pintel, D.J. Binding of ccctc-binding factor (ctcf) to the minute virus of mice genome is important for proper processing of viral p4-generated pre-mrnas. Viruses 2020, 12, 1368. [Google Scholar] [CrossRef]
- Rogakou, E.P.; Pilch, D.R.; Orr, A.H.; Ivanova, V.S.; Bonner, W.M. Dna double-stranded breaks induce histone h2ax phosphorylation on serine 139. J. Biol. Chem. 1998, 273, 5858–5868. [Google Scholar] [CrossRef] [PubMed]
- Adeyemi, R.O.; Landry, S.; Davis, M.E.; Weitzman, M.D.; Pintel, D.J. Parvovirus minute virus of mice induces a dna damage response that facilitates viral replication. PLoS Pathog. 2010, 6, e1001141. [Google Scholar] [CrossRef] [PubMed]
- Larsen, C.I.S.; Majumder, K. The autonomous parvovirus minute virus of mice localizes to cellular sites of dna damage using atr signaling. Viruses 2023, 15, 1243. [Google Scholar] [CrossRef]
- Boftsi, M.; Whittle, F.B.; Wang, J.; Shepherd, P.; Burger, L.R.; Kaifer, K.A.; Lorson, C.L.; Joshi, T.; Pintel, D.J.; Majumder, K. The adeno-associated virus 2 (aav2) genome and rep 68/78 proteins interact with cellular sites of dna damage. Hum. Mol. Genet. 2021, 31, 985–998. [Google Scholar] [CrossRef]
- Krejci, L.; Altmannova, V.; Spirek, M.; Zhao, X. Homologous recombination and its regulation. Nucleic Acids Res. 2012, 40, 5795–5818. [Google Scholar] [PubMed]
- Etingov, I.; Pintel, D.J. Inactivation of checkpoint kinase 1 (chk1) during parvovirus minute virus of mice (mvm) infection inhibits cellular homologous recombination repair and facilitates viral genome replication. J. Virol. 2024, 98, e0088924. [Google Scholar] [CrossRef]
- Wallace, N.A.; Khanal, S.; Robinson, K.L.; Wendel, S.O.; Messer, J.J.; Galloway, D.A. High-risk alphapapillomavirus oncogenes impair the homologous recombination pathway. J. Virol. 2017, 91, 10–1128. [Google Scholar] [CrossRef]
- Bell, J.C.; Dombrowski, C.C.; Plank, J.L.; Jensen, R.B.; Kowalczykowski, S.C. Brca2 chaperones rad51 to single molecules of rpa-coated ssdna. Proc. Natl. Acad. Sci. USA 2023, 120, e2221971120. [Google Scholar] [CrossRef]
- Cimprich, K.A.; Cortez, D. Atr: An essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 2008, 9, 616–627. [Google Scholar] [PubMed]
- Wold, M.S. Replication protein a: A heterotrimeric, single-stranded dna-binding protein required for eukaryotic dna metabolism. Annu. Rev. Biochem. 1997, 66, 61–92. [Google Scholar] [CrossRef] [PubMed]
- Cotmore, S.F.; Gottlieb, R.L.; Tattersall, P. Replication initiator protein ns1 of the parvovirus minute virus of mice binds to modular divergent sites distributed throughout duplex viral dna. J. Virol. 2007, 81, 13015–13027. [Google Scholar] [CrossRef] [PubMed]
- Christensen, J.; Tattersall, P. Parvovirus initiator protein ns1 and rpa coordinate replication fork progression in a reconstituted dna replication system. J. Virol. 2002, 76, 6518–6531. [Google Scholar] [CrossRef]
- Etingov, I.; Pintel, D.J. Minute virus of mice ns1 redirects casein kinase 2 specificity to suppress the atr dna damage response pathway during infection. J. Virol. 2024, 98, e0055924. [Google Scholar] [CrossRef]
- Adeyemi, R.O.; Pintel, D.J. The atr signaling pathway is disabled during infection with the parvovirus minute virus of mice. J. Virol. 2014, 88, 10189–10199. [Google Scholar] [CrossRef]
- Mehta, K.P.M.; Thada, V.; Zhao, R.; Krishnamoorthy, A.; Leser, M.; Lindsey Rose, K.; Cortez, D. Chk1 phosphorylates primpol to promote replication stress tolerance. Sci. Adv. 2022, 8, eabm0314. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Wang, Z.; Xiong, M.; Chen, A.Y.; Xu, P.; Ganaie, S.S.; Badawi, Y.; Kleiboeker, S.; Nishimune, H.; Ye, S.Q.; et al. Human parvovirus b19 utilizes cellular dna replication machinery for viral dna replication. J. Virol. 2018, 92, 10–1128. [Google Scholar] [CrossRef]
