Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = UGG codon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 5766 KiB  
Article
The Complete Mitogenome of Apostasia fujianica Y.Li & S.Lan and Comparative Analysis of Mitogenomes across Orchidaceae
by Qinyao Zheng, Xiaoting Luo, Ye Huang, Shi-Jie Ke and Zhong-Jian Liu
Int. J. Mol. Sci. 2024, 25(15), 8151; https://doi.org/10.3390/ijms25158151 - 26 Jul 2024
Cited by 3 | Viewed by 1257
Abstract
Apostasia fujianica belongs to the genus Apostasia and is part of the basal lineage in the phylogenetic tree of the Orchidaceae. Currently, there are only ten reported complete mitochondrial genomes in orchids, which greatly hinders the understanding of mitochondrial evolution in Orchidaceae. Therefore, [...] Read more.
Apostasia fujianica belongs to the genus Apostasia and is part of the basal lineage in the phylogenetic tree of the Orchidaceae. Currently, there are only ten reported complete mitochondrial genomes in orchids, which greatly hinders the understanding of mitochondrial evolution in Orchidaceae. Therefore, we assembled and annotated the mitochondrial genome of A. fujianica, which has a length of 573,612 bp and a GC content of 44.5%. We annotated a total of 44 genes, including 30 protein-coding genes, 12 tRNA genes, and two rRNA genes. We also performed relative synonymous codon usage (RSCU) analysis, repeat sequence analysis, intergenomic transfer (IGT) analysis, and Ka/Ks analysis for A. fujianica and conducted RNA editing site analysis on the mitochondrial genomes of eight orchid species. We found that most protein-coding genes are under purifying selection, but nad6 is under positive selection, with a Ka/Ks value of 1.35. During the IGT event in A. fujianica’s mitogenome, the trnN-GUU, trnD-GUC, trnW-CCA, trnP-UGG, and psaJ genes were identified as having transferred from the plastid to the mitochondrion. Compared to other monocots, the family Orchidaceae appears to have lost the rpl10, rpl14, sdh3, and sdh4 genes. Additionally, to further elucidate the evolutionary relationships among monocots, we constructed a phylogenetic tree based on the complete mitogenomes of monocots. Our study results provide valuable data on the mitogenome of A. fujianica and lay the groundwork for future research on genetic variation, evolutionary relationships, and breeding of Orchidaceae. Full article
(This article belongs to the Special Issue Molecular Research on Orchid Plants)
Show Figures

Figure 1

16 pages, 2608 KiB  
Article
Putative Mitoviruses without In-Frame UGA(W) Codons: Evolutionary Implications
by Andrés Gustavo Jacquat, Martín Gustavo Theumer and José Sebastián Dambolena
Viruses 2023, 15(2), 340; https://doi.org/10.3390/v15020340 - 25 Jan 2023
Cited by 9 | Viewed by 2714
Abstract
Mitoviruses are small vertically transmitted RNA viruses found in fungi, plants and animals. Taxonomically, a total of 105 species and 4 genera have been formally recognized by ICTV, and recently, 18 new putative species have been included in a new proposed genus. Transcriptomic [...] Read more.
Mitoviruses are small vertically transmitted RNA viruses found in fungi, plants and animals. Taxonomically, a total of 105 species and 4 genera have been formally recognized by ICTV, and recently, 18 new putative species have been included in a new proposed genus. Transcriptomic and metatranscriptomic studies are a major source of countless new virus-like sequences that are continually being added to open databases and these may be good sources for identifying new putative mitoviruses. The search for mitovirus-like sequences in the NCBI databases resulted in the discovery of more than one hundred new putative mitoviruses, with important implications for taxonomy and also for the evolutionary scenario. Here, we propose the inclusion of four new putative members to the genus Kvaramitovirus, and the existence of a new large basally divergent lineage composed of 144 members that lack internal UGA codons (subfamily “Arkeomitovirinae”), a feature not shared by the vast majority of mitoviruses. Finally, a taxonomic categorization proposal and a detailed description of the evolutionary history of mitoviruses were carried out. This in silico study supports the hypothesis of the existence of a basally divergent lineage that could have had an impact on the early evolutionary history of mitoviruses. Full article
(This article belongs to the Special Issue Molecular Biology of RNA Viruses)
Show Figures

