Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (247)

Search Parameters:
Keywords = TiOx

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2531 KB  
Article
Amorphous Anodized Porous Titania as IrO2 Substrate for the Electrochemical Oxygen Evolution Reaction
by Effrosyni Mitrousi, Triantafyllia Kokkinou, Maria Zografaki, Maria Nikopoulou, Angeliki Banti, Dimitra A. Lambropoulou and Sotiris Sotiropoulos
Sustain. Chem. 2026, 7(1), 2; https://doi.org/10.3390/suschem7010002 - 6 Jan 2026
Viewed by 183
Abstract
This study investigates amorphous anodized porous TiO2 (a-TiO2) as a substrate for iridium-based oxygen evolution catalysts. The substrates were prepared via anodization of Ti foil in a glycerol-based solution for 15 min @ 60 V. Nickel was subsequently electrodeposited to [...] Read more.
This study investigates amorphous anodized porous TiO2 (a-TiO2) as a substrate for iridium-based oxygen evolution catalysts. The substrates were prepared via anodization of Ti foil in a glycerol-based solution for 15 min @ 60 V. Nickel was subsequently electrodeposited to act both as a conductive and sacrificial layer for the galvanic deposition of iridium from an Ir(IV) chloro-complex solution. Electrochemical anodization resulted in a uniform IrOx layer on the a-TiO2 substrate, featuring Ir aggregates ~250 nm in size and an Ir:Ni atomic ratio of ca. 7, as determined by EDS analysis. The quantity of Ni determined by ICP-MS bulk analysis indicated that Ni resided also within the porous matrix. Varying the Ni deposition charge density (qNi) revealed that an intermediate loading (1463 mC cm−2) provided the best balance between Ir accessibility during the galvanic replacement step and electronic continuity. The optimized IrOx/Ir-Ni/a-TiO2 electrode achieved excellent OER performance (η = 344 mV @ 10 mA cm−2; 1.68 mA μgIr−1 @ η = 300 mV) at an ultra-low Ir loading of 2.15 μgIr cm−2 and demonstrated good short-term stability, with only a 20 mV potential increase over 4 h of continuous operation at 5.5 mA cm−2. Overall, this strategy offers a scalable pathway for producing efficient OER electrodes with minimal noble metal loading. Full article
Show Figures

Figure 1

13 pages, 3404 KB  
Article
A Dual-Function TiO2@CoOx Photocatalytic Fuel Cell for Sustainable Energy Production and Recovery of Metallic Copper from Wastewater
by Xiao-He Liu, Rui Yuan, Nan Li, Shaohui Wang, Xiaoyuan Zhang, Yunteng Ma, Chaoqun Fan and Peipei Du
Inorganics 2025, 13(12), 404; https://doi.org/10.3390/inorganics13120404 - 12 Dec 2025
Viewed by 377
Abstract
Developing photoelectrochemical systems that couple pollutant removal with resource recovery is of great significance for sustainable wastewater treatment. In this study, a dual-function photocatalytic fuel cell (PFC) was developed using a TiO2 nanotube photoanode modified with an amorphous CoOx cocatalyst, which markedly [...] Read more.
Developing photoelectrochemical systems that couple pollutant removal with resource recovery is of great significance for sustainable wastewater treatment. In this study, a dual-function photocatalytic fuel cell (PFC) was developed using a TiO2 nanotube photoanode modified with an amorphous CoOx cocatalyst, which markedly enhances charge separation and interfacial reaction kinetics. The optimized TiO2@CoOx electrode achieves a twofold enhancement in photocurrent compared to pristine TiO2. When applied to Cu2+-containing wastewater, the PFC achieved 91% Cu2+ removal under N2-purged conditions, with metallic Cu identified as the sole reduction product. Although dissolved oxygen reduced metal recovery efficiency through competitive electron consumption, it simultaneously increased power generation and improved anodic organic degradation. Overall, the results demonstrate that amorphous-CoOx-modified TiO2 photoanodes offer an effective platform for integrating sustainable energy production with wastewater remediation and valuable copper recovery. Full article
(This article belongs to the Section Inorganic Materials)
Show Figures

