Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (390)

Search Parameters:
Keywords = TMZ

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4529 KiB  
Article
Inhibition of FOXM1 Leads to Suppression of Cell Proliferation, Migration, and Invasion Through AXL/eEF2 Kinase Signaling and Induces Apoptosis and Ferroptosis in GBM Cells
by Ezgi Biltekin, Nermin Kahraman, Ogun Ali Gul, Yasemin M. Akay, Metin Akay and Bulent Ozpolat
Int. J. Mol. Sci. 2025, 26(14), 6792; https://doi.org/10.3390/ijms26146792 - 15 Jul 2025
Viewed by 401
Abstract
Glioblastoma multiforme (GBM) is an aggressive and molecularly heterogeneous brain cancer with a poor prognosis. Despite advancements in standard-of-care therapies, including surgery, radiotherapy, and temozolomide (TMZ), the median survival remains approximately 15 months, with a 5-year survival rate of less than 10%. We [...] Read more.
Glioblastoma multiforme (GBM) is an aggressive and molecularly heterogeneous brain cancer with a poor prognosis. Despite advancements in standard-of-care therapies, including surgery, radiotherapy, and temozolomide (TMZ), the median survival remains approximately 15 months, with a 5-year survival rate of less than 10%. We and others have demonstrated that FOXM1 is a critical oncogenic driver of GBM cell proliferation. However, the role of FOXM1 and its interaction with other oncogenic signaling pathways in GBM remains incompletely understood. In this study, we identified FOXM1, AXL, and eEF2K as highly upregulated oncogenes in GBM patient tumors. We demonstrated, for the first time, that FOXM1 directly interacts with AXL and eEF2K, regulating their expression and promoting GBM cell proliferation, migration, and invasion. Knockdown of these genes disrupted cell proliferation, spheroid formation, migration, and invasion, and induced apoptosis and ferroptosis. Additionally, inhibiting the FOXM1–AXL/eEF2K signaling axis sensitized GBM cells to TMZ, further enhancing apoptotic and ferroptotic responses. These findings highlight the critical role of the FOXM1–AXL/eEF2K signaling pathway in GBM progression and suggest that targeting this axis may offer a novel multitargeted therapeutic strategy in GBM. Full article
Show Figures

Figure 1

28 pages, 3811 KiB  
Article
In Vivo and In Vitro Experimental Study Comparing the Effect of a Combination of Sodium Dichloroacetate and Valproic Acid with That of Temozolomide on Adult Glioblastoma
by Rūta Skredėnienė, Donatas Stakišaitis, Angelija Valančiūtė and Ingrida Balnytė
Int. J. Mol. Sci. 2025, 26(14), 6784; https://doi.org/10.3390/ijms26146784 - 15 Jul 2025
Viewed by 283
Abstract
To date, there is no effective treatment for glioblastoma (GBM). This study aimed to compare the effectiveness of sodium dichloroacetate (NaDCA), a valproic acid and NaDCA combination (VPA–NaDCA), or temozolomide (TMZ) on U87 and T98G cell tumors on the chick embryo chorioallantoic membrane [...] Read more.
To date, there is no effective treatment for glioblastoma (GBM). This study aimed to compare the effectiveness of sodium dichloroacetate (NaDCA), a valproic acid and NaDCA combination (VPA–NaDCA), or temozolomide (TMZ) on U87 and T98G cell tumors on the chick embryo chorioallantoic membrane (CAM), and on the expression of proliferating cell nuclear antigen (PCNA), polycomb inhibitory complex catalytic subunit 2 (EZH2), and TP53 gene-encoded p53 protein (p53) in tumors on the CAM, and SLC12A2 (gene encoding Na+-K+-2Cl (NKCC1) co-tarnsporter), SLC12A5 (gene encoding K+-Cl (KCC2) co-transporter), SLC5A8 (gene encoding Na+-dependent monocarboxylate transporter) and CDH1 (gene encoding the E-cadherin protein) and CDH2 (gene encoding the N-cadherin protein) in cells. VPA–NaDCA and TMZ reduced the invasion of U87 and T98G tumors, as well as the expression of PCNA and EZH2 in the tumor. TMZ reduced p53 expression in tumors from both cell lines, whereas VPA–NaDCA did not affect the expression of this marker. VPA–NaDCA, but not TMZ, reduced SLC12A2 expression in T98G cells. However, VPA–NaDCA and TMZ did not affect SLC12A2 expression in U87 cells. VPA–NaDCA increased SLC5A8 expression only in U87 cells, and TMZ did not affect gene expression in either cell line. Only VPA–NaDCA increased CDH1 expression and decreased CDH2 expression in T98G cells, whereas TMZ had no effect on gene expression in the study cells. This study demonstrated that VPA–NaDCA exhibits a more effective anticancer effect than NaDCA. The data suggest that VPA–NaDCA has a more effective impact than TMZ; however, the effect of investigational medicines on carcinogenesis varies depending on the cell line. The study of the efficacy of drugs used to treat tumors on the CAM and cells demonstrates that it is essential to assess the effectiveness of treatment, which should be personalized, before administering chemotherapy. Full article
Show Figures