- Deng, X.; Yan, Z.; Cheng, F.; Engelhardt, J.F.; Qiu, J. Replication of an autonomous human parvovirus in non-dividing human airway epithelium is facilitated through the dna damage and repair pathways. PLoS Pathog. 2016, 12, e1005399. [Google Scholar]
- Mao, Z.; Bozzella, M.; Seluanov, A.; Gorbunova, V. Dna repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle 2008, 7, 2902–2906. [Google Scholar]
- Ensminger, M.; Löbrich, M. One end to rule them all: Non-homologous end-joining and homologous recombination at dna double-strand breaks. Br. J. Radiol. 2020, 93, 20191054. [Google Scholar] [PubMed]
- Schwartz, R.A.; Carson, C.T.; Schuberth, C.; Weitzman, M.D. Adeno-associated virus replication induces a dna damage response coordinated by dna-dependent protein kinase. J. Virol. 2009, 83, 6269–6278. [Google Scholar] [PubMed]
- Supek, F.; Lehner, B. Clustered mutation signatures reveal that error-prone dna repair targets mutations to active genes. Cell 2017, 170, 534–547.e523. [Google Scholar]
- Haubold, M.K.; Aquino, J.N.P.; Rubin, S.R.; Jones, I.K.; Larsen, C.I.S.; Pham, E.; Majumder, K. Genomes of the autonomous parvovirus minute virus of mice induce replication stress through rpa exhaustion. PLoS Pathog. 2023, 19, e1011203. [Google Scholar]
- Adeyemi, R.O.; Pintel, D.J. Parvovirus-induced depletion of cyclin b1 prevents mitotic entry of infected cells. PLoS Pathog. 2014, 10, e1003891. [Google Scholar]
- Hristov, G.; Krämer, M.; Li, J.; El-Andaloussi, N.; Mora, R.; Daeffler, L.; Zentgraf, H.; Rommelaere, J.; Marchini, A. Through its nonstructural protein ns1, parvovirus h-1 induces apoptosis via accumulation of reactive oxygen species. J. Virol. 2010, 84, 5909–5922. [Google Scholar] [CrossRef] [PubMed]
- Mattei, L.M.; Cotmore, S.F.; Li, L.; Tattersall, P.; Iwasaki, A. Toll-like receptor 9 in plasmacytoid dendritic cells fails to detect parvoviruses. J. Virol. 2013, 87, 3605–3608. [Google Scholar]
- Raykov, Z.; Grekova, S.P.; Hörlein, R.; Leuchs, B.; Giese, T.; Giese, N.A.; Rommelaere, J.; Zawatzky, R.; Daeffler, L. Tlr-9 contributes to the antiviral innate immune sensing of rodent parvoviruses mvmp and h-1pv by normal human immune cells. PLoS ONE 2013, 8, e55086. [Google Scholar]
- Angelova, A.; Pierrard, K.; Detje, C.N.; Santiago, E.; Grewenig, A.; Nüesch, J.P.F.; Kalinke, U.; Ungerechts, G.; Rommelaere, J.; Daeffler, L. Oncolytic rodent protoparvoviruses evade a tlr- and rlr-independent antiviral response in transformed cells. Pathogens 2023, 12, 607. [Google Scholar] [CrossRef]
- Cossons, N.; Faust, E.A.; Zannis-Hadjopoulos, M. Dna polymerase delta-dependent formation of a hairpin structure at the 5′ terminal palindrome of the minute virus of mice genome. Virology 1996, 216, 258–264. [Google Scholar]
- Nüesch, J.P.; Corbau, R.; Tattersall, P.; Rommelaere, J. Biochemical activities of minute virus of mice nonstructural protein ns1 are modulated in vitro by the phosphorylation state of the polypeptide. J. Virol. 1998, 72, 8002–8012. [Google Scholar] [CrossRef] [PubMed]
- Hanson, N.D.; Rhode, S.L. Parvovirus ns1 stimulates p4 expression by interaction with the terminal repeats and through dna amplification. J. Virol. 1991, 65, 4325–4333. [Google Scholar] [CrossRef] [PubMed]
