A Dual-Function TiO2@CoOx Photocatalytic Fuel Cell for Sustainable Energy Production and Recovery of Metallic Copper from Wastewater
Abstract
1. Introduction
2. Results
2.1. Morphological and Photoelectrochemical Properties of TiO2 Nanotube Array Photoanodes
2.2. Synthesis and Photoelectrochemical Characterization of TiO2@CoOx Photoanodes
2.3. Photocatalytic Fuel Cell Treatment of Cu(II)-Containing Wastewater and Recovery of Copper
3. Discussion
4. Materials and Methods
4.1. Preparation of TiO2 Nanotube Array Photoanodes
4.2. Preparation of TiO2@CoOx Photoanodes
4.3. Assembly of Photocatalytic Fuel Cells (PFCs)
4.4. Analytical Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| TNA | TiO2 nanotube array |
| PFCs | Photocatalytic Fuel Cells |
| OCP | open-circuit potential |
| COD | Chemical Oxygen Demand |
References
- Deng, S.; Zhang, X.; Zhu, Y.; Zhuo, R. Recent Advances in Phyto-Combined Remediation of Heavy Metal Pollution in Soil. Biotechnol. Adv. 2024, 72, 108337. [Google Scholar] [CrossRef]
- Guan, X.; Ru, X.; Qiu, G.; Li, Z.; Cheng, X.; Ke, X.; Chen, A.; Wei, C. Probing the National Development from Heavy Metals Contamination in River Sediments. J. Clean. Prod. 2023, 419, 138164. [Google Scholar] [CrossRef]
- Jia, J.; Gao, X.; Wu, Z.; Lei, L. 4D Freeze-Driven Purification of Heavy-Metal Contaminated Sandy Soil. J. Clean. Prod. 2025, 489, 144676. [Google Scholar] [CrossRef]
- Izydorczyk, G.; Mikula, K.; Skrzypczak, D.; Moustakas, K.; Witek-Krowiak, A.; Chojnacka, K. Potential Environmental Pollution from Copper Metallurgy and Methods of Management. Environ. Res. 2021, 197, 111050. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, Q.; Shi, Y.; Long, M. Copper Toxicity in Animals: A Review. Biol. Trace Elem. Res. 2024, 203, 2675–2686. [Google Scholar] [CrossRef]
- Ma, S.; Xing, P.; Li, H.; Wang, C.; Hou, X.; Cun, Z.; Liu, M.; Yan, R. Recovery of High-Grade Copper from Waste Polyester Imide Enameled Wires by Pyrolysis and Ultrasonic Treatment. Resour. Conserv. Recycl. 2023, 196, 107034. [Google Scholar] [CrossRef]
- Sun, J.; Xie, Z.; Jiang, T.; Shen, P.; Liu, D. Experimental and Mechanistic Study on the Recovery of Copper, Iron, Zinc and Cobalt from Copper Slag by Low-Temperature Roasting with Sulfuric Acid-Ammonium Persulfate Combined with Water-Leaching. Chem. Eng. J. 2025, 521, 166710. [Google Scholar] [CrossRef]
- Nag, A.; Singh, M.K.; Morrison, C.A.; Love, J.B. Efficient Recycling of Gold and Copper from Electronic Waste by Selective Precipitation. Angew. Chem. Int. Ed. 2023, 62, e202308356. [Google Scholar] [CrossRef]
- Yousefzadeh, S.; Yaghmaeian, K.; Mahvi, A.H.; Nasseri, S.; Alavi, N.; Nabizadeh, R. Comparative Analysis of Hydrometallurgical Methods for the Recovery of Cu from Circuit Boards: Optimization Using Response Surface and Selection of the Best Technique by Two-Step Fuzzy AHP-TOPSIS Method. J. Clean. Prod. 2020, 249, 119401. [Google Scholar] [CrossRef]
- He, Y.; Chen, K.; Leung, M.K.H.; Zhang, Y.; Li, L.; Li, G.; Xuan, J.; Li, J. Photocatalytic Fuel Cell—A Review. Chem. Eng. J. 2022, 428, 131074. [Google Scholar] [CrossRef]
- Zhang, J.; Zheng, J.; Yang, W. Green Supercapacitor Assisted Photocatalytic Fuel Cell System for Sustainable Hydrogen Production. Chem. Eng. J. 2021, 403, 126368. [Google Scholar] [CrossRef]