Figure 1

15 pages, 3800 KiB  
Article
A Novel Temozolomide-Myricetin Drug-Drug Cocrystal: Preparation, Characterization, Property Evaluations
by Hai-Xin Qin, Jie Wang, Jia-Hui Peng, Xia-Lin Dai, Cai-Wen Li, Tong-Bu Lu and Jia-Mei Chen
Pharmaceutics 2025, 17(7), 906; https://doi.org/10.3390/pharmaceutics17070906 - 13 Jul 2025
Viewed by 415
Abstract
Objectives: Drug-drug cocrystals with improved properties can be used to facilitate the development of synergistic therapeutic combinations. The goal of the present study is to obtain novel drug-drug cocrystals involving two anti-glioma agents, temozolomide (TMZ) and myricetin (MYR). Methods: The novel [...] Read more.
Objectives: Drug-drug cocrystals with improved properties can be used to facilitate the development of synergistic therapeutic combinations. The goal of the present study is to obtain novel drug-drug cocrystals involving two anti-glioma agents, temozolomide (TMZ) and myricetin (MYR). Methods: The novel TMZ-MYR cocrystal was prepared via slurry and solvent evaporation techniques and characterized by X-ray diffraction, thermal analysis, infrared spectroscopy, and dynamic vapor sorption measurements. The stability, compaction, and dissolution properties were also evaluated. Results: Crystal structure analysis revealed that the cocrystal lattice contains two TMZ molecules, one MYR molecule, and four water molecules, which are linked by hydrogen bonding interactions to produce a three-dimensional network. The cocrystal hydrate exhibited favorable stability and tabletability compared to pure TMZ. A dissolution study showed that the maximum solubility of MYR in the cocrystal (176.4 μg/mL) was approximately 6.6 times higher than that of pure MYR·H2O (26.9 μg/mL), while the solubility of TMZ from the cocrystal (786.7 µg/mL) was remarkably lower than that of pure TMZ (7519.8 µg/mL). The solubility difference between MYR and TMZ was diminished from ~280-fold to ~4.5-fold. Conclusions: Overall, the TMZ-MYR cocrystal optimizes the stability and tabletability of TMZ and the dissolution behavior of both drugs, offering a promising approach for synergistic anti-glioma therapy with improved clinical potential. Full article
Show Figures