- Lorson, C.; Burger, L.R.; Mouw, M.; Pintel, D.J. Efficient transactivation of the minute virus of mice p38 promoter requires upstream binding of ns1. J. Virol. 1996, 70, 834–842. [Google Scholar]
- Majumder, K.; Boftsi, M.; Whittle, F.B.; Wang, J.; Fuller, M.S.; Joshi, T.; Pintel, D.J. The ns1 protein of the parvovirus mvm aids in the localization of the viral genome to cellular sites of dna damage. PLoS Pathog. 2020, 16, e1009002. [Google Scholar]
- Gil-Ranedo, J.; Hernando, E.; Riolobos, L.; Domínguez, C.; Kann, M.; Almendral, J.M. The mammalian cell cycle regulates parvovirus nuclear capsid assembly. PLoS Pathog. 2015, 11, e1004920. [Google Scholar]
- Tullis, G.; Schoborg, R.V.; Pintel, D.J. Characterization of the temporal accumulation of minute virus of mice replicative intermediates. J. Gen. Virol. 1994, 75 Pt 7, 1633–1646. [Google Scholar]
- Bunke, L.E.; Larsen, C.I.S.; Pita-Aquino, J.N.; Jones, I.K.; Majumder, K. The dna damage sensor mre11 regulates efficient replication of the autonomous parvovirus minute virus of mice. J. Virol. 2023, 97, e0046123. [Google Scholar]
- Cervelli, T.; Palacios, J.A.; Zentilin, L.; Mano, M.; Schwartz, R.A.; Weitzman, M.D.; Giacca, M. Processing of recombinant aav genomes occurs in specific nuclear structures that overlap with foci of dna-damage-response proteins. J. Cell Sci. 2008, 121, 349–357. [Google Scholar]
- Lentz, T.B.; Samulski, R.J. Insight into the mechanism of inhibition of adeno-associated virus by the mre11/rad50/nbs1 complex. J. Virol. 2015, 89, 181–194. [Google Scholar]
- Millet, R.; Jolinon, N.; Nguyen, X.N.; Berger, G.; Cimarelli, A.; Greco, A.; Bertrand, P.; Odenthal, M.; Büning, H.; Salvetti, A. Impact of the mrn complex on adeno-associated virus integration and replication during coinfection with herpes simplex virus 1. J. Virol. 2015, 89, 6824–6834. [Google Scholar] [CrossRef]
- Kastan, M.B.; Bartek, J. Cell-cycle checkpoints and cancer. Nature 2004, 432, 316–323. [Google Scholar] [PubMed]
- Sol, N.; Le Junter, J.; Vassias, I.; Freyssinier, J.M.; Thomas, A.; Prigent, A.F.; Rudkin, B.B.; Fichelson, S.; Morinet, F. Possible interactions between the ns-1 protein and tumor necrosis factor alpha pathways in erythroid cell apoptosis induced by human parvovirus b19. J. Virol. 1999, 73, 8762–8770. [Google Scholar] [CrossRef]
- Mattola, S.; Mäntylä, E.; Aho, V.; Salminen, S.; Leclerc, S.; Oittinen, M.; Salokas, K.; Järvensivu, J.; Hakanen, S.; Ihalainen, T.O.; et al. G2/m checkpoint regulation and apoptosis facilitate the nuclear egress of parvoviral capsids. Front. Cell Dev. Biol. 2022, 10, 1070599. [Google Scholar] [CrossRef] [PubMed]
- Majumder, K.; Etingov, I.; Pintel, D.J. Protoparvovirus interactions with the cellular dna damage response. Viruses 2017, 9, 323. [Google Scholar] [CrossRef]
- Sadasivam, S.; DeCaprio, J.A. The dream complex: Master coordinator of cell cycle-dependent gene expression. Nat. Rev. Cancer 2013, 13, 585–595. [Google Scholar]
- Fuller, M.S.; Majumder, K.; Pintel, D.J. Minute virus of mice inhibits transcription of the cyclin b1 gene during infection. J. Virol. 2017, 91, e00428-17. [Google Scholar] [CrossRef]
- Yuan, J.; Yan, R.; Krämer, A.; Eckerdt, F.; Roller, M.; Kaufmann, M.; Strebhardt, K. Cyclin b1 depletion inhibits proliferation and induces apoptosis in human tumor cells. Oncogene 2004, 23, 5843–5852. [Google Scholar] [CrossRef] [PubMed]
- Duan, D.; Sharma, P.; Yang, J.; Yue, Y.; Dudus, L.; Zhang, Y.; Fisher, K.J.; Engelhardt, J.F. Circular intermediates of recombinant adeno-associated virus have defined structural characteristics responsible for long-term episomal persistence in muscle tissue. J. Virol. 1998, 72, 8568–8577. [Google Scholar]
