Celebrating Ulrik Ringborg: Multi-Omics-Based Patient Stratification for Precision Cancer Treatment
Abstract
:1. Introduction
2. Omics Technologies Used for Guiding Precision Cancer Therapies
2.1. Whole-Genome/Exome and RNA Sequencing
2.2. DNA Methylation Profiling
2.3. (Phospho)Proteomic Profiling
2.4. Drug Sensitivity Profiling
2.5. Clinically Applicable Multi-Omics Workflows
3. Precision Oncology Trials
4. Implementing Precision Therapies Through Molecular Tumor Boards
5. Future Directions
5.1. Artificial Intelligence and Machine Learning to Advance Precision Oncology
5.2. RNA-Based Development of Theranostic Approaches
5.3. Exploring Virotherapy for Precision Medicine
5.4. Clinical Discovery and Reverse Translation
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | artificial intelligence |
CBR | clinical benefit rate |
DKFZ | German Cancer Research Center |
DKTK | German Cancer Consortium |
dMMR | deficient mismatch repair |
EMA | European Medicines Agency |
FAP | fibroblast-activating protein |
FDA | United States Food and Drug Administration |
HRD | homologous recombination deficiency |
IHC | immunohistochemistry |
Indel | small insertions/deletions |
JMML | juvenile myelomonocytic leukemia |
LLM | large language model |
MASTER | Molecularly Aided Stratification for Tumor Eradication Research |
MeV | measles virus |
MGMT | O6-methylguanine-DNA methyltransferase |
MSI | microsatellite instability |
MTB | molecular tumor board |
NCI | National Cancer Institute |
NCT | National Center for Tumor Diseases |
ORR | overall response rate |
PDAC | pancreas ductal adenocarcinoma |
PDX | Patient-Derived Xenogaft |
PROGENy | Pathway RespOnsive GENes for activity inference |
RMS | Rhabdomyosarcoma |
SDH | succinate dehydrogenase |
SFT | solitary fibrous tumor |
SNV | single-nucleotide variant |
SV | structural variant |
TMB | tumor mutational burden |
WES | whole-exome sequencing |
WGS | whole-genome sequencing |
WHO | World Health Organization |
References
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- Gouda, M.A.; Nelson, B.E.; Buschhorn, L.; Wahida, A.; Subbiah, V. Tumor-Agnostic Precision Medicine from the AACR GENIE Database: Clinical Implications. Clin. Cancer Res. 2023, 29, 2753–2760. [Google Scholar] [CrossRef]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.; Kim, T.W.; Van Cutsem, E.; Geva, R.; Jager, D.; Hara, H.; Burge, M.; O’Neil, B.; Kavan, P.; Yoshino, T.; et al. Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: KEYNOTE-164. J. Clin. Oncol. 2020, 38, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Muro, K.; Chung, H.C.; Shankaran, V.; Geva, R.; Catenacci, D.; Gupta, S.; Eder, J.P.; Golan, T.; Le, D.T.; Burtness, B.; et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): A multicentre, open-label, phase 1b trial. Lancet Oncol. 2016, 17, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Frenel, J.S.; Le Tourneau, C.; O’Neil, B.; Ott, P.A.; Piha-Paul, S.A.; Gomez-Roca, C.; van Brummelen, E.M.J.; Rugo, H.S.; Thomas, S.; Saraf, S.; et al. Safety and Efficacy of Pembrolizumab in Advanced, Programmed Death Ligand 1-Positive Cervical Cancer: Results From the Phase Ib KEYNOTE-028 Trial. J. Clin. Oncol. 2017, 35, 4035–4041. [Google Scholar] [CrossRef]
- Rugo, H.S.; Delord, J.P.; Im, S.A.; Ott, P.A.; Piha-Paul, S.A.; Bedard, P.L.; Sachdev, J.; Le Tourneau, C.; van Brummelen, E.M.J.; Varga, A.; et al. Safety and Antitumor Activity of Pembrolizumab in Patients with Estrogen Receptor-Positive/Human Epidermal Growth Factor Receptor 2-Negative Advanced Breast Cancer. Clin. Cancer Res. 2018, 24, 2804–2811. [Google Scholar] [CrossRef]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H., Jr.; et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef]
- Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Cho, J.Y.; Schellens, J.H.M.; Soria, J.C.; Wen, P.Y.; Zielinski, C.; Cabanillas, M.E.; Urbanowitz, G.; et al. Dabrafenib and Trametinib Treatment in Patients With Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer. J. Clin. Oncol. 2018, 36, 7–13. [Google Scholar] [CrossRef]
- Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Cho, J.Y.; Schellens, J.H.M.; Soria, J.C.; Wen, P.Y.; Zielinski, C.C.; Cabanillas, M.E.; Boran, A.; et al. Dabrafenib plus trametinib in patients with BRAF V600E-mutant anaplastic thyroid cancer: Updated analysis from the phase II ROAR basket study. Ann. Oncol. 2022, 33, 406–415. [Google Scholar] [CrossRef]
- Wen, P.Y.; Stein, A.; van den Bent, M.; De Greve, J.; Wick, A.; de Vos, F.; von Bubnoff, N.; van Linde, M.E.; Lai, A.; Prager, G.W.; et al. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutant low-grade and high-grade glioma (ROAR): A multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol. 2022, 23, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Lassen, U.; Elez, E.; Italiano, A.; Curigliano, G.; Javle, M.; de Braud, F.; Prager, G.W.; Greil, R.; Stein, A.; et al. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutated biliary tract cancer (ROAR): A phase 2, open-label, single-arm, multicentre basket trial. Lancet Oncol. 2020, 21, 1234–1243. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Wolf, J.; Konda, B.; Kang, H.; Spira, A.; Weiss, J.; Takeda, M.; Ohe, Y.; Khan, S.; Ohashi, K.; et al. Tumour-agnostic efficacy and safety of selpercatinib in patients with RET fusion-positive solid tumours other than lung or thyroid tumours (LIBRETTO-001): A phase 1/2, open-label, basket trial. Lancet Oncol. 2022, 23, 1261–1273. [Google Scholar] [CrossRef] [PubMed]
- Drilon, A.; Oxnard, G.R.; Tan, D.S.W.; Loong, H.H.F.; Johnson, M.; Gainor, J.; McCoach, C.E.; Gautschi, O.; Besse, B.; Cho, B.C.; et al. Efficacy of Selpercatinib in RET Fusion-Positive Non-Small-Cell Lung Cancer. N. Engl. J. Med. 2020, 383, 813–824. [Google Scholar] [CrossRef]
- Hong, D.S.; DuBois, S.G.; Kummar, S.; Farago, A.F.; Albert, C.M.; Rohrberg, K.S.; van Tilburg, C.M.; Nagasubramanian, R.; Berlin, J.D.; Federman, N.; et al. Larotrectinib in patients with TRK fusion-positive solid tumours: A pooled analysis of three phase 1/2 clinical trials. Lancet Oncol. 2020, 21, 531–540. [Google Scholar] [CrossRef]
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef]
- Meric-Bernstam, F.; Makker, V.; Oaknin, A.; Oh, D.Y.; Banerjee, S.; Gonzalez-Martin, A.; Jung, K.H.; Lugowska, I.; Manso, L.; Manzano, A.; et al. Efficacy and Safety of Trastuzumab Deruxtecan in Patients with HER2-Expressing Solid Tumors: Primary Results From the DESTINY-PanTumor02 Phase II Trial. J. Clin. Oncol. 2024, 42, 47–58. [Google Scholar] [CrossRef]
- Mock, A.; Teleanu, M.V.; Kreutzfeldt, S.; Heilig, C.E.; Hüllein, J.; Möhrmann, L.; Jahn, A.; Hanf, D.; Kerle, I.A.; Singh, H.M.; et al. NCT/DKFZ MASTER handbook of interpreting whole-genome, transcriptome, and methylome data for precision oncology. npj Precis. Oncol. 2023, 7, 109. [Google Scholar] [CrossRef]
- Horak, P.; Heining, C.; Kreutzfeldt, S.; Hutter, B.; Mock, A.; Hullein, J.; Frohlich, M.; Uhrig, S.; Jahn, A.; Rump, A.; et al. Comprehensive Genomic and Transcriptomic Analysis for Guiding Therapeutic Decisions in Patients with Rare Cancers. Cancer Discov. 2021, 11, 2780–2795. [Google Scholar] [CrossRef]
- Gennari, A.; Andre, F.; Barrios, C.H.; Cortes, J.; de Azambuja, E.; DeMichele, A.; Dent, R.; Fenlon, D.; Gligorov, J.; Hurvitz, S.A.; et al. ESMO Clinical Practice Guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann. Oncol. 2021, 32, 1475–1495. [Google Scholar] [CrossRef]