Figure 1

12 pages, 2644 KB  
Article
Formation of Titanium Oxynitride Films by Reactive Magnetron Sputtering, Their Structural Features and Properties
by Aidar Kengesbekov, Bauyrzhan Rakhadilov, Arystanbek Kussainov, Ainur Serikbaikyzy, Arnur Askhatov and Zarina Aringozhina
Coatings 2025, 15(12), 1434; https://doi.org/10.3390/coatings15121434 - 5 Dec 2025
Viewed by 313
Abstract
TiOxNy coatings are known for their good biocompatibility and corrosion resistance and have been previously explored for biomedical applications, including cardiovascular stents. In this work, emphasis is placed on a systematic investigation of the effect of substrate bias voltage on [...] Read more.
TiOxNy coatings are known for their good biocompatibility and corrosion resistance and have been previously explored for biomedical applications, including cardiovascular stents. In this work, emphasis is placed on a systematic investigation of the effect of substrate bias voltage on the structural, morphological, and mechanical properties of TiOxNy films deposited by reactive magnetron sputtering. TiOxNy coatings were deposited on 316L stainless steel substrates using a pure titanium target (99.99%) in an Ar–N2–O2 gas mixture at various substrate bias voltages (0 to −150 V). The influence of substrate bias on the deposition rate, structure, and mechanical properties of the films was investigated. X-ray diffraction (XRD) analysis revealed the sequential phase evolution from cubic TiN to oxynitride TiON and further to TiO2 (anatase/rutile) with increasing negative substrate bias, indicating that ion bombardment energy plays a decisive role in determining the crystallinity and phase composition of the coatings. The coating deposited at −50 V exhibited the highest hardness (~430 HV) and good adhesion strength (critical load 20–25 N). Contact angle measurements confirmed the hydrophilic behavior of the coatings, which is favorable for biomedical applications. Full article
(This article belongs to the Special Issue Advanced Surface Coatings for Biomedical and Industrial Applications)
Show Figures

Figure 1

22 pages, 5222 KB  
Article
Liquid Phase Catalytic Transfer Hydrogenation of Crotonaldehyde over ReOx-Supported Catalysts Using Formic Acid as In Situ Hydrogen Donor
by Carlos Esteban Aristizábal-Alzate, Verónica Naharro-Ovejero, Manuel Romero-Sáez and Ana Belén Dongil
Molecules 2025, 30(21), 4307; https://doi.org/10.3390/molecules30214307 - 5 Nov 2025
Viewed by 577
Abstract
The selective hydrogenation of the C=O bond over the C=C bond in α,β-unsaturated aldehydes remains a well-known challenge. This work investigates the liquid-phase catalytic transfer hydrogenation of crotonaldehyde to crotyl alcohol over ReOx-based catalysts, using formic acid (FA) as an in situ hydrogen [...] Read more.
The selective hydrogenation of the C=O bond over the C=C bond in α,β-unsaturated aldehydes remains a well-known challenge. This work investigates the liquid-phase catalytic transfer hydrogenation of crotonaldehyde to crotyl alcohol over ReOx-based catalysts, using formic acid (FA) as an in situ hydrogen donor. A series of 10 wt% Re catalysts supported on G200, g-C3N4, TiO2, and ZrO2 were synthesized and tested in a batch reactor at 20 bar and temperatures of 140–180 °C. Catalysts were characterized by XRD, BET, NH3-TPD, and XPS to correlate their physicochemical properties with catalytic behavior. Among the studied materials, ReOx/ZrO2 and ReOx/g-C3N4 exhibited the highest crotyl alcohol selectivity above 57% for all reaction temperatures, evaluated at crotonaldehyde conversion of 25%. The nature of the support strongly influenced the dispersion and oxidation state of Re species, as well as the surface acidity, which governed the activation of both the carbonyl group and the FA decomposition. Compared with molecular hydrogen, FA improved both conversion and selectivity due to its superior hydrogen-donating ability in the aqueous phase. These findings demonstrate that tailoring the acid–base characteristics of ReOx catalysts and employing biomass-derived hydrogen donors represent an effective strategy for selective hydrogenation of α,β-unsaturated aldehydes. Full article
Show Figures