Graphical abstract

28 pages, 3171 KiB  
Article
Valproic Acid Reduces Invasiveness and Cellular Growth in 2D and 3D Glioblastoma Cell Lines
by Francesca Giordano, Martina Forestiero, Adele Elisabetta Leonetti, Giuseppina Daniela Naimo, Alessandro Marrone, Francesca De Amicis, Stefania Marsico, Loredana Mauro and Maria Luisa Panno
Int. J. Mol. Sci. 2025, 26(14), 6600; https://doi.org/10.3390/ijms26146600 - 9 Jul 2025
Viewed by 378
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor, with a poor prognosis and low survival. Its treatment includes complete surgical resection followed by radiotherapy combined with temozolomide (TMZ). GBM contains glial stem cells (GSCs), which contribute to tumor progression, invasiveness, and drug [...] Read more.
Glioblastoma (GBM) is the most common malignant brain tumor, with a poor prognosis and low survival. Its treatment includes complete surgical resection followed by radiotherapy combined with temozolomide (TMZ). GBM contains glial stem cells (GSCs), which contribute to tumor progression, invasiveness, and drug resistance. The histone deacetylase (HDAC) inhibitor valproic acid (VA) has been shown to be a potent antitumor and cytostatic agent. In this study, we tested the effects of VA on glioma cell proliferation, migration, and apoptosis using T98G monolayer and spheroid cells. T98G and U-87MG glioblastoma cell viability was determined by MTT. Cell cycle and ROS levels were analyzed by flow cytometry, and gene and protein levels were detected, respectively, by RT-PCR and immunoblotting. VA reduces cell viability in 2D and 3D T98G and U-87MG cells and blocks the cell cycle at the G0/G1 with decreased levels of cyclin D1. VA addresses apoptosis and ROS production. In addition, VA significantly decreases the mRNA levels of the mesenchymal markers, and it counteracts cell migration, also decreasing MMP2. The results confirm the inhibitory effect of VA on the growth of the T98G and U-87MG cell lines and its ability to counteract migration in both 2D and 3D cellular models. Full article
Show Figures

Figure 1

12 pages, 794 KiB  
Article
Biomolecular Predictors of Recurrence Patterns and Survival in IDH-Wild-Type Glioblastoma: A Retrospective Analysis of Patients Treated with Radiotherapy and Temozolomide
by Paolo Tini, Flavio Donnini, Francesco Marampon, Marta Vannini, Tommaso Carfagno, Pierpaolo Pastina, Giovanni Rubino, Salvatore Chibbaro, Alfonso Cerase, Giulio Bagnacci, Armando Perrella, Maria Antonietta Mazzei, Alessandra Pascucci, Vincenzo D’Alonzo, Anna Maria Di Giacomo and Giuseppe Minniti
Brain Sci. 2025, 15(7), 713; https://doi.org/10.3390/brainsci15070713 - 2 Jul 2025
Viewed by 394
Abstract
Background and Aim: Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with poor prognosis despite maximal surgical resection, radiotherapy (RT), and temozolomide (TMZ) per the Stupp protocol. IDH-wild-type GBM, the predominant molecular subtype, frequently harbors EGFR amplification and is resistant [...] Read more.
Background and Aim: Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, with poor prognosis despite maximal surgical resection, radiotherapy (RT), and temozolomide (TMZ) per the Stupp protocol. IDH-wild-type GBM, the predominant molecular subtype, frequently harbors EGFR amplification and is resistant to therapy, while MGMT promoter methylation predicts improved TMZ response. This study aimed to assess the prognostic impact of EGFR and MGMT status on survival and recurrence patterns in IDH-wild-type GBM. Materials and Methods: We retrospectively analyzed 218 patients with IDH-wild-type GBM treated at the Azienda Ospedaliero-Universitaria Senese (2016–2024). All patients underwent maximal safe surgical resection whenever feasible. The cohort includes patients who received gross total resection (GTR), subtotal resection (STR), or biopsy only, depending on tumor location and clinical condition, followed by intensity-modulated RT (59.4–60 Gy) with concurrent and adjuvant TMZ. EGFR amplification was assessed via FISH/NGS and immunohistochemistry; MGMT promoter methylation was determined using methylation-specific PCR. Progression-free survival (PFS), overall survival (OS), and recurrence patterns (in-field, marginal, out-field) were evaluated using Kaplan–Meier, Cox regression, and logistic regression analyses. Results: Among patients (64.7% male; mean age 61.8), 58.7% had EGFR amplification and 49.1% showed MGMT methylation. Median OS and PFS were 14 and 8 months, respectively. EGFR non-amplified/MGMT methylated tumors had the best outcomes (OS: 22.0 months, PFS: 10.5 months), while EGFR-amplified/MGMT unmethylated tumors fared worst (OS: 10.0 months, PFS: 5.0 months; p < 0.001). MGMT methylation was an independent positive prognostic factor (HR: 0.48, p < 0.001), while EGFR amplification predicted worse survival (HR: 1.57, p = 0.02) and higher marginal recurrence (OR: 2.42, p = 0.01). Conclusions: EGFR amplification and MGMT methylation significantly influence survival and recurrence dynamics in IDH-wild-type GBM. Incorporating these biomarkers into treatment planning may enable tailored therapeutic strategies, potentially improving outcomes in this challenging disease. Prospective studies are needed to validate biomolecularly guided management approaches. Full article
(This article belongs to the Special Issue Brain Tumors: From Molecular Basis to Therapy)
Show Figures