- Mosele, M.F.; Westphalen, C.B.; Stenzinger, A.; Barlesi, F.; Bayle, A.; Bieche, I.; Bonastre, J.; Castro, E.; Dienstmann, R.; Kramer, A.; et al. Corrigendum to “Recommendations for the use of next-generation sequencing (NGS) for patients with advanced cancer in 2024: A report from the ESMO Precision Medicine Working Group”: [Ann Oncol 35 (2024) 588-606]. Ann. Oncol. 2025, 36, 472. [Google Scholar] [CrossRef]
- Turner, N.C.; Im, S.A.; Saura, C.; Juric, D.; Loibl, S.; Kalinsky, K.; Schmid, P.; Loi, S.; Sunpaweravong, P.; Musolino, A.; et al. Inavolisib-Based Therapy in PIK3CA-Mutated Advanced Breast Cancer. N. Engl. J. Med. 2024, 391, 1584–1596. [Google Scholar] [CrossRef]
- Lu, S.; Kato, T.; Dong, X.; Ahn, M.J.; Quang, L.V.; Soparattanapaisarn, N.; Inoue, T.; Wang, C.L.; Huang, M.; Yang, J.C.; et al. Osimertinib after Chemoradiotherapy in Stage III EGFR-Mutated NSCLC. N. Engl. J. Med. 2024, 391, 585–597. [Google Scholar] [CrossRef]
- Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019, 18, 197–218. [Google Scholar] [CrossRef]
- Chuah, S.; Chew, V. High-dimensional immune-profiling in cancer: Implications for immunotherapy. J. Immunother. Cancer 2020, 8, e000363. [Google Scholar] [CrossRef]
- Schubert, M.; Klinger, B.; Klunemann, M.; Sieber, A.; Uhlitz, F.; Sauer, S.; Garnett, M.J.; Bluthgen, N.; Saez-Rodriguez, J. Perturbation-response genes reveal signaling footprints in cancer gene expression. Nat. Commun. 2018, 9, 20. [Google Scholar] [CrossRef]
- Pleasance, E.; Bohm, A.; Williamson, L.M.; Nelson, J.M.T.; Shen, Y.; Bonakdar, M.; Titmuss, E.; Csizmok, V.; Wee, K.; Hosseinzadeh, S.; et al. Whole-genome and transcriptome analysis enhances precision cancer treatment options. Ann. Oncol. 2022, 33, 939–949. [Google Scholar] [CrossRef]
- Bosi, C.; Bartha, A.; Galbardi, B.; Notini, G.; Naldini, M.M.; Licata, L.; Viale, G.; Mariani, M.; Pistilli, B.; Ali, H.R.; et al. Pan-cancer analysis of antibody-drug conjugate targets and putative predictors of treatment response. Eur. J. Cancer 2023, 195, 113379. [Google Scholar] [CrossRef]
- Rodon, J.; Soria, J.C.; Berger, R.; Miller, W.H.; Rubin, E.; Kugel, A.; Tsimberidou, A.; Saintigny, P.; Ackerstein, A.; Braña, I.; et al. Genomic and transcriptomic profiling expands precision cancer medicine: The WINTHER trial. Nat. Med. 2019, 25, 751–758. [Google Scholar] [CrossRef]
- Schopf, J.; Uhrig, S.; Heilig, C.E.; Lee, K.S.; Walther, T.; Carazzato, A.; Dobberkau, A.M.; Weichenhan, D.; Plass, C.; Hartmann, M.; et al. Multi-omic and functional analysis for classification and treatment of sarcomas with FUS-TFCP2 or EWSR1-TFCP2 fusions. Nat. Commun. 2024, 15, 51. [Google Scholar] [CrossRef]
- Werstein, L.V.A.; Heilig, C.E.; Teleanu, M.V.; Hüllein, J.; Singh, M.; Bauer, S.; Kindler, T.; Klauschen, F.; Brandts, C.H.; Rieke, D.T.; et al. Value of broad molecular profiling for cancer diagnosis. Ann. Oncol. 2023, 34, S1184. [Google Scholar] [CrossRef]
- Moran, S.; Martinez-Cardus, A.; Sayols, S.; Musulen, E.; Balana, C.; Estival-Gonzalez, A.; Moutinho, C.; Heyn, H.; Diaz-Lagares, A.; de Moura, M.C.; et al. Epigenetic profiling to classify cancer of unknown primary: A multicentre, retrospective analysis. Lancet Oncol. 2016, 17, 1386–1395. [Google Scholar] [CrossRef]
- Mohrmann, L.; Werner, M.; Oles, M.; Mock, A.; Uhrig, S.; Jahn, A.; Kreutzfeldt, S.; Frohlich, M.; Hutter, B.; Paramasivam, N.; et al. Comprehensive genomic and epigenomic analysis in cancer of unknown primary guides molecularly-informed therapies despite heterogeneity. Nat. Commun. 2022, 13, 4485. [Google Scholar] [CrossRef]
- Stark, L.; Kasajima, A.; Stogbauer, F.; Schmidl, B.; Rinecker, J.; Holzmann, K.; Farber, S.; Pfarr, N.; Steiger, K.; Wollenberg, B.; et al. Head and neck cancer of unknown primary: Unveiling primary tumor sites through machine learning on DNA methylation profiles. Clin. Epigenetics 2024, 16, 47. [Google Scholar] [CrossRef]