Figure 1

15 pages, 2783 KB  
Article
Tunable Filtering via Lossy Mode Resonance in Integrated Photonics
by Edvins Letko
Photonics 2025, 12(11), 1086; https://doi.org/10.3390/photonics12111086 - 3 Nov 2025
Viewed by 456
Abstract
This study explores an integrated tunable filter based on lossy mode resonance (LMR) in TiOx thin films, modeled in COMSOL Multiphysics using the Wave Optics and Semiconductor modules. By exploiting the electro-optic (EO) modulation of free carrier concentration in TiOx, [...] Read more.
This study explores an integrated tunable filter based on lossy mode resonance (LMR) in TiOx thin films, modeled in COMSOL Multiphysics using the Wave Optics and Semiconductor modules. By exploiting the electro-optic (EO) modulation of free carrier concentration in TiOx, the LMR wavelength can be actively tuned under an applied electric field. The results demonstrate a tuning efficiency of 4.0 nm/V, which surpasses many reported EO tunable filters. Optimization studies reveal that thinner ITO electrodes and TiOx layers enhance tuning efficiency, while the initial bulk free carrier concentration has limited influence due to the compensating effect of the Debye length. These findings extend the applicability of LMR beyond sensing, highlighting its potential for active photonic components in integrated optics. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

18 pages, 5353 KB  
Communication
A Reconfigurable Memristor-Based Computing-in-Memory Circuit for Content-Addressable Memory in Sensor Systems
by Hao Hu, Yian Liu, Shuang Liu, Junjie Wang, Siyu Xiao, Shiqin Yan, Ruicheng Pan, Yang Wang, Xingyu Liao, Tianhao Mao, Yutong Chen, Xiangzhan Wang and Yang Liu
Sensors 2025, 25(20), 6464; https://doi.org/10.3390/s25206464 - 19 Oct 2025
Viewed by 1784
Abstract
To meet the demand for energy-efficient and high-performance computing in resource-limited sensor edge applications, this paper presents a reconfigurable memristor-based computing-in-memory circuit for Content-Addressable Memory (CAM). The scheme exploits the analog multi-level resistance characteristics of memristors to enable parallel multi-bit processing, overcoming the [...] Read more.
To meet the demand for energy-efficient and high-performance computing in resource-limited sensor edge applications, this paper presents a reconfigurable memristor-based computing-in-memory circuit for Content-Addressable Memory (CAM). The scheme exploits the analog multi-level resistance characteristics of memristors to enable parallel multi-bit processing, overcoming the constraints of traditional binary computing and significantly improving storage density and computational efficiency. Furthermore, by employing dynamic adjustment of the mapping between input signals and reference voltages, the circuit supports dynamic switching between exact and approximate CAM modes, substantially enhancing functional flexibility. Experimental results demonstrate that the 32 × 36 memristor array based on a TiN/TiOx/HfO2/TiN structure exhibits eight stable and distinguishable resistance states with excellent retention characteristics. In large-scale array simulations, the minimum voltage separation between state-representing waveforms exceeds 6.5 mV, ensuring reliable discrimination by the readout circuit. This work provides an efficient and scalable hardware solution for intelligent edge computing in next-generation sensor networks, particularly suitable for real-time biometric recognition, distributed sensor data fusion, and lightweight artificial intelligence inference, effectively reducing system dependence on cloud communication and overall power consumption. Full article
Show Figures