Figure 1

22 pages, 4147 KiB  
Review
The Uniqueness of Tryptophan in Biology: Properties, Metabolism, Interactions and Localization in Proteins
by Sailen Barik
Int. J. Mol. Sci. 2020, 21(22), 8776; https://doi.org/10.3390/ijms21228776 - 20 Nov 2020
Cited by 152 | Viewed by 18176
Abstract
Tryptophan (Trp) holds a unique place in biology for a multitude of reasons. It is the largest of all twenty amino acids in the translational toolbox. Its side chain is indole, which is aromatic with a binuclear ring structure, whereas those of Phe, [...] Read more.
Tryptophan (Trp) holds a unique place in biology for a multitude of reasons. It is the largest of all twenty amino acids in the translational toolbox. Its side chain is indole, which is aromatic with a binuclear ring structure, whereas those of Phe, Tyr, and His are single-ring aromatics. In part due to these elaborate structural features, the biosynthetic pathway of Trp is the most complex and the most energy-consuming among all amino acids. Essential in the animal diet, Trp is also the least abundant amino acid in the cell, and one of the rarest in the proteome. In most eukaryotes, Trp is the only amino acid besides Met, which is coded for by a single codon, namely UGG. Due to the large and hydrophobic π-electron surface area, its aromatic side chain interacts with multiple other side chains in the protein, befitting its strategic locations in the protein structure. Finally, several Trp derivatives, namely tryptophylquinone, oxitriptan, serotonin, melatonin, and tryptophol, have specialized functions. Overall, Trp is a scarce and precious amino acid in the cell, such that nature uses it parsimoniously, for multiple but selective functions. Here, the various aspects of the uniqueness of Trp are presented in molecular terms. Full article
(This article belongs to the Special Issue Tryptophan in Nutrition and Health)
Show Figures

Graphical abstract

16 pages, 4649 KiB  
Article
Investigating REPAIRv2 as a Tool to Edit CFTR mRNA with Premature Stop Codons
by Raffaella Melfi, Patrizia Cancemi, Roberta Chiavetta, Viviana Barra, Laura Lentini and Aldo Di Leonardo
Int. J. Mol. Sci. 2020, 21(13), 4781; https://doi.org/10.3390/ijms21134781 - 6 Jul 2020
Cited by 14 | Viewed by 4026
Abstract
Cystic fibrosis (CF) is caused by mutations in the gene encoding the transmembrane conductance regulator (CFTR) protein. Some CF patients are compound heterozygous or homozygous for nonsense mutations in the CFTR gene. This implies the presence in the transcript of premature termination codons [...] Read more.
Cystic fibrosis (CF) is caused by mutations in the gene encoding the transmembrane conductance regulator (CFTR) protein. Some CF patients are compound heterozygous or homozygous for nonsense mutations in the CFTR gene. This implies the presence in the transcript of premature termination codons (PTCs) responsible for a truncated CFTR protein and a more severe form of the disease. Aminoglycoside and PTC124 derivatives have been used for the read-through of PTCs to restore the full-length CFTR protein. However, in a precision medicine framework, the CRISPR/dCas13b-based molecular tool “REPAIRv2” (RNA Editing for Programmable A to I Replacement, version 2) could be a good alternative to restore the full-length CFTR protein. This RNA editing approach is based on the targeting of the deaminase domain of the hADAR2 enzyme fused to the dCas13b protein to a specific adenosine to be edited to inosine in the mutant mRNA. Targeting specificity is allowed by a guide RNA (gRNA) complementarily to the target region and recognized by the dCas13b protein. Here, we used the REPAIRv2 platform to edit the UGA PTC to UGG in different cell types, namely IB3-1 cells, HeLa, and FRT cells engineered to express H2BGFPopal and CFTRW1282X, respectively. Full article
(This article belongs to the Special Issue Molecular Approaches Fighting Nonsense)
Show Figures