- Duan, D.; Sharma, P.; Dudus, L.; Zhang, Y.; Sanlioglu, S.; Yan, Z.; Yue, Y.; Ye, Y.; Lester, R.; Yang, J.; et al. Formation of adeno-associated virus circular genomes is differentially regulated by adenovirus e4 orf6 and e2a gene expression. J. Virol. 1999, 73, 161–169. [Google Scholar]
- Ghosh, A.; Yue, Y.; Duan, D. Efficient transgene reconstitution with hybrid dual aav vectors carrying the minimized bridging sequences. Hum. Gene Ther. 2011, 22, 77–83. [Google Scholar]
- Maurer, A.C.; Benyamini, B.; Whitney, O.N.; Fan, V.B.; Cattoglio, C.; Kissiov, D.U.; Dailey, G.M.; Darzacq, X.; Weitzman, M.D.; Tjian, R. Double-strand break repair pathways differentially affect processing and transduction by dual aav vectors. Nat. Commun. 2025, 16, 1532. [Google Scholar] [PubMed]
- Hirata, R.; Chamberlain, J.; Dong, R.; Russell, D.W. Targeted transgene insertion into human chromosomes by adeno-associated virus vectors. Nat. Biotechnol. 2002, 20, 735–738. [Google Scholar]
- Pereira, D.J.; McCarty, D.M.; Muzyczka, N. The adeno-associated virus (aav) rep protein acts as both a repressor and an activator to regulate aav transcription during a productive infection. J. Virol. 1997, 71, 1079–1088. [Google Scholar] [CrossRef]
- Ning, K.; Kuz, C.A.; Cheng, F.; Feng, Z.; Yan, Z.; Qiu, J. Adeno-associated virus monoinfection induces a dna damage response and dna repair that contributes to viral dna replication. mBio 2023, 14, e0352822. [Google Scholar]
- Madigan, V.J.; Yuziuk, J.A.; Chiarella, A.M.; Tyson, T.O.; Meganck, R.M.; Elmore, Z.C.; Tse, L.V.; Hathaway, N.A.; Asokan, A. Ring finger protein 121 is a potent regulator of adeno-associated viral genome transcription. PLoS Pathog. 2019, 15, e1007988. [Google Scholar]
- Samulski, R.J.; Zhu, X.; Xiao, X.; Brook, J.D.; Housman, D.E.; Epstein, N.; Hunter, L.A. Targeted integration of adeno-associated virus (aav) into human chromosome 19. EMBO J. 1991, 10, 3941–3950. [Google Scholar]
- Hüser, D.; Weger, S.; Heilbronn, R. Kinetics and frequency of adeno-associated virus site-specific integration into human chromosome 19 monitored by quantitative real-time pcr. J. Virol. 2002, 76, 7554–7559. [Google Scholar] [PubMed]
- Yang, C.C.; Xiao, X.; Zhu, X.; Ansardi, D.C.; Epstein, N.D.; Frey, M.R.; Matera, A.G.; Samulski, R.J. Cellular recombination pathways and viral terminal repeat hairpin structures are sufficient for adeno-associated virus integration in vivo and in vitro. J. Virol. 1997, 71, 9231–9247. [Google Scholar]
- Linden, R.M.; Winocour, E.; Berns, K.I. The recombination signals for adeno-associated virus site-specific integration. Proc. Natl. Acad. Sci. USA 1996, 93, 7966–7972. [Google Scholar]
- Linden, R.M.; Ward, P.; Giraud, C.; Winocour, E.; Berns, K.I. Site-specific integration by adeno-associated virus. Proc. Natl. Acad. Sci. USA 1996, 93, 11288–11294. [Google Scholar]
- Daya, S.; Cortez, N.; Berns, K.I. Adeno-associated virus site-specific integration is mediated by proteins of the nonhomologous end-joining pathway. J. Virol. 2009, 83, 11655–11664. [Google Scholar] [CrossRef] [PubMed]
- Sanlioglu, S.; Benson, P.; Engelhardt, J.F. Loss of atm function enhances recombinant adeno-associated virus transduction and integration through pathways similar to uv irradiation. Virology 2000, 268, 68–78. [Google Scholar] [CrossRef]
- Weitzman, M.D.; Kyöstiö, S.R.; Kotin, R.M.; Owens, R.A. Adeno-associated virus (aav) rep proteins mediate complex formation between aav dna and its integration site in human dna. Proc. Natl. Acad. Sci. USA 1994, 91, 5808–5812. [Google Scholar] [PubMed]