Figure 1

20 pages, 6936 KB  
Article
Mechanistic Insights into Cooling-Rate-Governed Acicular Ferrite Transformation Kinetics and Strengthening-Toughening Synergy in EH36 Heavy Steel Plate
by Chunliang Yan, Fengming Wang, Rongli Sang and Qingjun Zhang
Materials 2025, 18(20), 4661; https://doi.org/10.3390/ma18204661 - 10 Oct 2025
Viewed by 683
Abstract
This study was focused on addressing the performance degradation in core microstructures of ultra-heavy steel plates (thickness ≥ 50 mm) caused by non-uniform cooling during thermo-mechanical controlled processing. Using microalloyed DH36 steel as the research subject, we systematically investigated the effects of cooling [...] Read more.
This study was focused on addressing the performance degradation in core microstructures of ultra-heavy steel plates (thickness ≥ 50 mm) caused by non-uniform cooling during thermo-mechanical controlled processing. Using microalloyed DH36 steel as the research subject, we systematically investigated the effects of cooling rate on the nucleation and growth of acicular ferrite and its consequent microstructure-property relationships through an integrated approach combining in situ observation via high-temperature laser scanning confocal microscopy with multiscale characterization techniques. Results demonstrate that the cooling rate significantly affects acicular ferrite formation, with the range of 3–7 °C/s being most conducive to acicular ferrite formation. At 5 °C/s, the acicular ferrite volume fraction reached a maximum of 74% with an optimal aspect ratio (5.97). Characterization confirmed that TiOx-Al2O3·SiO2-MnO-MnS complex inclusions act as effective nucleation sites for acicular ferrite, where the MnS outer layer plays a key role in reducing interfacial energy and promoting acicular ferrite radial growth. Furthermore, the interlocking acicular ferrite structure was shown to enhance microhardness by 14% (HV0.1 = 212.5) compared to conventional ferrite through grain refinement strengthening and dislocation strengthening (with a dislocation density of 2 × 108 dislocations/mm2). These results provide crucial theoretical insights and a practical processing window for strengthening-toughening control of heavy plate core microstructures, offering a viable pathway for improving the comprehensive performance of ultra-heavy plates. Full article
(This article belongs to the Special Issue Physical Metallurgy of Metals and Alloys (4th Edition))
Show Figures

Figure 1

15 pages, 878 KB  
Article
The Effect of Native Strain-Based Biofertilizer with TiO2, ZnO, FexOx, and Ag NPs on Wheat Yield (Triticum durum Desf.)
by Andrés Torres-Gómez, Cesar R. Sarabia-Castillo, René Juárez-Altamirano and Fabián Fernández-Luqueño
Agriculture 2025, 15(19), 2093; https://doi.org/10.3390/agriculture15192093 - 8 Oct 2025
Viewed by 648
Abstract
This study evaluated the effects of applying a biofertilizer, alone and in combination with nanoparticles (NPs), under controlled greenhouse conditions to improve soil quality and wheat performance (soil from the region of General Cepeda, Coahuila, Mexico, was used). The integration of the biofertilizer [...] Read more.
This study evaluated the effects of applying a biofertilizer, alone and in combination with nanoparticles (NPs), under controlled greenhouse conditions to improve soil quality and wheat performance (soil from the region of General Cepeda, Coahuila, Mexico, was used). The integration of the biofertilizer with FexOx NPs proved particularly effective in enhancing soil physical and biological parameters as well as promoting superior crop growth compared with individual treatments. The incorporation of NPs markedly improved the biofertilizer’s biocompatibility and stability, reinforcing its potential for optimizing plant nutrition, nutrient use efficiency, and overall agricultural sustainability. In addition, the combined treatments enhanced the utilization of native microbial diversity, thereby contributing to increased soil fertility and the quality and yield of crops in the study region. The best yield obtained in previous harvests (8.3 Mg ha−1) was improved to 8.48 Mg ha−1 with application of the biofertilizer with FexOx NPs. Moreover, shoot length increased significantly with the combination of the biofertilizer and ZnO NPs as well as with FexOx NPs separately, whereas root length was maximized with the addition of the biofertilizer alone. These findings underscore the synergistic effects of combining biofertilizers with metal-based nanoparticles to sustainably enhance wheat growth and productivity. Full article
(This article belongs to the Special Issue Effects of Engineered Nanomaterials on Soil Health and Plant Growth)
Show Figures