- Liu, X.-H.; He, Y.; Li, Z.; Cheng, A.-H.; Song, Z.; Yu, Z.-X.; Chai, S.; Cheng, C.; He, C. Size Transformation of Au Nanoclusters for Enhanced Photocatalytic Hydrogen Generation: Interaction Behavior at Nanocluster/Semiconductor Interface. J. Colloid Interface Sci. 2023, 651, 368–375. [Google Scholar] [CrossRef]
- Hu, Q.; Chen, S.; Wågberg, T.; Zhou, H.; Li, S.; Li, Y.; Tan, Y.; Hu, W.; Ding, Y.; Han, X. Developing Insoluble Polyoxometalate Clusters to Bridge Homogeneous and Heterogeneous Water Oxidation Photocatalysis. Angew. Chem. Int. Ed. 2023, 62, e202303290. [Google Scholar] [CrossRef]
- Yan, X.; Fu, X.; Xiao, F. Filling the Gap: Atomically Precise Metal Nanoclusters-induced Z-scheme Photosystem toward Robust and Stable Solar Hydrogen Generation. Adv. Funct. Mater. 2023, 33, 2303737. [Google Scholar] [CrossRef]
- Kamat, P.V.; Sivula, K. Celebrating 50 Years of Photocatalytic Hydrogen Generation. ACS Energy Lett. 2022, 7, 3149–3150. [Google Scholar] [CrossRef]
- Li, R.; Luan, J.; Zhang, Y.; Jiang, L.; Yan, H.; Chi, Q.; Yan, Z. A Review of Efficient Photocatalytic Water Splitting for Hydrogen Production. Renew. Sustain. Energy Rev. 2024, 206, 114863. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.-H.; Wang, Q.; Quick, M.; Kovalenko, S.A.; Chen, Q.-Y.; Koch, N.; Pinna, N. Insights into Charge Transfer at an Atomically Precise Nanocluster/Semiconductor Interface. Angew. Chem. Int. Ed. 2020, 59, 7748–7754. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.-H.; Kovalenko, S.A.; Chen, Q.-Y.; Pinna, N. Atomically Precise Bimetallic Nanoclusters as Photosensitizers in Photoelectrochemical Cells. Chem. Eur. J. 2019, 25, 4814–4820. [Google Scholar] [CrossRef]
- Li, B.; Zheng, H.; Zhou, T.; Lu, Q.; Chen, M.; Sun, H.; Zhang, Y.; Zhang, Y.; Li, D.; Zi, B.; et al. Asymmetric Coordination Enhances the Synergy of Pt Species Dual Active Sites for Efficient Photocatalytic H2 Evolution. Nat. Commun. 2025, 16, 8276. [Google Scholar] [CrossRef]
- Singh, S.; Parveen, S.; Clarizia, L.; Kumar, P. An Insight into Photo-Catalytic Degradation Mechanism of Persistent Pollutants with Transition Metal Oxides and Their Composites: Photocatalysis Mechanism, Rate Affecting Parameters, and Removal Pathways. Catal. Rev. Sci. Eng. 2025, 1–49. [Google Scholar] [CrossRef]
- Rahman, M.Z.; Raziq, F.; Zhang, H.; Gascon, J. Key Strategies for Enhancing H2 Production in Transition Metal Oxide Based Photocatalysts. Angew. Chem. Int. Ed. 2023, 62, e202305385. [Google Scholar] [CrossRef]
- Sachs, M.; Harnett-Caulfield, L.; Pastor, E.; Davies, B.; Sowood, D.J.C.; Moss, B.; Kafizas, A.; Nelson, J.; Walsh, A.; Durrant, J.R. Metal-Centred States Control Carrier Lifetimes in Transition Metal Oxide Photocatalysts. Nat. Chem. 2025, 17, 1348–1355. [Google Scholar] [CrossRef]
- Simanaitienė, A.; Barauskienė, I.; Varnagiris, Š.; Urbonavičius, M.; Šulčiūtė, A. Mixed Zinc–Cobalt Oxide Coatings for Photocatalytic Applications. Appl. Phys. A 2020, 126, 695. [Google Scholar] [CrossRef]
- Li, H.; Xia, M.; Chong, B.; Xiao, H.; Zhang, B.; Lin, B.; Yang, B.; Yang, G. Boosting Photocatalytic Nitrogen Fixation via Constructing Low-Oxidation-State Active Sites in the Nanoconfined Spinel Iron Cobalt Oxide. ACS Catal. 2022, 12, 10361–10372. [Google Scholar] [CrossRef]
- Hou, J.; Wang, K.; Zhang, X.; Wang, Y.; Su, H.; Yang, C.; Zhou, X.; Liu, W.; Hu, H.; Wang, J.; et al. Synergistic Defect Sites and CoOx Nanoclusters in Polymeric Carbon Nitride for Enhanced Photocatalytic H2O2 Production. ACS Catal. 2024, 14, 10893–10903. [Google Scholar] [CrossRef]