- Urcelay, E.; Ward, P.; Wiener, S.M.; Safer, B.; Kotin, R.M. Asymmetric replication in vitro from a human sequence element is dependent on adeno-associated virus rep protein. J. Virol. 1995, 69, 2038–2046. [Google Scholar] [CrossRef]
- Balagúe, C.; Kalla, M.; Zhang, W.W. Adeno-associated virus rep78 protein and terminal repeats enhance integration of dna sequences into the cellular genome. J. Virol. 1997, 71, 3299–3306. [Google Scholar] [CrossRef]
- Wonderling, R.S.; Owens, R.A. Binding sites for adeno-associated virus rep proteins within the human genome. J. Virol. 1997, 71, 2528–2534. [Google Scholar] [CrossRef]
- Hüser, D.; Gogol-Döring, A.; Lutter, T.; Weger, S.; Winter, K.; Hammer, E.M.; Cathomen, T.; Reinert, K.; Heilbronn, R. Integration preferences of wildtype aav-2 for consensus rep-binding sites at numerous loci in the human genome. PLoS Pathog. 2010, 6, e1000985. [Google Scholar] [CrossRef]
- Romanova, L.G.; Zacharias, J.; Cannon, M.L.; Philpott, N.J. Effect of poly(adp-ribose) polymerase 1 on integration of the adeno-associated viral vector genome. J. Gene Med. 2011, 13, 342–352. [Google Scholar] [PubMed]
- Ronson, G.E.; Piberger, A.L.; Higgs, M.R.; Olsen, A.L.; Stewart, G.S.; McHugh, P.J.; Petermann, E.; Lakin, N.D. Parp1 and parp2 stabilise replication forks at base excision repair intermediates through fbh1-dependent rad51 regulation. Nat. Commun. 2018, 9, 746. [Google Scholar]
- Jurvansuu, J.; Raj, K.; Stasiak, A.; Beard, P. Viral transport of dna damage that mimics a stalled replication fork. J. Virol. 2005, 79, 569–580. [Google Scholar] [CrossRef]
- Duan, D.; Yue, Y.; Engelhardt, J.F. Consequences of dna-dependent protein kinase catalytic subunit deficiency on recombinant adeno-associated virus genome circularization and heterodimerization in muscle tissue. J. Virol. 2003, 77, 4751–4759. [Google Scholar]
- Hirsch, M.L.; Fagan, B.M.; Dumitru, R.; Bower, J.J.; Yadav, S.; Porteus, M.H.; Pevny, L.H.; Samulski, R.J. Viral single-strand dna induces p53-dependent apoptosis in human embryonic stem cells. PLoS ONE 2011, 6, e27520. [Google Scholar] [CrossRef] [PubMed]
- Dabin, J.; Mori, M.; Polo, S.E. The dna damage response in the chromatin context: A coordinated process. Curr. Opin. Cell Biol. 2023, 82, 102176. [Google Scholar]
- Das, A.; Vijayan, M.; Walton, E.M.; Stafford, V.G.; Fiflis, D.N.; Asokan, A. Epigenetic silencing of recombinant adeno-associated virus genomes by np220 and the hush complex. J. Virol. 2022, 96, e0203921. [Google Scholar]
- Porro, A.; Feuerhahn, S.; Lingner, J. Terra-reinforced association of lsd1 with mre11 promotes processing of uncapped telomeres. Cell Rep. 2014, 6, 765–776. [Google Scholar] [CrossRef] [PubMed]
- Gregory, D.A.; Bachenheimer, S.L. Characterization of mre11 loss following hsv-1 infection. Virology 2008, 373, 124–136. [Google Scholar] [CrossRef]
- Atchison, R.W.; Castro, B.C.; Hammon, W.M. Adenovirus-associated defective virus particles. Science 1965, 149, 754–756. [Google Scholar]
- Weitzman, M.D.; Fisher, K.J.; Wilson, J.M. Recruitment of wild-type and recombinant adeno-associated virus into adenovirus replication centers. J. Virol. 1996, 70, 1845–1854. [Google Scholar]
- Xiao, W.; Warrington, K.H.; Hearing, P.; Hughes, J.; Muzyczka, N. Adenovirus-facilitated nuclear translocation of adeno-associated virus type 2. J. Virol. 2002, 76, 11505–11517. [Google Scholar] [CrossRef] [PubMed]