Figure 1

14 pages, 17196 KB  
Article
Characterisation of Titanium-Oxide Thin Films for Efficient pH Sensing in Low-Power Electrochemical Systems
by Zsombor Szomor, Lilia Bató, Orsolya Hakkel, Csaba Dücső, Zsófia Baji, Attila Sulyok, Erzsébet Dodony, Katalin Balázsi, János M. Bozorádi, Zoltán Szabó and Péter Fürjes
Sensors 2025, 25(19), 6113; https://doi.org/10.3390/s25196113 - 3 Oct 2025
Viewed by 3213
Abstract
A compact electrochemical sensor module for pH detection was developed for potential integration into specialized devices used for live cell or tissue incubation, for applications in highly parallelized cell culture analysis, by incorporating Organ-on-Chip devices. This research focuses on the deposition, structural and [...] Read more.
A compact electrochemical sensor module for pH detection was developed for potential integration into specialized devices used for live cell or tissue incubation, for applications in highly parallelized cell culture analysis, by incorporating Organ-on-Chip devices. This research focuses on the deposition, structural and chemical analysis, and functional characterization of different titanium-oxide layers with various compositions as potentially sensitive materials for pH sensing applications. The titanium-oxide layers were deposited using vacuum sputtering and atomic layer deposition at 100 °C and 300 °C, respectively. Transmission electron microscopy and X-ray photoelectron spectroscopy were utilized to determine the specific composition and structure of different titanium-oxide layers. These TiOx-functionalized electrodes were connected to the application-specific analog front-end chip of the low-power readout circuit for precise evaluation. The pH sensitivity of the differently modified electrodes, employing various TiOx materials, was evaluated using pH calibration solutions ranging from pH 6 to 8. Among the various deposition solutions, such as sputtering or high-temperature atomic layer deposition, the TiOx layer deposited using low-temperature atomic layer deposition proved more suitable for pH sensing applications, with a sensitivity of 54.8–56.7 mV/pH, which closely approximates the Nernstian response. Full article
(This article belongs to the Special Issue Sensors from Miniaturization of Analytical Instruments (2nd Edition))
Show Figures

Figure 1

16 pages, 10602 KB  
Article
Effect of Ultra-Small Platinum Single-Atom Additives on Photocatalytic Activity of the CuOx-Dark TiO2 System in HER
by Elena D. Fakhrutdinova, Olesia A. Gorbina, Olga V. Vodyankina, Sergei A. Kulinich and Valery A. Svetlichnyi
Nanomaterials 2025, 15(17), 1378; https://doi.org/10.3390/nano15171378 - 6 Sep 2025
Cited by 1 | Viewed by 1065
Abstract
Improving the efficiency of photocatalysts for hydrogen production while minimizing the amount of noble metals used is a pressing issue in modern green energy. This study examines the effect of ultra-small Pt additives on increasing the efficiency of the CuOx-dark TiO [...] Read more.
Improving the efficiency of photocatalysts for hydrogen production while minimizing the amount of noble metals used is a pressing issue in modern green energy. This study examines the effect of ultra-small Pt additives on increasing the efficiency of the CuOx-dark TiO2 photocatalyst used in the hydrogen evolution reaction (HER). Initially, Pt was photoreduced from the hydroxonitrate complex (Me4N)2[Pt2(OH)2(NO3)8] onto the surface of nanodispersed CuOx powder obtained by pulsed laser ablation. Then, the obtained Pt-CuOx particles were dispersed on the surface of highly defective dark TiO2, so that the mass content of Pt in the samples varied in the range from 1.25 × 10−5 to 10−4. The prepared samples were examined using HRTEM, XRD, XPS, and UV-Vis DRS methods. It has been established that in the Pt-CuOx particles, platinum is mainly present in the form of single atoms (SAs), both as Pt2+ (predominantly) and Pt4+ species, which should facilitate electron transfer and contribute to the manifestation of the strong metal–support interaction (SMSI) effect between SA Ptn+ and CuOx. In turn, in the Pt-CuOx-dark TiO2 samples, surface defects (Ov) and surface OH groups on dark TiO2 particles act as “anchors”, promoting the spontaneous dispersion of CuOx in the form of sub-nanometer clusters with the reduction of Cu2+ to Cu1+ when localized near such Ov defects. During photocatalytic HER in aqueous glycerol solutions, irradiation was found to initiate a large number of catalytically active Pt0-CuOx-Ov-dark TiO2 centers, where the SMSI effect causes electron transfer from titania to SA Pt, thus promoting better separation of photogenerated charges. As a result, ultra-small additives of Pt led to up to a 1.34-fold increase in the amount of released hydrogen, while the maximum apparent quantum yield (AQY) reached 65%. Full article
Show Figures

