Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,800)

Search Parameters:
Keywords = UV/VIS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3206 KiB  
Article
Inverse Punicines: Isomers of Punicine and Their Application in LiAlO2, Melilite and CaSiO3 Separation
by Maximilian H. Fischer, Ali Zgheib, Iliass El Hraoui, Alena Schnickmann, Thomas Schirmer, Gunnar Jeschke and Andreas Schmidt
Separations 2025, 12(8), 202; https://doi.org/10.3390/separations12080202 - 30 Jul 2025
Abstract
The transition to sustainable energy systems demands efficient recycling methods for critical raw materials like lithium. In this study, we present a new class of pH- and light-switchable flotation collectors based on isomeric derivatives of the natural product Punicine, termed inverse Punicines. [...] Read more.
The transition to sustainable energy systems demands efficient recycling methods for critical raw materials like lithium. In this study, we present a new class of pH- and light-switchable flotation collectors based on isomeric derivatives of the natural product Punicine, termed inverse Punicines. These amphoteric molecules were synthesized via a straightforward four-step route and structurally tuned for hydrophobization by alkylation. Their performance as collectors was evaluated in microflotation experiments of lithium aluminate (LiAlO2) and silicate matrix minerals such as melilite and calcium silicate. Characterization techniques including ultraviolet-visible (UV-Vis), nuclear magnetic resonance (NMR) and electron spin resonance (ESR) spectroscopy as well as contact angle, zeta potential (ζ potential) and microflotation experiments revealed strong pH- and structure-dependent interactions with mineral surfaces. Notably, N-alkylated inverse Punicine derivatives showed high flotation yields for LiAlO2 at pH of 11, with a derivative possessing a dodecyl group attached to the nitrogen as collector achieving up to 86% recovery (collector conc. 0.06 mmol/L). Preliminary separation tests showed Li upgrading from 5.27% to 6.95%. Radical formation and light-response behavior were confirmed by ESR and flotation tests under different illumination conditions. These results demonstrate the potential of inverse Punicines as tunable, sustainable flotation reagents for advanced lithium recycling from complex slag systems. Full article
(This article belongs to the Special Issue Application of Green Flotation Technology in Mineral Processing)
Show Figures

Graphical abstract

18 pages, 4279 KiB  
Article
Chemophotothermal Combined Therapy with 5-Fluorouracil and Branched Gold Nanoshell Hyperthermia Induced a Reduction in Tumor Size in a Xenograft Colon Cancer Model
by Sarah Eliuth Ochoa-Hugo, Karla Valdivia-Aviña, Yanet Karina Gutiérrez-Mercado, Alejandro Arturo Canales-Aguirre, Verónica Chaparro-Huerta, Adriana Aguilar-Lemarroy, Luis Felipe Jave-Suárez, Mario Eduardo Cano-González, Antonio Topete, Andrea Molina-Pineda and Rodolfo Hernández-Gutiérrez
Pharmaceutics 2025, 17(8), 988; https://doi.org/10.3390/pharmaceutics17080988 (registering DOI) - 30 Jul 2025
Abstract
Background/Objectives: The heterogeneity of cancer disease and the frequent ineffectiveness and resistance observed with currently available treatments highlight the importance of developing new antitumor therapies. The properties of gold nanoparticles, such as their photon-energy heating, are attractive for oncology therapy; this can [...] Read more.
Background/Objectives: The heterogeneity of cancer disease and the frequent ineffectiveness and resistance observed with currently available treatments highlight the importance of developing new antitumor therapies. The properties of gold nanoparticles, such as their photon-energy heating, are attractive for oncology therapy; this can be effective and localized. The combination of chemotherapy and hyperthermia is promising. Our aim was to evaluate the combination therapy of photon hyperthermia with 5-fluorouracil (5-FU) both in vitro and in vivo. Methods: This study evaluated the antitumor efficacy of a combined chemo-photothermal therapy using 5-fluorouracil (5-FU) and branched gold nanoshells (BGNSs) in a colorectal cancer model. BGNSs were synthesized via a seed-mediated method and characterized by electron microscopy and UV–vis spectroscopy, revealing an average diameter of 126.3 nm and a plasmon resonance peak at 800 nm, suitable for near-infrared (NIR) photothermal applications. In vitro assays using SW620-GFP colon cancer cells demonstrated a ≥90% reduction in cell viability after 24 h of combined treatment with 5-FU and BGNS under NIR irradiation. In vivo, xenograft-bearing nude mice received weekly intratumoral administrations of the combined therapy for four weeks. The group treated with 5-FU + BGNS + NIR exhibited a final tumor volume of 0.4 mm3 on day 28, compared to 1010 mm3 in the control group, corresponding to a tumor growth inhibition (TGI) of 100.74% (p < 0.001), which indicates not only complete inhibition of tumor growth but also regression below the initial tumor volume. Thermographic imaging confirmed that localized hyperthermia reached 45 ± 0.5 °C at the tumor site. Results: These findings suggest that the combination of 5-FU and BGNS-mediated hyperthermia may offer a promising strategy for enhancing therapeutic outcomes in patients with colorectal cancer while potentially minimizing systemic toxicity. Conclusions: This study highlights the potential of integrating nanotechnology with conventional chemotherapy for more effective and targeted cancer treatment. Full article
(This article belongs to the Special Issue Advanced Nanotechnology for Combination Therapy and Diagnosis)
Show Figures