- Heilig, C.E.; Horak, P.; Lipka, D.B.; Mock, A.; Uhrig, S.; Kreutzfeldt, S.; Richter, S.; Gieldon, L.; Frohlich, M.; Hutter, B.; et al. Germline SDHB-inactivating mutation in gastric spindle cell sarcoma. Genes. Chromosomes Cancer 2020, 59, 601–608. [Google Scholar] [CrossRef]
- Casey, R.T.; Ten Hoopen, R.; Ochoa, E.; Challis, B.G.; Whitworth, J.; Smith, P.S.; Martin, J.E.; Clark, G.R.; Rodger, F.; Maranian, M.; et al. SDHC epi-mutation testing in gastrointestinal stromal tumours and related tumours in clinical practice. Sci. Rep. 2019, 9, 10244. [Google Scholar] [CrossRef]
- Hegi, M.E.; Diserens, A.C.; Gorlia, T.; Hamou, M.F.; de Tribolet, N.; Weller, M.; Kros, J.M.; Hainfellner, J.A.; Mason, W.; Mariani, L.; et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N. Engl. J. Med. 2005, 352, 997–1003. [Google Scholar] [CrossRef]
- Niger, M.; Nichetti, F.; Casadei-Gardini, A.; Morano, F.; Pircher, C.; Tamborini, E.; Perrone, F.; Canale, M.; Lipka, D.B.; Vingiani, A.; et al. MGMT inactivation as a new biomarker in patients with advanced biliary tract cancers. Mol. Oncol. 2022, 16, 2733–2746. [Google Scholar] [CrossRef]
- Nichetti, F.; Silvestri, M.; Agnelli, L.; Franza, A.; Pircher, C.; Rota, S.; Ambrosini, P.; Fotia, G.; Hullein, J.; Randon, G.; et al. Molecular Characterization and Clinical Relevance of MGMT-Silenced Pancreatic Cancer. Cancer Med. 2024, 13, e70393. [Google Scholar] [CrossRef]
- Figueroa, M.E.; Lugthart, S.; Li, Y.; Erpelinck-Verschueren, C.; Deng, X.; Christos, P.J.; Schifano, E.; Booth, J.; van Putten, W.; Skrabanek, L.; et al. DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia. Cancer Cell 2010, 17, 13–27. [Google Scholar] [CrossRef]
- Lipka, D.B.; Witte, T.; Toth, R.; Yang, J.; Wiesenfarth, M.; Nollke, P.; Fischer, A.; Brocks, D.; Gu, Z.; Park, J.; et al. RAS-pathway mutation patterns define epigenetic subclasses in juvenile myelomonocytic leukemia. Nat. Commun. 2017, 8, 2126. [Google Scholar] [CrossRef]
- Stieglitz, E.; Mazor, T.; Olshen, A.B.; Geng, H.; Gelston, L.C.; Akutagawa, J.; Lipka, D.B.; Plass, C.; Flotho, C.; Chehab, F.F.; et al. Genome-wide DNA methylation is predictive of outcome in juvenile myelomonocytic leukemia. Nat. Commun. 2017, 8, 2127. [Google Scholar] [CrossRef]
- Duran-Ferrer, M.; Clot, G.; Nadeu, F.; Beekman, R.; Baumann, T.; Nordlund, J.; Marincevic-Zuniga, Y.; Lonnerholm, G.; Rivas-Delgado, A.; Martin, S.; et al. The proliferative history shapes the DNA methylome of B-cell tumors and predicts clinical outcome. Nat. Cancer 2020, 1, 1066–1081. [Google Scholar] [CrossRef]
- Giacopelli, B.; Wang, M.; Cleary, A.; Wu, Y.Z.; Schultz, A.R.; Schmutz, M.; Blachly, J.S.; Eisfeld, A.K.; Mundy-Bosse, B.; Vosberg, S.; et al. DNA methylation epitypes highlight underlying developmental and disease pathways in acute myeloid leukemia. Genome Res. 2021, 31, 747–761. [Google Scholar] [CrossRef]
- Murakami, N.; Okuno, Y.; Yoshida, K.; Shiraishi, Y.; Nagae, G.; Suzuki, K.; Narita, A.; Sakaguchi, H.; Kawashima, N.; Wang, X.; et al. Integrated molecular profiling of juvenile myelomonocytic leukemia. Blood 2018, 131, 1576–1586. [Google Scholar] [CrossRef]
- Schonung, M.; Meyer, J.; Nollke, P.; Olshen, A.B.; Hartmann, M.; Murakami, N.; Wakamatsu, M.; Okuno, Y.; Plass, C.; Loh, M.L.; et al. International Consensus Definition of DNA Methylation Subgroups in Juvenile Myelomonocytic Leukemia. Clin. Cancer Res. 2021, 27, 158–168. [Google Scholar] [CrossRef]
- Marchi, F.; Schade, A.-K.; Shastri, V.M.; Cao, X.; Ribeiro, R.C.; Rubnitz, J.E.; Klco, J.M.; Gamis, A.S.; Ries, R.E.; Kolb, A.; et al. Rapid Long-Read Epigenomic Diagnosis and Prognosis of Acute Myeloid Leukemia. Blood 2024, 144, 103. [Google Scholar] [CrossRef]
- Steinicke, T.L.; Benfatto, S.; Capilla Guerra, M.d.l.R.; Monteleone, A.B.; Shankar, S.; Michaels, P.; Schliemann, C.; Chen, E.C.; Griffin, G.K.; Hovestadt, V. Rapid Epigenomic Classification of Acute Leukemia. Blood 2024, 144, 273. [Google Scholar] [CrossRef]