Figure 1

11 pages, 4557 KB  
Article
Nanostructured Metal Oxide from Metallic Glass for Water Splitting: Effect of Hydrothermal Duration on Structure and Performance
by Hae Jin Park, Tae Kyung Kim, Jürgen Eckert, Sung Hwan Hong and Ki Buem Kim
Materials 2025, 18(17), 4082; https://doi.org/10.3390/ma18174082 - 31 Aug 2025
Viewed by 713
Abstract
This study investigates the optimal duration for forming a uniform oxide layer and evaluates its influence on water-splitting performance. We selected a Ti50Cu32Ni15Sn3 amorphous ribbon, which is known to simultaneously form anatase TiO2 and Sn [...] Read more.
This study investigates the optimal duration for forming a uniform oxide layer and evaluates its influence on water-splitting performance. We selected a Ti50Cu32Ni15Sn3 amorphous ribbon, which is known to simultaneously form anatase TiO2 and Sn oxide via a single hydrothermal process. Hydrothermal treatments were conducted at 220 °C in 150 mL of distilled water for durations of 3 and 6 h. The process successfully formed nanoscale metal oxides on the alloy surface, with the uniformity of the oxide layer increasing over time. The amorphous phase of the alloy was retained under all conditions. X-ray photoelectron spectroscopy (XPS) analysis confirmed the formation of TiO2 and SnOx, while Cu and Ni remained in their metallic state. Furthermore, we verified the coexistence of these oxides with metallic Ti and Sn. Photoelectrochemical analysis showed that the sample treated for 6 h exhibited the best water-splitting performance, which correlated directly with the most uniform oxide coverage. This time-controlled hydrothermal oxidation method, using only water, presents a promising and efficient approach for developing functional surfaces for electronic and photoelectrochemical applications of metallic glasses (MGs). Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