Figure 1

20 pages, 3490 KiB  
Article
Isocitrate Dehydrogenase-Wildtype Glioma Adapts Toward Mutant Phenotypes and Enhanced Therapy Sensitivity Under D-2-Hydroxyglutarate Exposure
by Geraldine Rocha, Clara Francés-Gómez, Javier Megías, Lisandra Muñoz-Hidalgo, Pilar Casanova, Jose F. Haro-Estevez, Vicent Teruel-Martí, Daniel Monleón and Teresa San-Miguel
Biomedicines 2025, 13(7), 1584; https://doi.org/10.3390/biomedicines13071584 - 28 Jun 2025
Viewed by 552
Abstract
Background/Objectives: Isocitrate dehydrogenase (IDH) mutations are hallmark features in subsets of gliomas, producing the oncometabolite D-2-hydroxyglutarate (2HG). Although IDH mutations are associated with better clinical outcomes, their relationship with tumor progression is complex. This study aimed to investigate, in vitro [...] Read more.
Background/Objectives: Isocitrate dehydrogenase (IDH) mutations are hallmark features in subsets of gliomas, producing the oncometabolite D-2-hydroxyglutarate (2HG). Although IDH mutations are associated with better clinical outcomes, their relationship with tumor progression is complex. This study aimed to investigate, in vitro and in vivo, the phenotypic consequences of IDH mutation and 2HG exposure in glioblastoma (GBM) under normoxic and hypoxic conditions and under temozolomide (TMZ) and radiation exposure. Methods: Experiments were conducted using IDH-wildtype (IDH-wt) and IDH-mutant (IDH-mut) glioma cell lines under controlled oxygen conditions. Functional assays included cell viability, cell cycle analysis, apoptosis profiling, migration, and surface marker expression via flow cytometry. Orthotopic xenografts were established in immunocompromised mice to assess in vivo tumor growth and morphology, followed by MRI and histological analysis. Treatments included TMZ, radiation, and 2HG at varying concentrations. Statistical analyses were performed using SPSS and RStudio. Results:IDH-wt cells exhibited faster proliferation and greater adaptability under hypoxia, while IDH-mut cells showed cell cycle arrest and limited growth. 2HG recapitulated IDH-mut features in IDH-wt cells, including increased apoptosis under TMZ, reduced proliferation, and altered CD24/CD44 expression. In vivo, IDH-wt tumors were larger and more infiltrative, while 2HG administration reduced tumor volume and promoted compact morphology. Notably, migration was initially similar across genotypes but increased in IDH-mut and 2HG-treated IDH-wt cells over time, though suppressed under therapeutic stress. Conclusions: IDH mutation and 2HG modulate glioma cell biology, including cell cycle dynamics, proliferation rates, migration, and apoptosis. While the IDH mutation and its metabolic product confer initial growth advantages, they enhance treatment sensitivity and reduce invasiveness, highlighting potential vulnerabilities for targeted therapy. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapy of Gliomas)
Show Figures

