materials-logo

Journal Browser

Journal Browser

Physical Metallurgy of Metals and Alloys (4th Edition)

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Metals and Alloys".

Deadline for manuscript submissions: 20 March 2026 | Viewed by 720

Special Issue Editors

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Interests: bulk metallic glasses; high-entropy alloys; titanium alloys; metallic composites; precision metal plastic forming; powder metallurgy; incremental sheet forming
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
State Key Laboratory of Advanced Design and Manufacture for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
Interests: superalloys; metal cutting; composites; additive manufacturing; laser processing/cutting
Special Issues, Collections and Topics in MDPI journals
Key Laboratory for New Type of Functional Materials of Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300400, China
Interests: solidification behavior of light alloys; bulk metallic glass composites; strengthening and toughening of metals and their fatigue behavior; functional metal materials for water treatment
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
School of Mechanical Engineering and Electronic Information, China University of Geosciences, Wuhan 430074, China
Interests: microforming; ultrasonic forming; ultrasonic machining; additive manufacturing
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Physical metallurgy is important in the design and optimization via microstructural modifications and processing techniques of advanced materials with superior physical and mechanical properties over their service lives. The goal of this Special Issue on the physical metallurgy of metals and alloys is to bring together information on the recent progress, novel technologies, and advanced equipment described in our works on the design and development of advanced metals and alloys and to provide guidelines/benchmarks for further research in related areas. Composites, intermetallics, and nano materials as well as functional materials will also be included.

Examples of some of the recent advances relating to the design, properties, and processing of advanced metals and alloys include novel material processing techniques, manufacturing methods/theories, microstructural characterization, modeling development, and advanced equipment. Conventional and nonconventional processes relating to machining, forming, laser processing, additive/subtractive manufacturing, surface modification, and the solidification of high-performance alloys/metals are also included. 

Topics of papers that will be considered for publication in this Special Issue of Materials can include all the above classes of materials and the areas of physical metallurgy, process metallurgy, materials science, and processing techniques. Specific areas of interest also include titanium-/nickel-based superalloys, intermetallics, advanced metallic materials, nano materials, metal matrix composites, functional materials, related synthesis and processing techniques, finite element modeling, statistical analysis, physical/mechanical property characterization, experimental validation, and other relevant phenomena. Full papers, short communications, and reviews are all welcome.

Dr. Pan Gong
Prof. Dr. Maojun Li
Dr. Xin Wang
Prof. Dr. Guangchao Han
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • advanced metallic alloys
  • combinatorial alloy design
  • additive manufacturing and powder metallurgy
  • energy field-assisted machining and plastic-forming technologies
  • solidification and casting
  • high-energy beam welding
  • heat treatment and surface treatment
  • microstructure-property characterization
  • simulation and modeling
  • strengthening and toughening technologies

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issues

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 6936 KB  
Article
Mechanistic Insights into Cooling-Rate-Governed Acicular Ferrite Transformation Kinetics and Strengthening-Toughening Synergy in EH36 Heavy Steel Plate
by Chunliang Yan, Fengming Wang, Rongli Sang and Qingjun Zhang
Materials 2025, 18(20), 4661; https://doi.org/10.3390/ma18204661 - 10 Oct 2025
Viewed by 548
Abstract
This study was focused on addressing the performance degradation in core microstructures of ultra-heavy steel plates (thickness ≥ 50 mm) caused by non-uniform cooling during thermo-mechanical controlled processing. Using microalloyed DH36 steel as the research subject, we systematically investigated the effects of cooling [...] Read more.
This study was focused on addressing the performance degradation in core microstructures of ultra-heavy steel plates (thickness ≥ 50 mm) caused by non-uniform cooling during thermo-mechanical controlled processing. Using microalloyed DH36 steel as the research subject, we systematically investigated the effects of cooling rate on the nucleation and growth of acicular ferrite and its consequent microstructure-property relationships through an integrated approach combining in situ observation via high-temperature laser scanning confocal microscopy with multiscale characterization techniques. Results demonstrate that the cooling rate significantly affects acicular ferrite formation, with the range of 3–7 °C/s being most conducive to acicular ferrite formation. At 5 °C/s, the acicular ferrite volume fraction reached a maximum of 74% with an optimal aspect ratio (5.97). Characterization confirmed that TiOx-Al2O3·SiO2-MnO-MnS complex inclusions act as effective nucleation sites for acicular ferrite, where the MnS outer layer plays a key role in reducing interfacial energy and promoting acicular ferrite radial growth. Furthermore, the interlocking acicular ferrite structure was shown to enhance microhardness by 14% (HV0.1 = 212.5) compared to conventional ferrite through grain refinement strengthening and dislocation strengthening (with a dislocation density of 2 × 108 dislocations/mm2). These results provide crucial theoretical insights and a practical processing window for strengthening-toughening control of heavy plate core microstructures, offering a viable pathway for improving the comprehensive performance of ultra-heavy plates. Full article
(This article belongs to the Special Issue Physical Metallurgy of Metals and Alloys (4th Edition))
Show Figures

Figure 1

Back to TopTop