Graphical abstract

26 pages, 3684 KiB  
Article
Creation of Zinc (II)-Complexed Green Tea and Its Effects on Gut Microbiota by Daily Green Tea Consumption
by Tsukasa Orita, Daichi Ijiri, De-Xing Hou and Kozue Sakao
Molecules 2025, 30(15), 3191; https://doi.org/10.3390/molecules30153191 - 30 Jul 2025
Abstract
Although Zn (II)-(−)-Epigallocatechin gallate (EGCg) complex (Zn-EGCg) is known for its promising bioactivities, little attention has been paid to its incorporation into daily green tea consumption. In this study, we aimed to incorporate Zn (II) into green tea extract to promote the formation [...] Read more.
Although Zn (II)-(−)-Epigallocatechin gallate (EGCg) complex (Zn-EGCg) is known for its promising bioactivities, little attention has been paid to its incorporation into daily green tea consumption. In this study, we aimed to incorporate Zn (II) into green tea extract to promote the formation of Zn-EGCg complex within the tea matrix. We then investigated how the formation of Zn-complexed green tea extract (Zn-GTE) influences the gut microbiota in a Western diet (WD)-fed mouse model. Structural analyses using ultraviolet–visible spectroscopy (UV–Vis), Fourier-transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H NMR), and powder X-ray diffraction (PXRD) suggested that Zn (II) interacted with hydroxyl groups of polyphenols within the extract, consistent with Zn-EGCg formation, although the complex could not be unequivocally identified. Under intake levels equivalent to daily consumption, Zn-GTE administration restored WD-induced reductions in alpha-diversity and resulted in a distinct microbial composition compared to treatment with green tea extract (GTE) or Zn alone, as shown by beta-diversity analysis. Linear discriminant analysis Effect Size (LEfSe) analysis revealed increased abundances of bacterial taxa belonging to o_Clostridiales, o_Bacteroidales, and f_Rikenellaceae, and decreased abundances of g_Akkermansia in the Zn-GTE group compared to the GTE group. These findings highlight that Zn-GTE, prepared via Zn (II) supplementation to green tea, may exert distinct microbiota-modulating effects compared to its individual components. This study provides new insights into the role of dietary metal–polyphenol complexes, offering a food-based platform for studying metal–polyphenol interactions under physiologically relevant conditions. Full article
(This article belongs to the Special Issue Health Benefits and Applications of Bioactive Phenolic Compounds)
Show Figures