- Hyman, D.M.; Puzanov, I.; Subbiah, V.; Faris, J.E.; Chau, I.; Blay, J.Y.; Wolf, J.; Raje, N.S.; Diamond, E.L.; Hollebecque, A.; et al. Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations. N. Engl. J. Med. 2015, 373, 726–736. [Google Scholar] [CrossRef]
- Sclafani, F.; Gullo, G.; Sheahan, K.; Crown, J. BRAF mutations in melanoma and colorectal cancer: A single oncogenic mutation with different tumour phenotypes and clinical implications. Crit. Rev. Oncol. Hematol. 2013, 87, 55–68. [Google Scholar] [CrossRef]
- Mertins, P.; Mani, D.R.; Ruggles, K.V.; Gillette, M.A.; Clauser, K.R.; Wang, P.; Wang, X.; Qiao, J.W.; Cao, S.; Petralia, F.; et al. Proteogenomics connects somatic mutations to signalling in breast cancer. Nature 2016, 534, 55–62. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, J.; Wang, X.; Zhu, J.; Liu, Q.; Shi, Z.; Chambers, M.C.; Zimmerman, L.J.; Shaddox, K.F.; Kim, S.; et al. Proteogenomic characterization of human colon and rectal cancer. Nature 2014, 513, 382–387. [Google Scholar] [CrossRef]
- Beekhof, R.; van Alphen, C.; Henneman, A.A.; Knol, J.C.; Pham, T.V.; Rolfs, F.; Labots, M.; Henneberry, E.; Le Large, T.Y.; de Haas, R.R.; et al. INKA, an integrative data analysis pipeline for phosphoproteomic inference of active kinases. Mol. Syst. Biol. 2019, 15, e8250. [Google Scholar] [CrossRef]
- Valles-Marti, A.; Mantini, G.; Manoukian, P.; Waasdorp, C.; Sarasqueta, A.F.; de Goeij-de Haas, R.R.; Henneman, A.A.; Piersma, S.R.; Pham, T.V.; Knol, J.C.; et al. Phosphoproteomics guides effective low-dose drug combinations against pancreatic ductal adenocarcinoma. Cell Rep. 2023, 42, 112581. [Google Scholar] [CrossRef]
- van Alphen, C.; Cloos, J.; Beekhof, R.; Cucchi, D.G.J.; Piersma, S.R.; Knol, J.C.; Henneman, A.A.; Pham, T.V.; van Meerloo, J.; Ossenkoppele, G.J.; et al. Phosphotyrosine-based Phosphoproteomics for Target Identification and Drug Response Prediction in AML Cell Lines. Mol. Cell Proteom. 2020, 19, 884–899. [Google Scholar] [CrossRef]
- Schneider, A.; Woortman, J.; Jensen, C.B.; Sakhteman, A.; Teleanu, M.V.; Horak, P.; Kreutzfeldt, S.; Hutter, B.; Huellein, J.; Resch, M.; et al. Therapeutic implications of phosphoproteomics in molecular cancer diagnostics. J. Clin. Oncol. 2024, 42, 3068. [Google Scholar] [CrossRef]
- Schneider, A.; Woortman, J.; Jensen, C.B.; Sakhteman, A.; Hamood, F.; Teleanu, M.V.; Horak, P.; Kreutzfeldt, S.; Resch, M.; Stange, C.; et al. Therapeutic implications of phosphoproteomics in molecular cancer diagnostics. Ann. Oncol. 2024, 35, S300–S301. [Google Scholar] [CrossRef]
- Zecha, J.; Bayer, F.P.; Wiechmann, S.; Woortman, J.; Berner, N.; Muller, J.; Schneider, A.; Kramer, K.; Abril-Gil, M.; Hopf, T.; et al. Decrypting drug actions and protein modifications by dose- and time-resolved proteomics. Science 2023, 380, 93–101. [Google Scholar] [CrossRef]
- Gao, H.; Korn, J.M.; Ferretti, S.; Monahan, J.E.; Wang, Y.; Singh, M.; Zhang, C.; Schnell, C.; Yang, G.; Zhang, Y.; et al. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat. Med. 2015, 21, 1318–1325. [Google Scholar] [CrossRef] [PubMed]
- Weeber, F.; Ooft, S.N.; Dijkstra, K.K.; Voest, E.E. Tumor Organoids as a Pre-clinical Cancer Model for Drug Discovery. Cell Chem. Biol. 2017, 24, 1092–1100. [Google Scholar] [CrossRef]
- Al Shihabi, A.; Tebon, P.J.; Nguyen, H.T.L.; Chantharasamee, J.; Sartini, S.; Davarifar, A.; Jensen, A.Y.; Diaz-Infante, M.; Cox, H.; Gonzalez, A.E.; et al. The landscape of drug sensitivity and resistance in sarcoma. Cell Stem Cell 2024, 31, 1524–1542.e4. [Google Scholar] [CrossRef]
- Schmache, T.; Fohgrub, J.; Klimova, A.; Laaber, K.; Drukewitz, S.; Merboth, F.; Hennig, A.; Seidlitz, T.; Herbst, F.; Baenke, F.; et al. Stratifying esophago-gastric cancer treatment using a patient-derived organoid-based threshold. Mol. Cancer 2024, 23, 10. [Google Scholar] [CrossRef]