Figure 1

20 pages, 5344 KiB  
Article
Comparative Analysis of the Complete Plastid Genome of Five Bupleurum Species and New Insights into DNA Barcoding and Phylogenetic Relationship
by Jun Li, Deng-Feng Xie, Xian-Lin Guo, Zhen-Ying Zheng, Xing-Jin He and Song-Dong Zhou
Plants 2020, 9(4), 543; https://doi.org/10.3390/plants9040543 - 22 Apr 2020
Cited by 31 | Viewed by 4542
Abstract
Bupleurum L. (Apiaceae) is a perennial and herbal genus, most species of which have high medicinal value. However, few studies have been performed using plastome data in this genus, and the phylogenetic relationships have always been controversial. In this study, the plastid genomes [...] Read more.
Bupleurum L. (Apiaceae) is a perennial and herbal genus, most species of which have high medicinal value. However, few studies have been performed using plastome data in this genus, and the phylogenetic relationships have always been controversial. In this study, the plastid genomes of Bupleurum chinense and Bupleurum commelynoideum were sequenced, and their gene content, order, and structure were counted and analyzed. The only three published Bupleurum species (B. boissieuanum, B. falcatum, and B. latissimum) and other fifteen allied species were selected to conduct a series of comparative and phylogenetic analyses. The genomes of B. chinense and B. commelynoideum were 155,869 and 155,629 bp in length, respectively, both of which had a typical quadripartite structure. The genome length, structure, guanine and cytosine (GC) content, and gene distribution were highly similar to the other three Bupleurum species. The five Bupleurum species had nearly the same codon usages, and eight regions (petN-psbM, rbcL-accD, ccsA-ndhD, trnK(UUU)-rps16, rpl32-trnL(UAG)-ccsA, petA-psbJ, ndhF-rpl32, and trnP(UGG)-psaJ-rpl33) were found to possess relatively higher nucleotide diversity, which may be the promising DNA barcodes in Bupleurum. Phylogenetic analysis revealed that all Bupleurum species clustered into a monophyletic clade with high bootstrap support and diverged after the Chamaesium clade. Overall, our study provides new insights into DNA barcoding and phylogenetic relationship between Bupleurum and its related genera, and will facilitate the population genomics, conservation genetics, and phylogenetics of Bupleurum in Apiaceae. Full article
(This article belongs to the Special Issue Plant Molecular Phylogenetics and Evolutionary Genomics)
Show Figures

Figure 1

18 pages, 1627 KiB  
Article
The UGG Isoacceptor of tRNAPro Is Naturally Prone to Frameshifts
by Howard B. Gamper, Isao Masuda, Milana Frenkel-Morgenstern and Ya-Ming Hou
Int. J. Mol. Sci. 2015, 16(7), 14866-14883; https://doi.org/10.3390/ijms160714866 - 1 Jul 2015
Cited by 22 | Viewed by 8415
Abstract
Native tRNAs often contain post-transcriptional modifications to the wobble position to expand the capacity of reading the genetic code. Some of these modifications, due to the ability to confer imperfect codon-anticodon pairing at the wobble position, can induce a high propensity for tRNA [...] Read more.
Native tRNAs often contain post-transcriptional modifications to the wobble position to expand the capacity of reading the genetic code. Some of these modifications, due to the ability to confer imperfect codon-anticodon pairing at the wobble position, can induce a high propensity for tRNA to shift into alternative reading frames. An example is the native UGG isoacceptor of E. coli tRNAPro whose wobble nucleotide U34 is post-transcriptionally modified to cmo5U34 to read all four proline codons (5ʹ-CCA, 5ʹ-CCC, 5ʹ-CCG, and 5ʹ-CCU). Because the pairing of the modified anticodon to CCC codon is particularly weak relative to CCA and CCG codons, this tRNA can readily shift into both the +1 and +2-frame on the slippery mRNA sequence CCC-CG. We show that the shift to the +2-frame is more dominant, driven by the higher stability of the codon-anticodon pairing at the wobble position. Kinetic analysis suggests that both types of shifts can occur during stalling of the tRNA in a post-translocation complex or during translocation from the A to the P-site. Importantly, while the +1-frame post complex is active for peptidyl transfer, the +2-frame complex is a poor peptidyl donor. Together with our recent work, we draw a mechanistic distinction between +1 and +2-frameshifts, showing that while the +1-shifts are suppressed by the additional post-transcriptionally modified m1G37 nucleotide in the anticodon loop, the +2-shifts are suppressed by the ribosome, supporting a role of the ribosome in the overall quality control of reading-frame maintenance. Full article
(This article belongs to the Special Issue Functions of Transfer RNAs)
Show Figures

Graphical abstract

Back to TopTop