Figure 1

22 pages, 1990 KiB  
Article
Circadian-Tuned Peptide Drug/Gene Co-Delivery Nanocomplexes to Enhance Glioblastoma Targeting and Transfection
by Ana R. Neves, Eric Vivès, Prisca Boisguérin, Telma Quintela and Diana Costa
Int. J. Mol. Sci. 2025, 26(13), 6130; https://doi.org/10.3390/ijms26136130 - 26 Jun 2025
Viewed by 574
Abstract
Glioblastoma is the most prevalent and aggressive form of brain malignancy. Actual treatments face several challenges due to its high aggressiveness and poor prognosis. The chemotherapeutic agent temozolomide (TMZ) has limited therapeutic efficacy, and mutations in the tumour protein p53 gene (TP53 [...] Read more.
Glioblastoma is the most prevalent and aggressive form of brain malignancy. Actual treatments face several challenges due to its high aggressiveness and poor prognosis. The chemotherapeutic agent temozolomide (TMZ) has limited therapeutic efficacy, and mutations in the tumour protein p53 gene (TP53) have been associated with treatment resistance. Thus, this study aimed to explore an innovative therapeutic strategy to enhance treatment efficacy of GBM. Previously, our team had developed a WRAP5 cell-penetrating peptide (CPP) functionalized with a transferrin receptor ligand (Tf) for the targeted delivery of TMZ and a p53-encoding plasmid to glioma cells. Our research had elucidated the circadian oscillations of the clock genes in the U87 glioma cells by employing two different computational models and observed that T16 and T8 time points revealed the highest circadian activity for Bmal1 and Per2 genes, respectively. Similar analysis was conducted for the transferrin receptor, which revealed that T7 and T8 were the key time points for its expression. A confocal microscopy study indicated the highest intracellular uptake of complexes and p53 mRNA expression at T8, the time point with the highest Per2 and transferrin receptor expression. Following mRNA analysis, the evaluation of p53 levels confirmed transcriptional changes at the protein level, and that T16 appears to be a favourable time point for enhancing therapeutic efficacy in U87 glioblastoma cells. These findings suggested that synchronizing the complexes’ administration with the biological clock of GBM cells may significantly improve glioblastoma therapeutics. Full article
(This article belongs to the Special Issue The Importance of Molecular Circadian Rhythms in Health and Disease)
Show Figures

Graphical abstract

15 pages, 1745 KiB  
Brief Report
Establishment of U-87MG Cellular Fibrosis as a Novel in Vitro Model to Analyze Glioblastoma Cells’ Sensitivity to Temozolomide
by Valentina Lopardo, Roberta Maria Esposito, Antonio C. Pagano Zottola, Federica Santoro, Nicola Grasso, Alfonso Carotenuto, Annibale Alessandro Puca and Elena Ciaglia
Int. J. Mol. Sci. 2025, 26(13), 6121; https://doi.org/10.3390/ijms26136121 - 25 Jun 2025
Viewed by 402
Abstract
Glioblastoma (GBM), a highly malignant brain tumor, arises within a complex microenvironment that plays a critical role in facilitating tumor progression, ensuring survival, and enabling immune evasion, ultimately contributing to therapeutic resistance. Cancer-associated fibrosis is increasingly recognized as a key factor in the [...] Read more.
Glioblastoma (GBM), a highly malignant brain tumor, arises within a complex microenvironment that plays a critical role in facilitating tumor progression, ensuring survival, and enabling immune evasion, ultimately contributing to therapeutic resistance. Cancer-associated fibrosis is increasingly recognized as a key factor in the tumor pathophysiology, particularly in extracranial cancers, and reported therapeutic strategies in several cancers consist of the current use of the standard-of-care treatment combined with anti-fibrotic drugs. However, it remains unclear how the fibrotic changes associated with the GBM microenvironment contribute to the transformation of GBM from a chemosensitive state to a chemoresistant one. Here, we developed an in vitro model that mimics a fibrosis-like mechanism using the U-87MG GBM cell line. To achieve this, we identified the optimal experimental conditions (i.e., U-87MG cultured in serum-deprivation medium in the presence of recombinant TGF-B1 at 5 ng/mL for 72 h) that effectively induced fibrosis, as suggested by the counter-regulated expression of E- and N-cadherin and sustained levels of α-SMA and collagen I. As expected, U-87MG fibrotic cells were demonstrated to be more resistant to TMZ (predicted EC50 = 35 µM) as compared to the non-fibrotic counterpart (EC50 not achieved here; predicted EC50 = 351 µM). Accordingly, the anti-fibrotic uPAcyclin—a new derivative cyclic compound inspired as a A6 decapeptide drug—showed a significant cytotoxic effect, sensitizing resistant U-87MG fibrotic cells to TMZ. This highlights that targeting fibrosis may help to overcome TMZ resistance in GBM. Full article
(This article belongs to the Special Issue Cellular Plasticity and EMT in Cancer and Fibrotic Diseases)
Show Figures