- Raja, A.; Kang, M.; Im, Y.; Bahajjaj, A.A.A. Effective Photocatalytic Hydrogen Generation and Degradation for Single Cobalt and Tungsten Metal Atom Oxide Anchored on Titanium Dioxide-Bismuth Molybdate-Reduced Graphene Oxide. J. Clean. Prod. 2024, 480, 144114. [Google Scholar] [CrossRef]
- Wang, M.; Wang, J.-Q.; Xi, C.; Cheng, C.-Q.; Zou, C.-Q.; Zhang, R.; Xie, Y.-M.; Guo, Z.-L.; Tang, C.-C.; Dong, C.-K.; et al. A Hydrogen-Deficient Nickel-Cobalt Double Hydroxide for Photocatalytic Overall Water Splitting. Angew. Chem. Int. Ed. 2020, 59, 11510–11515. [Google Scholar] [CrossRef]
- Santos, J.S.; Sikora, M.S.; Trivinho-Strixino, F.; Praserthdam, S.; Praserthdam, P. A Comprehensive Review of Anodic TiO2 Films as Heterogeneous Catalysts for Photocatalytic and Photoelectrocatalytic Water Disinfection. J. Water Process Eng. 2025, 69, 106589. [Google Scholar] [CrossRef]
- Santos, J.S.; Fereidooni, M.; Márquez, V.; Paz-López, C.V.; Villanueva, M.S.; Buijnsters, J.G.; Praserthdam, S.; Praserthdam, P. Photoactivity of Amorphous and Crystalline TiO2 Nanotube Arrays (TNA) Films in Gas Phase CO2 Reduction to Methane with Simultaneous H2 Production. Environ. Res. 2024, 244, 117919. [Google Scholar] [CrossRef]
- Hsu, M.-Y.; Hsu, H.-L.; Leu, J. TiO2 Nanowires on Anodic TiO2 Nanotube Arrays (TNWs/TNAs): Formation Mechanism and Photocatalytic Performance. J. Electrochem. Soc. 2012, 159, H722–H727. [Google Scholar] [CrossRef]
- Lu, D.; Zhang, M.; Zhang, Z.; Li, Q.; Wang, X.; Yang, J. Self-Organized Vanadium and Nitrogen Co-Doped Titania Nanotube Arrays with Enhanced Photocatalytic Reduction of CO2 into CH4. Nanoscale Res. Lett. 2014, 9, 272. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, Z.; Huo, W.; Zhu, K.; Zhang, X.; Zhou, X.; Fang, F.; Xie, Z.; Jiang, J. Preferentially Oriented Ag-TiO2 Nanotube Array Film: An Efficient Visible-Light-Driven Photocatalyst. J. Hazard. Mater. 2020, 399, 123016. [Google Scholar] [CrossRef]
- Santos, J.S.; Tarek, M.; Sikora, M.S.; Praserthdam, S.; Praserthdam, P. Anodized TiO2 Nanotubes Arrays as Microbial Fuel Cell (MFC) Electrodes for Wastewater Treatment: An Overview. J. Power Sources 2023, 564, 232872. [Google Scholar] [CrossRef]
- Hariprasath, K.R.; Matheswaran, P.; Parasuraman, B.; Murugesan, P.; Govindasamy, M.; Thangavelu, P. Dual-Functional Hybrid Layered Double Hydroxide-Based Material for Enhanced Energy Storage and Photocatalytic Activity. J. Power Sources 2025, 655, 237885. [Google Scholar] [CrossRef]
- Lin, Y.-X.; Tsai, D.-S.; Chen, Z.-Y.; Lee, C.-P. Enhanced Performance of Photocatalytic CO2 Reduction Using Cu@graphene Nanoparticle-decorated Co3O4 Nanoneedles. ChemElectroChem 2025, 12, e202400689. [Google Scholar] [CrossRef]
- Bae, H.S.; Patil, R.P.; Hwang, J.H.; Mahadik, M.A.; Song, M.S.; Chae, W.-S.; Manikandan, V.; Jang, J.S. Visible-Light-Responsive Hydrogen-Reduced CoOx Loaded Rh/Sb:SrTiO3 Nanocubic Photocatalyst for Degradation of Organic Pollutants and Inactivation of Bacteria. J. Environ. Chem. Eng. 2023, 11, 109837. [Google Scholar] [CrossRef]
- da Silva, M.T.P.; Villarroel-Rocha, J.; Toncón-Leal, C.F.; Barbosa, F.F.; Miranda, M.O.; Torres, M.A.M.; Sapag, K.; Pergher, S.B.C.; Braga, T.P. Textural and Photocatalytic Characteristics of Iron-Cobalt Based Nanocomposites Supported on SBA-15: Synergistic Effect between Fe2+ and Fe0 on Photoactivity. Microporous Mesoporous Mater. 2021, 310, 110582. [Google Scholar] [CrossRef]