Figure 1

17 pages, 2736 KiB  
Article
Controlled Formation of α- and β-Bi2O3 with Tunable Morphologies for Visible-Light-Driven Photocatalysis
by Thomas Cadenbach, María Isabel Loyola-Plúa, Freddy Quijano Carrasco, Maria J. Benitez, Alexis Debut and Karla Vizuete
Molecules 2025, 30(15), 3190; https://doi.org/10.3390/molecules30153190 - 30 Jul 2025
Abstract
Water pollution caused by increasing industrial and human activity remains a serious environmental challenge, especially due to the persistence of organic contaminants in aquatic systems. Photocatalysis offers a promising and eco-friendly solution, but in the case of bismuth oxide (Bi2O3 [...] Read more.
Water pollution caused by increasing industrial and human activity remains a serious environmental challenge, especially due to the persistence of organic contaminants in aquatic systems. Photocatalysis offers a promising and eco-friendly solution, but in the case of bismuth oxide (Bi2O3) there is still a limited understanding of how structural and morphological features influence photocatalytic performance. In this work, a straightforward hydrothermal synthesis method followed by controlled calcination was developed to produce phase-pure α- and β-Bi2O3 with tunable morphologies. By varying the hydrothermal temperature and reaction time, distinct structures were successfully obtained, including flower-like, broccoli-like, and fused morphologies. XRD analyses showed that the final crystal phase depends solely on the calcination temperature, with β-Bi2O3 forming at 350 °C and α-Bi2O3 at 500 °C. SEM and BET analyses confirmed that morphology and surface area are strongly influenced by the hydrothermal conditions, with the flower-like β-Bi2O3 exhibiting the highest surface area. UV–Vis spectroscopy revealed that β-Bi2O3 also has a lower bandgap than its α counterpart, making it more responsive to visible light. Photocatalytic tests using Rhodamine B showed that the flower-like β-Bi2O3 achieved the highest degradation efficiency (81% in 4 h). Kinetic analysis followed pseudo-first-order behavior, and radical scavenging experiments identified hydroxyl radicals, superoxide radicals, and holes as key active species. The catalyst also demonstrated excellent stability and reusability. Additionally, Methyl Orange (MO), a more stable and persistent azo dye, was selected as a second model pollutant. The flower-like β-Bi2O3 catalyst achieved 73% degradation of MO at pH = 7 and complete removal under acidic conditions (pH = 2) in less than 3 h. These findings underscore the importance of both phase and morphology in designing high-performance Bi2O3 photocatalysts for environmental remediation. Full article
(This article belongs to the Special Issue Green Catalysis Technology for Sustainable Energy Conversion)
Show Figures

Figure 1

27 pages, 2602 KiB  
Article
Folate-Modified Albumin-Functionalized Iron Oxide Nanoparticles for Theranostics: Engineering and In Vitro PDT Treatment of Breast Cancer Cell Lines
by Anna V. Bychkova, Maria G. Gorobets, Anna V. Toroptseva, Alina A. Markova, Minh Tuan Nguyen, Yulia L. Volodina, Margarita A. Gradova, Madina I. Abdullina, Oksana A. Mayorova, Valery V. Kasparov, Vadim S. Pokrovsky, Anton V. Kolotaev and Derenik S. Khachatryan
Pharmaceutics 2025, 17(8), 982; https://doi.org/10.3390/pharmaceutics17080982 - 30 Jul 2025
Abstract
Background/Objectives: Magnetic iron oxide nanoparticles (IONPs), human serum albumin (HSA) and folic acid (FA) are prospective components for hybrid nanosystems for various biomedical applications. The magnetic nanosystems FA-HSA@IONPs (FAMs) containing IONPs, HSA, and FA residue are engineered in the study. Methods: [...] Read more.
Background/Objectives: Magnetic iron oxide nanoparticles (IONPs), human serum albumin (HSA) and folic acid (FA) are prospective components for hybrid nanosystems for various biomedical applications. The magnetic nanosystems FA-HSA@IONPs (FAMs) containing IONPs, HSA, and FA residue are engineered in the study. Methods: Composition, stability and integrity of the coating, and peroxidase-like activity of FAMs are characterized using UV/Vis spectrophotometry (colorimetric test using o-phenylenediamine (OPD), Bradford protein assay, etc.), spectrofluorimetry, dynamic light scattering (DLS) and electron magnetic resonance (EMR). The selectivity of the FAMs accumulation in cancer cells is analyzed using flow cytometry and confocal laser scanning microscopy. Results: FAMs (dN~55 nm by DLS) as a drug delivery platform have been administered to cancer cells (human breast adenocarcinoma MCF-7 and MDA-MB-231 cell lines) in vitro. Methylene blue, as a model photosensitizer, has been non-covalently bound to FAMs. An increase in photoinduced cytotoxicity has been found upon excitation of the photosensitizer bound to the coating of FAMs compared to the single photosensitizer at equivalent concentrations. The suitability of the nanosystems for photodynamic therapy has been confirmed. Conclusions: FAMs are able to effectively enter cells with increased folate receptor expression and thus allow antitumor photosensitizers to be delivered to cells without any loss of their in vitro photodynamic efficiency. Therapeutic and diagnostic applications of FAMs in oncology are discussed. Full article
Show Figures