Figure 1

17 pages, 1412 KiB  
Article
Effect of Acoustic Pressure on Temozolomide-Loaded Oleic Acid-Based Liposomes and Its Safety to Brain Tissue
by Vasilisa D. Dalinina, Vera S. Shashkovskaya, Iman M. Khaskhanova, Daria Yu. Travnikova, Nelly S. Chmelyuk, Dmitry A. Korzhenevskiy, Vsevolod V. Belousov and Tatiana O. Abakumova
Pharmaceuticals 2025, 18(6), 910; https://doi.org/10.3390/ph18060910 - 18 Jun 2025
Viewed by 517
Abstract
Background: Glioblastoma (GBM) is a highly aggressive primary brain tumor with limited therapeutic options, particularly due to the limited blood–brain barrier (BBB) permeability. Nanoparticle-based drug delivery systems, such as liposomes, can prolong drugs’ circulation time and enhance their accumulation within brain tumors, thereby [...] Read more.
Background: Glioblastoma (GBM) is a highly aggressive primary brain tumor with limited therapeutic options, particularly due to the limited blood–brain barrier (BBB) permeability. Nanoparticle-based drug delivery systems, such as liposomes, can prolong drugs’ circulation time and enhance their accumulation within brain tumors, thereby improving therapeutic outcomes. Controlled drug release further contributes to high local drug concentrations while minimizing systemic toxicity. Oleic acid (OA), a monounsaturated fatty acid, is commonly used to enhance drug loading and increase lipid membrane fluidity. In this study, we developed liposomal formulations with optimized temozolomide (TMZ)’s loading and analyze its response to focused ultrasound (FUS). Methods: We synthetized OA-based liposomes with different lipid composition, performed physicochemical characterization (DLS, TEM) and analyzed the TMZ loading efficiency. Different FUS parameters were tested for effective OA-based liposomes destruction. Safety of selected parameters was evaluated in vivo by MRI, histological staining and RT-PCR of pro-inflammatory cytokines. Results: All the formulations exhibited comparable hydrodynamic diameters; however, OA-containing liposomes demonstrated a significantly higher TMZ encapsulation efficiency and enhanced cytotoxicity in U87 glioma cells. Moreover, it was shown that OA-liposomes were disrupted at lower acoustic pressures (5 MPa), while conventional liposomes required higher thresholds (>8 MPa). A safety analysis of FUS parameters indicated that pressures exceeding 11 MPa induced brain edema, necrotic lesions and elevated cytokine levels within 72 h post-treatment. Conclusions: These results suggest that OA-based liposomes possess favorable characteristics, with an increased sonosensitivity for the site-specific delivery of TMZ, offering a promising strategy for glioma treatment. Full article
Show Figures

Figure 1

47 pages, 2976 KiB  
Review
Epigenetic Alterations in Glioblastoma Multiforme as Novel Therapeutic Targets: A Scoping Review
by Marco Meleiro and Rui Henrique
Int. J. Mol. Sci. 2025, 26(12), 5634; https://doi.org/10.3390/ijms26125634 - 12 Jun 2025
Viewed by 1344
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor with a dismal prognosis despite advances in multimodal treatment. Conventional therapies fail to achieve durable responses due to GBM’s molecular heterogeneity and capacity to evade therapeutic pressures. Epigenetic alterations have emerged as critical [...] Read more.
Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor with a dismal prognosis despite advances in multimodal treatment. Conventional therapies fail to achieve durable responses due to GBM’s molecular heterogeneity and capacity to evade therapeutic pressures. Epigenetic alterations have emerged as critical contributors to GBM pathobiology, including aberrant DNA methylation, histone modifications, and non-coding RNA (ncRNA) dysregulation. These mechanisms drive oncogenesis, therapy resistance, and immune evasion. This scoping review evaluates the current state of knowledge on epigenetic modifications in GBM, synthesizing findings from original articles and preclinical and clinical trials published over the last decade. Particular attention is given to MGMT promoter hypermethylation status as a biomarker for temozolomide (TMZ) sensitivity, histone deacetylation and methylation as modulators of chromatin structure, and microRNAs as regulators of pathways such as apoptosis and angiogenesis. Therapeutically, epigenetic drugs, like DNA methyltransferase inhibitors (DNMTis) and histone deacetylase inhibitors (HDACis), appear as promising approaches in preclinical models and early trials. Emerging RNA-based therapies targeting dysregulated ncRNAs represent a novel approach to reprogram the tumor epigenome. Combination therapies, pairing epigenetic agents with immune checkpoint inhibitors or chemotherapy, are explored for their potential to enhance treatment response. Despite these advancements, challenges such as tumor heterogeneity, the blood–brain barrier (BBB), and off-target effects remain significant. Future directions emphasize integrative omics approaches to identify patient-specific targets and refine therapies. This article thus highlights the potential of epigenetics in reshaping GBM treatment paradigms. Full article
(This article belongs to the Special Issue Glioblastoma: Molecular Pathogenesis and Treatment)
Show Figures