- Karen, K.A.; Hoey, P.J.; Young, C.S.; Hearing, P. Temporal regulation of the mre11-rad50-nbs1 complex during adenovirus infection. J. Virol. 2009, 83, 4565–4573. [Google Scholar] [CrossRef]
- Karen, K.A.; Hearing, P. Adenovirus core protein vii protects the viral genome from a dna damage response at early times after infection. J. Virol. 2011, 85, 4135–4142. [Google Scholar]
- Dybas, J.M.; Lum, K.K.; Kulej, K.; Reyes, E.D.; Lauman, R.; Charman, M.; Purman, C.E.; Steinbock, R.T.; Grams, N.; Price, A.M.; et al. Adenovirus remodeling of the host proteome and host factors associated with viral genomes. mSystems 2021, 6, e0046821. [Google Scholar] [CrossRef] [PubMed]
- Carson, C.T.; Schwartz, R.A.; Stracker, T.H.; Lilley, C.E.; Lee, D.V.; Weitzman, M.D. The mre11 complex is required for atm activation and the g2/m checkpoint. EMBO J. 2003, 22, 6610–6620. [Google Scholar] [CrossRef]
- Carson, C.T.; Orazio, N.I.; Lee, D.V.; Suh, J.; Bekker-Jensen, S.; Araujo, F.D.; Lakdawala, S.S.; Lilley, C.E.; Bartek, J.; Lukas, J.; et al. Mislocalization of the mrn complex prevents atr signaling during adenovirus infection. EMBO J. 2009, 28, 652–662. [Google Scholar] [PubMed]
- Chang, L.S.; Shi, Y.; Shenk, T. Adeno-associated virus p5 promoter contains an adenovirus e1a-inducible element and a binding site for the major late transcription factor. J. Virol. 1989, 63, 3479–3488. [Google Scholar]
- Ward, P.; Dean, F.B.; O’Donnell, M.E.; Berns, K.I. Role of the adenovirus dna-binding protein in in vitro adeno-associated virus dna replication. J. Virol. 1998, 72, 420–427. [Google Scholar]
- Ferrari, F.K.; Samulski, T.; Shenk, T.; Samulski, R.J. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J. Virol. 1996, 70, 3227–3234. [Google Scholar]
- Nayak, R.; Pintel, D.J. Positive and negative effects of adenovirus type 5 helper functions on adeno-associated virus type 5 (aav5) protein accumulation govern aav5 virus production. J. Virol. 2007, 81, 2205–2212. [Google Scholar]
- Buller, R.M.; Janik, J.E.; Sebring, E.D.; Rose, J.A. Herpes simplex virus types 1 and 2 completely help adenovirus-associated virus replication. J. Virol. 1981, 40, 241–247. [Google Scholar]
- Suzich, J.B.; Cliffe, A.R. Strength in diversity: Understanding the pathways to herpes simplex virus reactivation. Virology 2018, 522, 81–91. [Google Scholar]
- Mohni, K.N.; Smith, S.; Dee, A.R.; Schumacher, A.J.; Weller, S.K. Herpes simplex virus type 1 single strand dna binding protein and helicase/primase complex disable cellular atr signaling. PLoS Pathog. 2013, 9, e1003652. [Google Scholar]
- Mertens, M.E.; Knipe, D.M. Herpes simplex virus 1 manipulates host cell antiviral and proviral dna damage responses. mBio 2021, 12, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Mullon, P.J.; Maldonado-Luevano, E.; Mehta, K.P.M.; Mohni, K.N. The herpes simplex virus alkaline nuclease is required to maintain replication fork progression. J. Virol. 2024, 98, e0183624. [Google Scholar]
- Reyes, E.D.; Kulej, K.; Pancholi, N.J.; Akhtar, L.N.; Avgousti, D.C.; Kim, E.T.; Bricker, D.K.; Spruce, L.A.; Koniski, S.A.; Seeholzer, S.H.; et al. Identifying host factors associated with dna replicated during virus infection. Mol. Cell Proteom. 2017, 16, 2079–2097. [Google Scholar]
- Alazard-Dany, N.; Nicolas, A.; Ploquin, A.; Strasser, R.; Greco, A.; Epstein, A.L.; Fraefel, C.; Salvetti, A. Definition of herpes simplex virus type 1 helper activities for adeno-associated virus early replication events. PLoS Pathog. 2009, 5, e1000340. [Google Scholar]