Graphical abstract

12 pages, 2396 KiB  
Article
Helical Airflow Synthesis of Quinoxalines: A Continuous and Efficient Mechanochemical Approach
by Jiawei Zhang, Zeli Xiao, Qi Huang, Yang Zhao, Bo Jin and Rufang Peng
Chemistry 2025, 7(4), 121; https://doi.org/10.3390/chemistry7040121 (registering DOI) - 29 Jul 2025
Abstract
In this work, we report a novel mechanochemical synthesis method for the synthesis of quinoxaline derivatives—a spiral gas–solid two-phase flow approach, which enables the efficient preparation of quinoxaline compounds. Compared to conventional synthetic methods, this approach eliminates the need for heating or solvents [...] Read more.
In this work, we report a novel mechanochemical synthesis method for the synthesis of quinoxaline derivatives—a spiral gas–solid two-phase flow approach, which enables the efficient preparation of quinoxaline compounds. Compared to conventional synthetic methods, this approach eliminates the need for heating or solvents while significantly reducing reaction time. The structures of the synthesized compounds were characterized using nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV–Vis) absorption spectroscopy, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and high-performance liquid chromatography (HPLC). Using the synthesis of 2,3-diphenylquinoxaline (1) as a model reaction, the synthetic process was investigated with UV–Vis spectroscopy. The results demonstrate that when the total feed amount was 2 g with a carrier gas pressure of 0.8 MPa, the reaction completed within 2 min, achieving a yield of 93%. Furthermore, kinetic analysis of the reaction mechanism was performed by monitoring the UV–Vis spectra of the products at different time intervals. The results indicate that the synthesis of 1 follows the A4 kinetic model, which describes a two-dimensional diffusion-controlled product growth process following decelerated nucleation. Full article
Show Figures

Figure 1

13 pages, 2697 KiB  
Communication
Oxidation-Active Radical TTM-DMODPA for Catalysis-Free Hydrogen Peroxide Colorimetric Sensing
by Qingmei Zhong, Xiaomei Rong, Tingting Wu and Chuan Yan
Biosensors 2025, 15(8), 490; https://doi.org/10.3390/bios15080490 - 29 Jul 2025
Abstract
As a crucial reactive oxygen species, hydrogen peroxide (H2O2) serves as both a physiological regulator and a pathological indicator in human systems. Its urinary concentration has emerged as a valuable biomarker for assessing metabolic disorders and renal function. While [...] Read more.
As a crucial reactive oxygen species, hydrogen peroxide (H2O2) serves as both a physiological regulator and a pathological indicator in human systems. Its urinary concentration has emerged as a valuable biomarker for assessing metabolic disorders and renal function. While conventional colorimetric determination methods predominantly employ enzymatic or nanozyme catalysts, we present an innovative non-catalytic approach utilizing the redox-responsive properties of organic neutral radicals. Specifically, we designed and synthesized a novel radical TTM-DMODPA based on the tris (2,4,6-trichlorophenyl) methyl (TTM) scaffold, which exhibits remarkable optical tunability and oxidative sensitivity. This system enables dual-mode H2O2 quantification: (1) UV-vis spectrophotometry (linear range: 2.5–250 μmol/L, LOD: 1.275 μmol/L) and (2) smartphone-based visual analysis (linear range: 2.5–250 μmol/L, LOD: 3.633 μmol/L), the latter being particularly suitable for point-of-care testing. Validation studies using urine samples demonstrated excellent recovery rates (96–104%), confirming the method’s reliability for real-sample applications. Our work establishes a portable, instrument-free platform for urinary H2O2 determination, with significant potential in clinical diagnostics and environmental monitoring. Full article
(This article belongs to the Section Optical and Photonic Biosensors)
Show Figures