Graphical abstract

20 pages, 4895 KiB  
Article
Ultrasound-Mediated Drug Diffusion, Uptake, and Cytotoxicity in a Glioblastoma 3D Tumour Sphere Model
by Janith Wanigasekara, Julie Rose Mae Mondala, Patrick J. Cullen, Brijesh K. Tiwari, Gemma K. Kinsella and James F. Curtin
Cells 2025, 14(12), 886; https://doi.org/10.3390/cells14120886 - 11 Jun 2025
Viewed by 668
Abstract
A myriad of biological effects can be stimulated by ultrasound (US) for the treatment of cancer. The objective of our research was to investigate the effect of ultrasound alone and in combination with chemotherapeutic drugs such as doxorubicin (DOX) and temozolomide (TMZ) on [...] Read more.
A myriad of biological effects can be stimulated by ultrasound (US) for the treatment of cancer. The objective of our research was to investigate the effect of ultrasound alone and in combination with chemotherapeutic drugs such as doxorubicin (DOX) and temozolomide (TMZ) on human glioblastoma (GBM) and the human epidermoid carcinoma cancer 2D and 3D cell cultures. The results indicated that the US 96-probe device could induce tumour sphere cytotoxicity in a dosage- and time-dependent manner, with multiple treatments augmenting this cytotoxic effect. With enhanced cytotoxicity, US decreased tumour sphere growth metabolic activity, disrupted spheroid integrity, and heightened the occurrence of DNA double strand breaks, resulting in damage to tumour spheres and an inability to rebuild tumour spheres after multiple US treatments. The combination of US and TMZ/DOX enhanced the efficiency of treatment for GBM and epidermoid carcinoma by enhancing induced cytotoxicity in 3D tumour spheres compared to 2D monolayer cells and also by increasing the incubation time, which is the most crucial way to differentiate between the effectiveness of drug treatment with and without US. In conclusion, our data demonstrate that US enhances drug diffusion, uptake, and cytotoxicity using 3D spheroid models when compared with 2D cultures. They also demonstrate the significance of 3D cell culture models in drug delivery and discovery research. Full article
Show Figures