- Vlachogiannis, G.; Hedayat, S.; Vatsiou, A.; Jamin, Y.; Fernandez-Mateos, J.; Khan, K.; Lampis, A.; Eason, K.; Huntingford, I.; Burke, R.; et al. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 2018, 359, 920–926. [Google Scholar] [CrossRef] [PubMed]
- Letai, A.; Bhola, P.; Welm, A.L. Functional precision oncology: Testing tumors with drugs to identify vulnerabilities and novel combinations. Cancer Cell 2022, 40, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Kornauth, C.; Pemovska, T.; Vladimer, G.I.; Bayer, G.; Bergmann, M.; Eder, S.; Eichner, R.; Erl, M.; Esterbauer, H.; Exner, R.; et al. Functional Precision Medicine Provides Clinical Benefit in Advanced Aggressive Hematologic Cancers and Identifies Exceptional Responders. Cancer Discov. 2022, 12, 372–387. [Google Scholar] [CrossRef] [PubMed]
- Gjorevski, N.; Sachs, N.; Manfrin, A.; Giger, S.; Bragina, M.E.; Ordonez-Moran, P.; Clevers, H.; Lutolf, M.P. Designer matrices for intestinal stem cell and organoid culture. Nature 2016, 539, 560–564. [Google Scholar] [CrossRef]
- Horak, P.; Klink, B.; Heining, C.; Groschel, S.; Hutter, B.; Frohlich, M.; Uhrig, S.; Hubschmann, D.; Schlesner, M.; Eils, R.; et al. Precision oncology based on omics data: The NCT Heidelberg experience. Int. J. Cancer 2017, 141, 877–886. [Google Scholar] [CrossRef]
- Jahn, A.; Rump, A.; Widmann, T.J.; Heining, C.; Horak, P.; Hutter, B.; Paramasivam, N.; Uhrig, S.; Gieldon, L.; Drukewitz, S.; et al. Comprehensive cancer predisposition testing within the prospective MASTER trial identifies hereditary cancer patients and supports treatment decisions for rare cancers. Ann. Oncol. 2022, 33, 1186–1199. [Google Scholar] [CrossRef]
- Hübschmann, D.; Kreutzfeldt, S.; Roth, B.; Glocker, K.; Schoop, J.; Oeser, L.; Hausmann, S.; Koch, C.; Uhrig, S.; Hüllein, J.; et al. Knowledge Connector: Decision support system for multiomics-based precision oncology. medRxiv 2025. [Google Scholar] [CrossRef]
- Haj Mohammad, S.F.; Timmer, H.J.L.; Zeverijn, L.J.; Geurts, B.S.; Spiekman, I.A.C.; Verkerk, K.; Verbeek, F.A.J.; Verheul, H.M.W.; Voest, E.E.; Gelderblom, H. The evolution of precision oncology: The ongoing impact of the Drug Rediscovery Protocol (DRUP). Acta Oncol. 2024, 63, 368–372. [Google Scholar] [CrossRef]
- Hoes, L.R.; van Berge Henegouwen, J.M.; van der Wijngaart, H.; Zeverijn, L.J.; van der Velden, D.L.; van de Haar, J.; Roepman, P.; de Leng, W.J.; Jansen, A.M.L.; van Werkhoven, E.; et al. Patients with Rare Cancers in the Drug Rediscovery Protocol (DRUP) Benefit from Genomics-Guided Treatment. Clin. Cancer Res. 2022, 28, 1402–1411. [Google Scholar] [CrossRef]
- van der Velden, D.L.; Hoes, L.R.; van der Wijngaart, H.; van Berge Henegouwen, J.M.; van Werkhoven, E.; Roepman, P.; Schilsky, R.L.; de Leng, W.W.J.; Huitema, A.D.R.; Nuijen, B.; et al. The Drug Rediscovery protocol facilitates the expanded use of existing anticancer drugs. Nature 2019, 574, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Gouda, M.A.; Subbiah, V. Expanding the Benefit: Dabrafenib/Trametinib as Tissue-Agnostic Therapy for BRAF V600E-Positive Adult and Pediatric Solid Tumors. Am. Soc. Clin. Oncol. Educ. Book. 2023, 43, e404770. [Google Scholar] [CrossRef]
- Flaherty, K.T.; Gray, R.J.; Chen, A.P.; Li, S.; McShane, L.M.; Patton, D.; Hamilton, S.R.; Williams, P.M.; Iafrate, A.J.; Sklar, J.; et al. Molecular Landscape and Actionable Alterations in a Genomically Guided Cancer Clinical Trial: National Cancer Institute Molecular Analysis for Therapy Choice (NCI-MATCH). J. Clin. Oncol. 2020, 38, 3883–3894. [Google Scholar] [CrossRef]
- Lau, L.M.S.; Khuong-Quang, D.A.; Mayoh, C.; Wong, M.; Barahona, P.; Ajuyah, P.; Senapati, A.; Nagabushan, S.; Sherstyuk, A.; Altekoester, A.K.; et al. Precision-guided treatment in high-risk pediatric cancers. Nat. Med. 2024, 30, 1913–1922. [Google Scholar] [CrossRef] [PubMed]