- Seyffert, M.; Glauser, D.L.; Tobler, K.; Georgiev, O.; Vogel, R.; Vogt, B.; Agúndez, L.; Linden, M.; Büning, H.; Ackermann, M.; et al. Adeno-associated virus type 2 rep68 can bind to consensus rep-binding sites on the herpes simplex virus 1 genome. J. Virol. 2015, 89, 11150–11158. [Google Scholar] [PubMed]
- Majumder, K.; Boftsi, M.; Pintel, D.J. Viral chromosome conformation capture (v3c) assays for identifying trans-interaction sites between lytic viruses and the cellular genome. Bio Protoc. 2019, 9, e3198. [Google Scholar]
- Durkin, S.G.; Glover, T.W. Chromosome fragile sites. Annu. Rev. Genet. 2007, 41, 169–192. [Google Scholar]
- Ma, K.; Qiu, L.; Mrasek, K.; Zhang, J.; Liehr, T.; Quintana, L.G.; Li, Z. Common fragile sites: Genomic hotspots of dna damage and carcinogenesis. Int. J. Mol. Sci. 2012, 13, 11974–11999. [Google Scholar] [CrossRef]
- Barlow, J.H.; Faryabi, R.B.; Callén, E.; Wong, N.; Malhowski, A.; Chen, H.T.; Gutierrez-Cruz, G.; Sun, H.W.; McKinnon, P.; Wright, G.; et al. Identification of early replicating fragile sites that contribute to genome instability. Cell 2013, 152, 620–632. [Google Scholar] [CrossRef]
- Canela, A.; Maman, Y.; Jung, S.; Wong, N.; Callen, E.; Day, A.; Kieffer-Kwon, K.R.; Pekowska, A.; Zhang, H.; Rao, S.S.P.; et al. Genome organization drives chromosome fragility. Cell 2017, 170, 507–521.e518. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.K.; Shen, K.; McBride, A.A. Papillomavirus genomes associate with brd4 to replicate at fragile sites in the host genome. PLoS Pathog. 2014, 10, e1004117. [Google Scholar] [CrossRef] [PubMed]
- Warburton, A.; Markowitz, T.E.; Katz, J.P.; Pipas, J.M.; McBride, A.A. Recurrent integration of human papillomavirus genomes at transcriptional regulatory hubs. npj Genom. Med. 2021, 6, 101. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.S.; Huntley, M.H.; Durand, N.C.; Stamenova, E.K.; Bochkov, I.D.; Robinson, J.T.; Sanborn, A.L.; Machol, I.; Omer, A.D.; Lander, E.S.; et al. A 3d map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 2014, 159, 1665–1680. [Google Scholar] [CrossRef]
- Wrzesinski, C.; Tesfay, L.; Salomé, N.; Jauniaux, J.C.; Rommelaere, J.; Cornelis, J.; Dinsart, C. Chimeric and pseudotyped parvoviruses minimize the contamination of recombinant stocks with replication-competent viruses and identify a dna sequence that restricts parvovirus h-1 in mouse cells. J. Virol. 2003, 77, 3851–3858. [Google Scholar] [CrossRef]
- Jurvansuu, J.; Fragkos, M.; Ingemarsdotter, C.; Beard, P. Chk1 instability is coupled to mitotic cell death of p53-deficient cells in response to virus-induced dna damage signaling. J. Mol. Biol. 2007, 372, 397–406. [Google Scholar] [CrossRef]
- Sutter, S.O.; Lkharrazi, A.; Schraner, E.M.; Michaelsen, K.; Meier, A.F.; Marx, J.; Vogt, B.; Büning, H.; Fraefel, C. Adeno-associated virus type 2 (aav2) uncoating is a stepwise process and is linked to structural reorganization of the nucleolus. PLoS Pathog. 2022, 18, e1010187. [Google Scholar] [CrossRef]
- Gupta, J.S.; Faust, E.A. Minute virus of mice-induced modification of the murine dna polymerase alpha-primase complex permits the salt-induced dissociation of 12s dna primase and 10s dna polymerase alpha components. Biochem. Mol. Biol. Int. 1993, 31, 599–611. [Google Scholar]
- Ho, T.F.; Gupta, J.S.; Faust, E.A. A novel primase-free form of murine dna polymerase alpha induced by infection with minute virus of mice. Biochemistry 1989, 28, 4622–4628. [Google Scholar] [CrossRef]