46 pages, 7349 KB  
Review
Convergence of Thermistor Materials and Focal Plane Arrays in Uncooled Microbolometers: Trends and Perspectives
by Bo Wang, Xuewei Zhao, Tianyu Dong, Ben Li, Fan Zhang, Jiale Su, Yuhui Ren, Xiangliang Duan, Hongxiao Lin, Yuanhao Miao and Henry H. Radamson
Nanomaterials 2025, 15(17), 1316; https://doi.org/10.3390/nano15171316 - 27 Aug 2025
Cited by 1 | Viewed by 2123
Abstract
Uncooled microbolometers play a pivotal role in infrared detection owing to their compactness, low power consumption, and cost-effectiveness. This review comprehensively summarizes recent progress in thermistor materials and focal plane arrays (FPAs), highlighting improvements in sensitivity and integration. Vanadium oxide (VOx) [...] Read more.
Uncooled microbolometers play a pivotal role in infrared detection owing to their compactness, low power consumption, and cost-effectiveness. This review comprehensively summarizes recent progress in thermistor materials and focal plane arrays (FPAs), highlighting improvements in sensitivity and integration. Vanadium oxide (VOx) remains predominant, with Al-doped films via atomic layer deposition (ALD) achieving a temperature coefficient of resistance (TCR) of −4.2%/K and significant 1/f noise reduction when combined with single-walled carbon nanotubes (SWCNTs). Silicon-based materials, such as phosphorus-doped hydrogenated amorphous silicon (α-Si:H), exhibit a TCR exceeding −5%/K, while titanium oxide (TiOx) attains TCR values up to −7.2%/K through ALD and annealing. Emerging materials including GeSn alloys and semiconducting SWCNT networks show promise, with SWCNTs achieving a TCR of −6.5%/K and noise equivalent power (NEP) as low as 1.2 mW/√Hz. Advances in FPA technology feature pixel pitches reduced to 6 μm enabled by vertical nanotube thermal isolation, alongside the 3D heterogeneous integration of single-crystalline Si-based materials with readout circuits, yielding improved fill factors and responsivity. State-of-the-art VOx-based FPAs demonstrate noise equivalent temperature differences (NETD) below 30 mK and specific detectivity (D*) near 2 × 1010 cm⋅Hz 1/2/W. Future advancements will leverage materials-driven innovation (e.g., GeSn/SWCNT composites) and process optimization (e.g., plasma-enhanced ALD) to enable ultra-high-resolution imaging in both civil and military applications. This review underscores the central role of material innovation and system optimization in propelling microbolometer technology toward ultra-high resolution, high sensitivity, high reliability, and broad applicability. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

13 pages, 2256 KB  
Article
The Influence of the Ar/N2 Ratio During Reactive Magnetron Sputtering of TiN Electrodes on the Resistive Switching Behavior of MIM Devices
by Piotr Jeżak, Aleksandra Seweryn, Marcin Klepka and Robert Mroczyński
Materials 2025, 18(17), 3940; https://doi.org/10.3390/ma18173940 - 22 Aug 2025
Viewed by 1000
Abstract
Resistive switching (RS) phenomena are nowadays one of the most studied topics in the area of microelectronics. It can be observed in Metal–Insulator–Metal (MIM) structures that are the basis of resistive switching random-access memories (RRAMs). In the case of commercial use of RRAMs, [...] Read more.
Resistive switching (RS) phenomena are nowadays one of the most studied topics in the area of microelectronics. It can be observed in Metal–Insulator–Metal (MIM) structures that are the basis of resistive switching random-access memories (RRAMs). In the case of commercial use of RRAMs, it is beneficial that the applied materials would have to be compatible with Complementary Metal-Oxide-Semiconductor (CMOS) technology. Fabricating methods of these materials can determine their stoichiometry and structural composition, which can have a detrimental impact on the electrical performance of manufactured devices. In this study, we present the influence of the Ar/N2 ratio during reactive magnetron sputtering of titanium nitride (TiN) electrodes on the resistive switching behavior of MIM devices. We used silicon oxide (SiOx) as a dielectric layer, which was characterized by the same properties in all fabricated MIM structures. The composition of TiN thin layers was controlled by tuning the Ar/N2 ratio during the deposition process. The fabricated conductive materials were characterized in terms of chemical and structural properties employing X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) analysis. Structural characterization revealed that increasing the Ar content during the reactive sputtering process affects the crystallite size of the deposited TiN layer. The resulting crystallite sizes ranged from 8 Å to 757.4 Å. The I-V measurements of fabricated devices revealed that tuning the Ar/N2 ratio during the deposition of TiN electrodes affects the RS behavior. Our work shows the importance of controlling the stoichiometry and structural parameters of electrodes on resistive switching phenomena. Full article
Show Figures