Figure 1

12 pages, 1511 KiB  
Article
Biological Activities of Glucosinolate and Its Enzymatic Product in Moringa oleifera (Lam.)
by Jinglin Wang, Saifei Yang, Sijia Shen, Chunxian Ma and Rui Chen
Int. J. Mol. Sci. 2025, 26(15), 7323; https://doi.org/10.3390/ijms26157323 (registering DOI) - 29 Jul 2025
Viewed by 40
Abstract
In this study, using 70% anhydrous ethanol as the extraction solvent, Moringa oleifera Lam. seed powder was extracted with the microwave-assisted extraction method, followed by purification using macroporous adsorbent resin NKA-9. The purified glucosinolate was subsequently hydrolyzed with myrosinase. The glucosinolate and its [...] Read more.
In this study, using 70% anhydrous ethanol as the extraction solvent, Moringa oleifera Lam. seed powder was extracted with the microwave-assisted extraction method, followed by purification using macroporous adsorbent resin NKA-9. The purified glucosinolate was subsequently hydrolyzed with myrosinase. The glucosinolate and its enzymatic product were identified as 4-(α-L-rhamnopyranosyloxy) benzyl glucosinolate (4-RBMG) and benzyl isothiocyanate (BITC) by UV–Vis, FT-IR, NMR, and MS. The bioactivities, including anti-oxidation, anti-inflammation, and anti-tumor activities of 4-RBMG and BITC, were systematically evaluated and compared. The results show that at 5–20 mg/mL, the anti-oxidation effects of 4-RBMG on DPPH and ABTS free radicals are superior to those of BITC. However, at the same concentrations, BITC has stronger anti-inflammatory and anti-tumor activities compared to 4-RBMG. Notably, at a concentration of 6.25 μmol/L, BITC significantly inhibited NO production with an inhibitory rate of 96.67% without cytotoxicity. Additionally, at a concentration of 40 μmol/L, BITC exhibited excellent inhibitory effects on five tumor cell lines, with the cell inhibitory rates of leukemia HL-60, lung cancer A549, and hepatocellular carcinoma HepG2 exceeding 90%. This study provides some evidence that the enzymatic product, BITC, shows promise as a therapeutic agent for tumor suppression and inflammation reduction. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

6 pages, 790 KiB  
Short Note
6-Amino-4-phenylpyrrolo[2,3-c][1,2,6]thiadiazine-5-carbonitrile
by Andreas S. Kalogirou, Andreas Kourtellaris and Panayiotis A. Koutentis
Molbank 2025, 2025(3), M2043; https://doi.org/10.3390/M2043 - 28 Jul 2025
Viewed by 114
Abstract
The reaction of 2-(3-chloro-5-phenyl-4H-1,2,6-thiadiazin-4-ylidene)malononitrile with ammonia in anhydrous THF, at ca. 20 °C, for 24 h, gave 6-amino-4-phenylpyrrolo[2,3-c][1,2,6]thiadiazine-5-carbonitrile in 95% yield. The product was characterized by 1H and 13C NMR, SC-XRD, MALDI-TOF mass spectrometry, FTIR, and UV-vis [...] Read more.
The reaction of 2-(3-chloro-5-phenyl-4H-1,2,6-thiadiazin-4-ylidene)malononitrile with ammonia in anhydrous THF, at ca. 20 °C, for 24 h, gave 6-amino-4-phenylpyrrolo[2,3-c][1,2,6]thiadiazine-5-carbonitrile in 95% yield. The product was characterized by 1H and 13C NMR, SC-XRD, MALDI-TOF mass spectrometry, FTIR, and UV-vis spectroscopy. Intermolecular hydrogen bonding interactions were observed in the solid state between the C≡N and N-H groups of adjacent molecules. Full article
Show Figures