- Zhang, Y.; Lee, J.H.; Paull, T.T.; Gehrke, S.; D’Alessandro, A.; Dou, Q.; Gladyshev, V.N.; Schroeder, E.A.; Steyl, S.K.; Christian, B.E.; et al. Mitochondrial redox sensing by the kinase atm maintains cellular antioxidant capacity. Sci. Signal 2018, 11, eaaq0702. [Google Scholar] [CrossRef]
- Li, S.; Kong, L.; Meng, Y.; Cheng, C.; Lemacon, D.S.; Yang, Z.; Tan, K.; Cheruiyot, A.; Lu, Z.; You, Z. Cytosolic dna sensing by cgas/sting promotes trpv2-mediated ca. Mol. Cell 2023, 83, 556–573.e557. [Google Scholar] [CrossRef] [PubMed]
- Ganaie, S.S.; Zou, W.; Xu, P.; Deng, X.; Kleiboeker, S.; Qiu, J. Phosphorylated stat5 directly facilitates parvovirus b19 dna replication in human erythroid progenitors through interaction with the mcm complex. PLoS Pathog. 2017, 13, e1006370. [Google Scholar]
- Vienne, M.; Lopez, C.; Lulka, H.; Nevot, A.; Labrousse, G.; Dusetti, N.; Buscail, L.; Cordelier, P. Minute virus of mice shows oncolytic activity against pancreatic cancer cells exhibiting a mesenchymal phenotype. Mol. Ther. Oncol. 2024, 32, 200780. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Chen, A.Y.; Qiu, J. Bocavirus infection induces a dna damage response that facilitates viral dna replication and mediates cell death. J. Virol. 2011, 85, 133–145. [Google Scholar]
- Nykky, J.; Tuusa, J.E.; Kirjavainen, S.; Vuento, M.; Gilbert, L. Mechanisms of cell death in canine parvovirus-infected cells provide intuitive insights to developing nanotools for medicine. Int. J. Nanomed. 2010, 5, 417–428. [Google Scholar]
Category | MVM | HBoV1 | CPV | AAV |
---|---|---|---|---|
Helper virus dependence | Autonomous, does not require a helper virus | Requires a helper virus for efficient replication | ||
Manipulation of DDR | Activates ATR/ATM, p53, CHK1 for replication | Activates ATR/ATM, p53, CHK1 but relies on a helper virus | ||
NS1/Rep68/78 Role in DDR | NS1 induces DNA breaks, interacts with Rad51, Chk1 | Rep68/78 induces DNA breaks, interacts with Rad51, Chk1 | ||
Oncolytic/Gene Therapy Potential | Potential due to DDR manipulation | Widely used in gene therapy due to stable genome persistence | ||
Cell Fate Decisions | Leads to senescence in many cases | Can establish persistent infection or chronic inflammation | Can persist without causing immediate cell death | |
Viral Persistence | Less likely to persist, often leads to senescence or cell death | More likely to establish latent/persistent infection | Can integrate into AAVS1 site on chromosome 19 or as an extrachromosomal episomes | |
Impact on Genomic Integrity | Causes genome instability by inhibiting HR | Generates double-strand breaks repaired via HR/NHEJ | Can integrate at a specific site, minimal genomic instability | |
Disease Association | Infects mice, used as a model virus | Infects humans, causes respiratory tract infections | Infects dogs, causes severe gastrointestinal disease | Non-pathogenic in humans, used for gene therapy |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abrahams, R.R.; Majumder, K. Small Genomes, Big Disruptions: Parvoviruses and the DNA Damage Response. Viruses 2025, 17, 494. https://doi.org/10.3390/v17040494
Abrahams RR, Majumder K. Small Genomes, Big Disruptions: Parvoviruses and the DNA Damage Response. Viruses. 2025; 17(4):494. https://doi.org/10.3390/v17040494
Chicago/Turabian StyleAbrahams, Rhiannon R., and Kinjal Majumder. 2025. "Small Genomes, Big Disruptions: Parvoviruses and the DNA Damage Response" Viruses 17, no. 4: 494. https://doi.org/10.3390/v17040494
APA StyleAbrahams, R. R., & Majumder, K. (2025). Small Genomes, Big Disruptions: Parvoviruses and the DNA Damage Response. Viruses, 17(4), 494. https://doi.org/10.3390/v17040494