- Haslam, A.; Kim, M.S.; Prasad, V. Updated estimates of eligibility for and response to genome-targeted oncology drugs among US cancer patients, 2006–2020. Ann. Oncol. 2021, 32, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Gibbs, S.N.; Peneva, D.; Cuyun Carter, G.; Palomares, M.R.; Thakkar, S.; Hall, D.W.; Dalglish, H.; Campos, C.; Yermilov, I. Comprehensive Review on the Clinical Impact of Next-Generation Sequencing Tests for the Management of Advanced Cancer. JCO Precis. Oncol. 2023, 7, e2200715. [Google Scholar] [CrossRef]
- Scott, E.C.; Baines, A.C.; Gong, Y.; Moore, R., Jr.; Pamuk, G.E.; Saber, H.; Subedee, A.; Thompson, M.D.; Xiao, W.; Pazdur, R.; et al. Trends in the approval of cancer therapies by the FDA in the twenty-first century. Nat. Rev. Drug Discov. 2023, 22, 625–640. [Google Scholar] [CrossRef]
- Illert, A.L.; Stenzinger, A.; Bitzer, M.; Horak, P.; Gaidzik, V.I.; Moller, Y.; Beha, J.; Oner, O.; Schmitt, F.; Lassmann, S.; et al. The German Network for Personalized Medicine to enhance patient care and translational research. Nat. Med. 2023, 29, 1298–1301. [Google Scholar] [CrossRef]
- van Tilburg, C.M.; Pfaff, E.; Pajtler, K.W.; Langenberg, K.P.S.; Fiesel, P.; Jones, B.C.; Balasubramanian, G.P.; Stark, S.; Johann, P.D.; Blattner-Johnson, M.; et al. The Pediatric Precision Oncology INFORM Registry: Clinical Outcome and Benefit for Patients with Very High-Evidence Targets. Cancer Discov. 2021, 11, 2764–2779. [Google Scholar] [CrossRef]
- Wahida, A.; Kurzrock, R. The Molecular Tumor Board Turns 10: The Age of Complexity. Oncologist 2024, 30, oyae271. [Google Scholar] [CrossRef]
- Tamborero, D.; Dienstmann, R.; Rachid, M.H.; Boekel, J.; Lopez-Fernandez, A.; Jonsson, M.; Razzak, A.; Brana, I.; De Petris, L.; Yachnin, J.; et al. The Molecular Tumor Board Portal supports clinical decisions and automated reporting for precision oncology. Nat. Cancer 2022, 3, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Heilig, C.E.; Teleanu, M.V.; Desuki, A.; Kindler, T.; Deschler, B.; Kunzmann, V.; von Bubnoff, N.; Illert, L.; Rieke, D.T.; Süsse, H.; et al. Inavolisib in cancers with activating PIK3CA mutations: Results from the CRAFT trial. Ann. Oncol. 2024, 35, S295–S296. [Google Scholar] [CrossRef]
- Carmona, J.; Chavarria, E.; Donoghue, K.; von Gertten, C.; Oberrauch, P.; Pailler, E.; Scoazec, G.; Weijer, R.; Balmana, J.; Brana, I.; et al. Cancer Core Europe: Leveraging Institutional Synergies to Advance Oncology Research and Care Globally. Cancer Discov. 2024, 14, 1147–1153. [Google Scholar] [CrossRef] [PubMed]
- Tamborero, D.; Dienstmann, R.; Rachid, M.H.; Boekel, J.; Baird, R.; Brana, I.; De Petris, L.; Yachnin, J.; Massard, C.; Opdam, F.L.; et al. Support systems to guide clinical decision-making in precision oncology: The Cancer Core Europe Molecular Tumor Board Portal. Nat. Med. 2020, 26, 992–994. [Google Scholar] [CrossRef] [PubMed]
- Perez-Lopez, R.; Ghaffari Laleh, N.; Mahmood, F.; Kather, J.N. A guide to artificial intelligence for cancer researchers. Nat. Rev. Cancer 2024, 24, 427–441. [Google Scholar] [CrossRef]
- Choi, H.S.; Song, J.Y.; Shin, K.H.; Chang, J.H.; Jang, B.S. Developing prompts from large language model for extracting clinical information from pathology and ultrasound reports in breast cancer. Radiat. Oncol. J. 2023, 41, 209–216. [Google Scholar] [CrossRef]
- Lee, Y.; Ferber, D.; Rood, J.E.; Regev, A.; Kather, J.N. How AI agents will change cancer research and oncology. Nat. Cancer 2024, 5, 1765–1767. [Google Scholar] [CrossRef]
- Jin, Q.; Wang, Z.F.; Floudas, C.S.; Chen, F.Y.; Gong, C.L.; Bracken-Clarke, D.; Xue, E.; Yang, Y.F.; Sun, J.M.; Lu, Z.Y. Matching patients to clinical trials with large language models. Nat. Commun. 2024, 15, 9074. [Google Scholar] [CrossRef]