Figure 1

17 pages, 7508 KiB  
Article
Supramolecular Graphene Quantum Dots/Porphyrin Complex as Fluorescence Probe for Metal Ion Sensing
by Mariachiara Sarà, Andrea Romeo, Gabriele Lando, Maria Angela Castriciano, Roberto Zagami, Giovanni Neri and Luigi Monsù Scolaro
Int. J. Mol. Sci. 2025, 26(15), 7295; https://doi.org/10.3390/ijms26157295 - 28 Jul 2025
Viewed by 135
Abstract
Graphene quantum dots (GQDs) obtained by microwave-induced pyrolysis of glutamic acid and triethylenetetramine (trien) are fairly stable, emissive, water-soluble, and positively charged nano-systems able to interact with negatively charged meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS4). The stoichiometric control during the preparation affords a [...] Read more.
Graphene quantum dots (GQDs) obtained by microwave-induced pyrolysis of glutamic acid and triethylenetetramine (trien) are fairly stable, emissive, water-soluble, and positively charged nano-systems able to interact with negatively charged meso-tetrakis(4-sulfonatophenyl) porphyrin (TPPS4). The stoichiometric control during the preparation affords a supramolecular adduct, GQDs@TPPS4, that exhibits a double fluorescence emission from both the GQDs and the TPPS4 fluorophores. These supramolecular aggregates have an overall negative charge that is responsible for the condensation of cations in the nearby aqueous layer, and a three-fold acceleration of the metalation rates of Cu2+ ions has been observed with respect to the parent porphyrin. Addition of various metal ions leads to some changes in the UV/Vis spectra and has a different impact on the fluorescence emission of GQDs and TPPS4. The quenching efficiency of the TPPS4 emission follows the order Cu2+ > Hg2+ > Cd2+ > Pb2+ ~ Zn2+ ~ Co2+ ~ Ni2+ > Mn2+ ~ Cr3+ >> Mg2+ ~ Ca2+ ~ Ba2+, and it has been related to literature data and to the sitting-atop mechanism that large transition metal ions (e.g., Hg2+ and Cd2+) exhibit in their interaction with the macrocyclic nitrogen atoms of the porphyrin, inducing distortion and accelerating the insertion of smaller metal ions, such as Zn2+. For the most relevant metal ions, emission quenching of the porphyrin evidences a linear behavior in the micromolar range, with the emission of the GQDs being moderately affected through a filter effect. Deliberate pollution of the samples with Zn2+ reveals the ability of the GQDs@TPPS4 adduct to detect sensitively Cu2+, Hg2+, and Cd2+ ions. Full article
Show Figures

Figure 1

23 pages, 4653 KiB  
Article
Zinc-Induced Folding and Solution Structure of the Eponymous Novel Zinc Finger from the ZC4H2 Protein
by Rilee E. Harris, Antonio J. Rua and Andrei T. Alexandrescu
Biomolecules 2025, 15(8), 1091; https://doi.org/10.3390/biom15081091 - 28 Jul 2025
Viewed by 103
Abstract
The ZC4H2 gene is the site of congenital mutations linked to neurodevelopmental and musculoskeletal pathologies collectively termed ZARD (ZC4H2-Associated Rare Disorders). ZC4H2 consists of a coiled coil and a single novel zinc finger with four cysteines and two histidines, from which the protein [...] Read more.
The ZC4H2 gene is the site of congenital mutations linked to neurodevelopmental and musculoskeletal pathologies collectively termed ZARD (ZC4H2-Associated Rare Disorders). ZC4H2 consists of a coiled coil and a single novel zinc finger with four cysteines and two histidines, from which the protein obtains its name. Alpha Fold 3 confidently predicts a structure for the zinc finger but also for similarly sized random sequences, providing equivocal information on its folding status. We show using synthetic peptide fragments that the zinc finger of ZC4H2 is genuine and folds upon binding a zinc ion with picomolar affinity. NMR pH titration of histidines and UV–Vis of a cobalt complex of the peptide indicate its four cysteines coordinate zinc, while two histidines do not participate in binding. The experimental NMR structure of the zinc finger has a novel structural motif similar to RANBP2 zinc fingers, in which two orthogonal hairpins each contribute two cysteines to coordinate zinc. Most of the nine ZARD mutations that occur in the ZC4H2 zinc finger are likely to perturb this structure. While the ZC4H2 zinc finger shares the folding motif and cysteine-ligand spacing of the RANBP2 family, it is missing key substrate-binding residues. Unlike the NZF branch of the RANBP2 family, the ZC4H2 zinc finger does not bind ubiquitin. Since the ZC4H2 zinc finger occurs in a single copy, it is also unlikely to bind DNA. Based on sequence homology to the VAB-23 protein, the ZC4H2 zinc finger may bind RNA of a currently undetermined sequence or have alternative functions. Full article
(This article belongs to the Special Issue Functional Peptides and Their Interactions (3rd Edition))
Show Figures