Graphical abstract

12 pages, 2303 KB  
Article
Fabrication of Low-Power Consumption Hydrogen Sensor Based on TiOx/Pt Nanocontacts via Local Atom Migration
by Yasuhisa Naitoh, Hisashi Shima and Hiroyuki Akinaga
Nanomaterials 2025, 15(15), 1154; https://doi.org/10.3390/nano15151154 - 25 Jul 2025
Viewed by 729
Abstract
Hydrogen (H2) gas sensors are essential for detecting leaks and ensuring safety, thereby supporting the broader adoption of hydrogen energy. The performance of H2 sensors has been shown to be improved by the incorporation of TiO2 nanostructures. The key [...] Read more.
Hydrogen (H2) gas sensors are essential for detecting leaks and ensuring safety, thereby supporting the broader adoption of hydrogen energy. The performance of H2 sensors has been shown to be improved by the incorporation of TiO2 nanostructures. The key findings are summarized as follows: (1) Resistive random-access memory (ReRAM) technology was used to fabricate extremely compact H2 sensors via various forming techniques, and substantial sensor performance enhancement was investigated. (2) A nanocontact composed of titanium oxide (TiOx)/platinum (Pt) was subjected to various forming operations to establish a Schottky junction with a nanogap structure on a tantalum oxide (Ta2O5) layer, and its properties were assessed. (3) When the Pt electrode was on the positive side during the forming operation used for ReRAM technology, a Pt nanopillar structure was produced. By contrast, when the forming operation was conducted with a positive bias on the TiOx side, a mixed oxide film of Ta and Ti was produced, which indicates local Ta doping into the TiOx. A sensor response of over 1000 times was achieved at a minimal voltage of 1 mV at room temperature. (4) This sensor fabrication technology based on the forming operation is promising for the development of low-power consumption sensors. Full article
Show Figures

Graphical abstract

14 pages, 2646 KB  
Article
Analog Resistive Switching Phenomena in Titanium Oxide Thin-Film Memristive Devices
by Karimul Islam, Rezwana Sultana and Robert Mroczyński
Materials 2025, 18(15), 3454; https://doi.org/10.3390/ma18153454 - 23 Jul 2025
Cited by 3 | Viewed by 1258
Abstract
Memristors with resistive switching capabilities are vital for information storage and brain-inspired computing, making them a key focus in current research. This study demonstrates non-volatile analog resistive switching behavior in Al/TiOx/TiN/Si(n++)/Al memristive devices. Analog resistive switching offers gradual, controllable [...] Read more.
Memristors with resistive switching capabilities are vital for information storage and brain-inspired computing, making them a key focus in current research. This study demonstrates non-volatile analog resistive switching behavior in Al/TiOx/TiN/Si(n++)/Al memristive devices. Analog resistive switching offers gradual, controllable conductance changes, which are essential for mimicking brain-like synaptic behavior, unlike digital/abrupt switching. The amorphous titanium oxide (TiOx) active layer was deposited using the pulsed-DC reactive magnetron sputtering technique. The impact of increasing the oxide thickness on the electrical performance of the memristors was investigated. Electrical characterizations revealed stable, forming-free analog resistive switching, achieving endurance beyond 300 DC cycles. The charge conduction mechanisms underlying the current–voltage (I–V) characteristics are analyzed in detail, revealing the presence of ohmic behavior, Schottky emission, and space-charge-limited conduction (SCLC). Experimental results indicate that increasing the TiOx film thickness from 31 to 44 nm leads to a notable change in the current conduction mechanism. The results confirm that the memristors have good stability (>1500 s) and are capable of exhibiting excellent long-term potentiation (LTP) and long-term depression (LTD) properties. The analog switching driven by oxygen vacancy-induced barrier modulation in the TiOx/TiN interface is explained in detail, supported by a proposed model. The remarkable switching characteristics exhibited by the TiOx-based memristive devices make them highly suitable for artificial synapse applications in neuromorphic computing systems. Full article
Show Figures

Figure 1

Back to TopTop