- Dippold, V.; Küçükkeçeci, H.; Bosler, E.; Schmidt, J.; Ghosh, S.; Michl, G.; Khalil, I.E.; Gerland, L.; Lange, A.; Oberschmidt, D.; et al. Carbazole-Based Thin Microporous Polymer Films for Photocatalytic Hydrogen Evolution. Adv. Mater. 2025, 37, e2506689. [Google Scholar] [CrossRef]
- Han, Z.; Zhong, D.; Xu, Y.; Chang, H.; Dong, L.; Liu, Y. Photocatalytic Fuel Cell with N-CQDs Electron Warehouses Mediated ZnIn2S4/Tubular g-C3N4/Ti 2D/0D/2D Photoanode for Efficient Organic Pollutant Degradation and Electricity Generation. Appl. Energy 2025, 387, 125617. [Google Scholar] [CrossRef]
- Liu, X.-H.; Xing, Z.-H.; Chen, Q.-Y.; Wang, Y.-H. Multi-Functional Photocatalytic Fuel Cell for Simultaneous Removal of Organic Pollutant and Chromium (VI) Accompanied with Electricity Production. Chemosphere 2019, 237, 124457. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, J.; Ji, B.; Li, X.; Cai, W.; Wang, X.; Qian, L.; Wang, X.; Wang, C. Photocatalytic Fuel Cell System Based on a Dual Z-Scheme Heterojunction Strategy: Synergistic Performance and Mechanism. J. Clean. Prod. 2025, 520, 146155. [Google Scholar] [CrossRef]
- Wei, L.-W.; Liu, S.-H.; Nguyen, V.-C.; Zheng, M.-W.; Wang, H.P. Visible-Light Driven O2-to-H2O2 Synchronized Activation of Peroxymonosulfate in Z-Scheme Photocatalytic Fuel Cell for Wastewater Purification with Power Generation. Appl. Catal. B Environ. Energy 2025, 361, 124594. [Google Scholar] [CrossRef]
- Du, Y.; Zhao, X.; Wang, Y.; Wang, G.; Xu, X.; Du, Y.; Du, D. Fe Synergistic Redox Cu(II)-as(V)-H2SO3 in Copper Smelting Dirty Acid Wastewater: Kinetic-Thermodynamic Mechanism and Technical Feasibility. J. Clean. Prod. 2025, 532, 146992. [Google Scholar] [CrossRef]
- Ma, X.; Du, H.; Tan, M.; Qian, J.; Deng, M.; Hao, D.; Wang, Q.; Zhu, H. Photocatalytic Fuel Cell with Cathodic P-BiVO4/CQDs and Anodic WO3 for Efficient Cr(VI) Reduction and Stable Electricity Generation. Sep. Purif. Technol. 2024, 339, 126644. [Google Scholar] [CrossRef]
- Gao, J.; Wang, S.; Cai, H.; Chen, S.; Zheng, L.; Li, Y.; He, G. Portable Photocatalytic Fuel Cell with Anatase/Rutile TiO2 Heterophase Junction for Solar Energy Harvesting and Pollutant Degradation. Int. J. Hydrogen Energy 2025, 97, 259–269. [Google Scholar] [CrossRef]








Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.-H.; Yuan, R.; Li, N.; Wang, S.; Zhang, X.; Ma, Y.; Fan, C.; Du, P. A Dual-Function TiO2@CoOx Photocatalytic Fuel Cell for Sustainable Energy Production and Recovery of Metallic Copper from Wastewater. Inorganics 2025, 13, 404. https://doi.org/10.3390/inorganics13120404
Liu X-H, Yuan R, Li N, Wang S, Zhang X, Ma Y, Fan C, Du P. A Dual-Function TiO2@CoOx Photocatalytic Fuel Cell for Sustainable Energy Production and Recovery of Metallic Copper from Wastewater. Inorganics. 2025; 13(12):404. https://doi.org/10.3390/inorganics13120404
Chicago/Turabian StyleLiu, Xiao-He, Rui Yuan, Nan Li, Shaohui Wang, Xiaoyuan Zhang, Yunteng Ma, Chaoqun Fan, and Peipei Du. 2025. "A Dual-Function TiO2@CoOx Photocatalytic Fuel Cell for Sustainable Energy Production and Recovery of Metallic Copper from Wastewater" Inorganics 13, no. 12: 404. https://doi.org/10.3390/inorganics13120404
APA StyleLiu, X.-H., Yuan, R., Li, N., Wang, S., Zhang, X., Ma, Y., Fan, C., & Du, P. (2025). A Dual-Function TiO2@CoOx Photocatalytic Fuel Cell for Sustainable Energy Production and Recovery of Metallic Copper from Wastewater. Inorganics, 13(12), 404. https://doi.org/10.3390/inorganics13120404