Figure 1

13 pages, 2146 KiB  
Article
Radical TTM-DMODPA for Ascorbic Acid Non-Catalytic Visual Detection
by Qingmei Zhong, Huixiang Zong, Xiaohui Xie, Xiaomei Rong and Chuan Yan
Chemosensors 2025, 13(8), 277; https://doi.org/10.3390/chemosensors13080277 - 27 Jul 2025
Viewed by 170
Abstract
Ascorbic acid (AA) plays a multidimensional role in human physiological and pathological processes, and the detection of its urinary concentration facilitates the diagnosis of metabolic or kidney diseases. Visual detection exhibits minimal reliance on instrumentation and is suitable for on-site analysis in routine [...] Read more.
Ascorbic acid (AA) plays a multidimensional role in human physiological and pathological processes, and the detection of its urinary concentration facilitates the diagnosis of metabolic or kidney diseases. Visual detection exhibits minimal reliance on instrumentation and is suitable for on-site analysis in routine settings. Current visual colorimetric detection methods typically rely on enzymatic or nanozyme-based catalysis. Organic neutral radicals bearing unpaired electrons represent a class of materials exhibiting intrinsic responsiveness to redox stimuli. The tris (2,4,6-trichlorophenyl) methyl (TTM) radical has attracted widespread attention for its adjustable optical properties and sensitive response to external redox stimuli. We synthesized a novel radical TTM-DMODPA and applied it for non-catalytic colorimetric detection of AA. It not only enables quantitative AA measurement via UV-vis spectroscopy (linear range: 1.25–75 μmol/L, LOD: 0.288 μmol/L) but also facilitates instrument-free visual detection using smartphone cameras (linear range: 0–65 μmol/L, LOD: 1.46 μmol/L). This method demonstrated satisfactory performance in the measurement of AA in actual urine samples. Recovery rates ranged from 97.8% to 104.1%. Consequently, this work provides a portable and effective method for assessing AA levels in actual urine samples. Full article
(This article belongs to the Section (Bio)chemical Sensing)
Show Figures

Figure 1

19 pages, 3813 KiB  
Article
An OSMAC Strategy for the Production of Antimicrobial Compounds by the Amazonian Fungi Talaromyces pinophilus CCM-UEA-F0414 and Penicillium paxilli CCM-UEA-F0591
by Cleudiane Pereira de Andrade, Caroline Dutra Lacerda, Raíssa Assímen Valente, Liss Stone de Holanda Rocha, Anne Terezinha Fernandes de Souza, Dorothy Ívila de Melo Pereira, Larissa Kirsch Barbosa, Cleiton Fantin, Sergio Duvoisin Junior and Patrícia Melchionna Albuquerque
Antibiotics 2025, 14(8), 756; https://doi.org/10.3390/antibiotics14080756 - 27 Jul 2025
Viewed by 236
Abstract
Background/Objectives: The emergence of antimicrobial resistance represents a critical global health threat, requiring the discovery of novel bioactive compounds. Fungi from Amazonian biodiversity are promising sources of secondary metabolites with potential antimicrobial activity. This study aimed to investigate the production of antimicrobial compounds [...] Read more.
Background/Objectives: The emergence of antimicrobial resistance represents a critical global health threat, requiring the discovery of novel bioactive compounds. Fungi from Amazonian biodiversity are promising sources of secondary metabolites with potential antimicrobial activity. This study aimed to investigate the production of antimicrobial compounds by two Amazonian fungal strains using the OSMAC (One Strain–Many Compounds) approach. Methods: Two fungal strains, Talaromyces pinophilus CCM-UEA-F0414 and Penicillium paxilli CCM-UEA-F0591, were cultivated under five distinct culture media to modulate secondary metabolite production. Ethyl acetate extracts were prepared and evaluated for antimicrobial activity against Gram-positive and Gram-negative bacteria, as well as pathogenic yeasts. Chemical characterization was performed using thin-layer chromatography (TLC), Fourier Transform Infrared Spectroscopy (FTIR), Ultraviolet–Visible (UV-Vis) spectroscopy, and Ultra-High-Performance Liquid Chromatography with Diode Array Detection (uHPLC-DAD). Results: The extracts exhibited significant antimicrobial activity, with minimum inhibitory concentrations (MICs) ranging from 78 to 5000 µg/mL. Chemical analyses revealed the presence of phenolic compounds, particularly caffeic and chlorogenic acids. Variations in the culture media substantially affected both the metabolite profiles and antimicrobial efficacy of the extracts. Conclusions: The OSMAC strategy effectively enhanced the metabolic diversity of the Amazonian fungal strains, leading to the production of bioactive metabolites with antimicrobial potential. These findings support the importance of optimizing culture conditions to unlock the biosynthetic capacity of Amazonian fungi as promising sources of antimicrobial agents. Full article
Show Figures