- Azuaje, F. Artificial intelligence for precision oncology: Beyond patient stratification. Npj Precis. Oncol. 2019, 3, 6. [Google Scholar] [CrossRef] [PubMed]
- Sollini, M.; Calais, J.; Chiti, A.; Emmett, L.; Fanti, S.; Fendler, W.; Herrmann, K.; Hope, T.A.; Sartor, O.; Shuch, B.; et al. Novel Radiopharmaceuticals and Future of Theranostics in Genitourinary Cancers. Eur. Urol. 2025, 87, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Hamacher, R.; Pabst, K.M.; Cheung, P.F.; Heilig, C.E.; Hullein, J.; Liffers, S.T.; Borchert, S.; Costa, P.F.; Schaarschmidt, B.M.; Kessler, L.; et al. Fibroblast Activation Protein α-Directed Imaging and Therapy of Solitary Fibrous Tumor. J. Nucl. Med. 2024, 65, 252–257. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, C.; Iankov, I.D.; Anderson, S.K.; Aderca, I.; Leontovich, A.A.; Maurer, M.J.; Oberg, A.L.; Schroeder, M.A.; Giannini, C.; Greiner, S.M.; et al. Constitutive Interferon Pathway Activation in Tumors as an Efficacy Determinant Following Oncolytic Virotherapy. J. Natl. Cancer Inst. 2018, 110, 1123–1132. [Google Scholar] [CrossRef]
- Matveeva, O.V.; Shabalina, S.A. Prospects for Using Expression Patterns of Paramyxovirus Receptors as Biomarkers for Oncolytic Virotherapy. Cancers 2020, 12, 3659. [Google Scholar] [CrossRef]
- Schafer, T.E.; Knol, L.I.; Haas, F.V.; Hartley, A.; Pernickel, S.C.S.; Jady, A.; Finkbeiner, M.S.C.; Achberger, J.; Arelaki, S.; Modic, Z.; et al. Biomarker screen for efficacy of oncolytic virotherapy in patient-derived pancreatic cancer cultures. EBioMedicine 2024, 105, 105219. [Google Scholar] [CrossRef]
Drug(s) | Biomarker/Target | Year of FDA Approval | EMA Approval | ORR | Pan-Cancer Frequency | PMID |
---|---|---|---|---|---|---|
Pembrolizumab | dMMR or | 2017 | Yes a | 40% | ~3% | 26028255 [3] |
MSI-high | 31725351 [4] | |||||
27157491 [5] | ||||||
29095678 [6] | ||||||
29559561 [7] | ||||||
TMB-high | 2020 | No | 29% | 20% | 32919526 [8] | |
Dabrafenib and trametinib | BRAF V600E | 2022 | No | 41% | 3% | 29072975 [9] |
35026411 [10] | ||||||
34838156 [11] | ||||||
32818466 [12] | ||||||
Selpercatinib | RET fusions | 2022 | Yes | 44% | 1.5% | 36108661 [13] |
32846060 [14] | ||||||
Larotrectinib | NTRK fusions | 2018 | Yes | 75% | 1.6% | 32105622 [15] |
Entrectinib | NTRK fusions | 2019 | Yes | 57% | 1.6% | 31838007 [16] |
Trastuzumab Deruxtecan | ERBB2 IHC 3+ | 2024 | No | 61.3% | 28% | 37870536 [17] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teleanu, M.-V.; Schneider, A.; Ball, C.R.; Leber, M.F.; Stange, C.; Krieghoff-Henning, E.; Beck, K.; Heilig, C.E.; Kreutzfeldt, S.; Kuster, B.; et al. Celebrating Ulrik Ringborg: Multi-Omics-Based Patient Stratification for Precision Cancer Treatment. Biomolecules 2025, 15, 693. https://doi.org/10.3390/biom15050693
Teleanu M-V, Schneider A, Ball CR, Leber MF, Stange C, Krieghoff-Henning E, Beck K, Heilig CE, Kreutzfeldt S, Kuster B, et al. Celebrating Ulrik Ringborg: Multi-Omics-Based Patient Stratification for Precision Cancer Treatment. Biomolecules. 2025; 15(5):693. https://doi.org/10.3390/biom15050693
Chicago/Turabian StyleTeleanu, Maria-Veronica, Annika Schneider, Claudia R. Ball, Mathias Felix Leber, Christoph Stange, Eva Krieghoff-Henning, Katja Beck, Christoph E. Heilig, Simon Kreutzfeldt, Bernhard Kuster, and et al. 2025. "Celebrating Ulrik Ringborg: Multi-Omics-Based Patient Stratification for Precision Cancer Treatment" Biomolecules 15, no. 5: 693. https://doi.org/10.3390/biom15050693
APA StyleTeleanu, M.-V., Schneider, A., Ball, C. R., Leber, M. F., Stange, C., Krieghoff-Henning, E., Beck, K., Heilig, C. E., Kreutzfeldt, S., Kuster, B., Lipka, D. B., & Fröhling, S. (2025). Celebrating Ulrik Ringborg: Multi-Omics-Based Patient Stratification for Precision Cancer Treatment. Biomolecules, 15(5), 693. https://doi.org/10.3390/biom15050693