Figure 1

16 pages, 2045 KiB  
Article
The Antimicrobial Activity of Silver Nanoparticles Biosynthesized Using Cymbopogon citratus Against Multidrug-Resistant Bacteria Isolated from an Intensive Care Unit
by Bianca Picinin Gusso, Aline Rosa Almeida, Michael Ramos Nunes, Daniela Becker, Dachamir Hotza, Cleonice Gonçalves da Rosa, Vanessa Valgas dos Santos and Bruna Fernanda da Silva
Pharmaceuticals 2025, 18(8), 1120; https://doi.org/10.3390/ph18081120 - 27 Jul 2025
Viewed by 236
Abstract
Objective: This study aimed to evaluate the in vitro efficacy of silver nanoparticles (AgNPs) synthesized by bioreduction using lemongrass (Cymbopogon citratus) essential oil against multidrug-resistant (MDR) bacteria isolated from an Intensive Care Unit (ICU). Methods: The essential oil was extracted and [...] Read more.
Objective: This study aimed to evaluate the in vitro efficacy of silver nanoparticles (AgNPs) synthesized by bioreduction using lemongrass (Cymbopogon citratus) essential oil against multidrug-resistant (MDR) bacteria isolated from an Intensive Care Unit (ICU). Methods: The essential oil was extracted and characterized by gas chromatography–mass spectrometry (GC-MS). Antioxidant activity was assessed using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay, the 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) assay, and total phenolic content. AgNPs (3 mM and 6 mM silver nitrate) were characterized by UV-Vis spectroscopy, dynamic light scattering (DLS), zeta potential, transmission electron microscopy (TEM), and Fourier-transform infrared (FTIR) spectroscopy. Bacterial isolates were obtained from ICU surfaces and personal protective equipment (PPE). Results: The essential oil presented citral A, citral B, and β-myrcene as major components (97.5% of identified compounds). AgNPs at 3 mM showed smaller size (87 nm), lower Polydispersity Index (0.14), and higher colloidal stability (−23 mV). The 6 mM formulation (147 nm; PDI 0.91; −10 mV) was more effective against a strain of Enterococcus spp. resistant to all antibiotics tested. FTIR analysis indicated the presence of O–H, C=O, and C–O groups involved in nanoparticle stabilization. Discussion: The higher antimicrobial efficacy of the 6 mM formulation was attributed to the greater availability of active AgNPs. Conclusions: The green synthesis of AgNPs using C. citratus essential oil proved effective against MDR bacteria and represents a sustainable and promising alternative for microbiological control in healthcare environments. Full article
(This article belongs to the Special Issue Therapeutic Potential of Silver Nanoparticles (AgNPs), 2nd Edition)
Show Figures

Graphical abstract

14 pages, 888 KiB  
Article
Environmental Impact of Biodegradable Packaging Based on Chia Mucilage in Real Water Bodies
by Renata Machado Pereira da Silva, Stefanny Pereira Atanes and Sibele Santos Fernandes
Processes 2025, 13(8), 2381; https://doi.org/10.3390/pr13082381 - 27 Jul 2025
Viewed by 214
Abstract
The intense demand for alternatives to conventional plastics has increasingly motivated the development of biodegradable packaging. However, the ecological impact of these materials when discarded in natural settings has not yet been evaluated. Therefore, this study investigated the effects of films based on [...] Read more.
The intense demand for alternatives to conventional plastics has increasingly motivated the development of biodegradable packaging. However, the ecological impact of these materials when discarded in natural settings has not yet been evaluated. Therefore, this study investigated the effects of films based on chia mucilage in different aquatic environments. The solubilization time varied according to water type, ranging from 40 min in ultrapure, deionized, and distilled water to 230 min in saline water. After solubilization, all water samples exhibited increased turbidity (from 1.04 to 15.73 NTU in deionized water) and apparent color (from 0 to 44 PCU in deionized water) as well as pH variations depending on ionic strength. Deionized water also showed the highest viscosity increase (>350 Pa·s at 1 s−1). UV–Vis spectra revealed a moderate rise in absorbance between 236 and 260 nm, indicating organic compound release. Regarding phytotoxicity, the solubilized films had no toxic effect and promoted a biostimulating effect on root elongation, with Relative Germination Index values exceeding 140% in most samples. These results reinforce the potential of chia-based films for controlled disposal, particularly in low-salinity environments, while highlighting the importance of evaluating post-solubilization interactions with aquatic systems. Full article
(This article belongs to the Special Issue Advances in Waste Management and Treatment of Biodegradable Waste)
Show Figures

Figure 1

Back to TopTop