Graphical abstract

20 pages, 5412 KiB  
Article
MiR 329/449 Suppresses Cell Proliferation, Migration and Synergistically Sensitizes GBM to TMZ by Inhibiting Src/FAK, NF-kB, and Cyclin D1 Activity
by Megan Mendieta, Mehrdad Bandegi, Ezgi Biltekin, Yasemin M. Akay, Bulent Ozpolat and Metin Akay
Int. J. Mol. Sci. 2025, 26(12), 5533; https://doi.org/10.3390/ijms26125533 - 10 Jun 2025
Viewed by 592
Abstract
Glioblastoma Multiforme (GBM) is one of the most common brain tumors and is associated with aggressive tumor characteristics and extremely poor patient survival. The median survival time for GBM patients is around 12–15 months. Temozolomide (TMZ) is a key chemotherapeutic drug used in [...] Read more.
Glioblastoma Multiforme (GBM) is one of the most common brain tumors and is associated with aggressive tumor characteristics and extremely poor patient survival. The median survival time for GBM patients is around 12–15 months. Temozolomide (TMZ) is a key chemotherapeutic drug used in the treatment of GBM. However, at least 50% of GBM patients do not respond to TMZ, necessitating the identification of novel therapeutic strategies sensitizing patients to TMZ. In this study, we aimed to investigate the effects of two different tumor suppressor microRNAs (miR-329 and miR-449b) on cell proliferation and migration of GBM cells, and their potential for sensitizing GBM cells to TMZ. Our findings show that MiR-329/449b treatments suppressed spheroid formation and migration of GBM (LN229 and U87) cells. When miR treatments were combined with Temozolomide (TMZ), we also observed that they synergistically enhanced the suppressive effects of TMZ and inhibited the activity of clinically significant NF-KB and Src/FAK signaling pathways, making the combination therapy a viable option to treat GBM, with greater impact on patient survival. Full article
(This article belongs to the Special Issue The Role of Neurons in Human Health and Disease—3rd Edition)
Show Figures

Figure 1

13 pages, 1045 KiB  
Article
All-Trans Retinoic Acid Induces Differentiation and Downregulates Stemness Markers and MGMT Expression in Glioblastoma Stem Cells
by Justin Tang and Raymond Yang
Cells 2025, 14(10), 746; https://doi.org/10.3390/cells14100746 - 20 May 2025
Viewed by 730
Abstract
Background: Glioblastoma (GBM) remains almost uniformly fatal, owing in part to therapy-resistant cancer stem-like cells (CSCs) and to temozolomide (TMZ) resistance driven by O6-methylguanine-DNA methyltransferase (MGMT). Differentiation therapy with all-trans retinoic acid (ATRA) has the potential to attenuate stemness and sensitize [...] Read more.
Background: Glioblastoma (GBM) remains almost uniformly fatal, owing in part to therapy-resistant cancer stem-like cells (CSCs) and to temozolomide (TMZ) resistance driven by O6-methylguanine-DNA methyltransferase (MGMT). Differentiation therapy with all-trans retinoic acid (ATRA) has the potential to attenuate stemness and sensitize GBM to TMZ. We therefore asked whether ATRA reduces expression of key CSC markers and MGMT in established GBM lines. Methods: Two established human GBM cell lines, U87-MG and A172, were cultured under neurosphere-promoting conditions to enrich for potential stem-like subpopulations. Cells were treated with either 1 µM ATRA or vehicle control (DMSO) for 5 days. Total RNA was extracted, and cDNA was synthesized. Quantitative Real-Time PCR (qPCR) assessed relative mRNA expression levels of key stemness transcription factors (SOX2, NES) and the DNA repair gene MGMT and corresponding protein levels were measured by an Enzyme-Linked Immunosorbent Assay (ELISA). Gene expression was normalized to the geometric mean of two validated housekeeping genes (GAPDH, ACTB). Relative quantification was calculated using the ΔΔCt method, and statistical significance was determined using Student’s t-tests. Results: ATRA markedly suppressed stemness and MGMT in both lines. In U87-MG, SOX2 mRNA fell 3.7-fold (p = 0.0008) and protein 2.99-fold (148.3 ± 6.0 → 49.7 ± 2.7 pg µg−1; p = 0.0002); Nestin dropped 4.1-fold (p = 0.0005) and 3.51-fold (450.0 ± 17.3 → 128.3 ± 4.4 pg µg−1; p = 0.00008). MGMT decreased 2.6-fold at transcript level (p = 0.0065) and 2.11-fold at protein level (81.7 ± 4.4 → 38.7 ± 1.8 pg µg−1; p = 0.0005). In A172, SOX2 was reduced 2.9-fold (p = 0.0041) and 2.31-fold (p = 0.0007); Nestin 3.3-fold (p = 0.0028) and 2.79-fold (p = 0.00009). MGMT declined 2.2-fold (p = 0.0132) and 1.82-fold (p = 0.0015), respectively. Conclusions: Five-day exposure to ATRA diminishes SOX2, Nestin, and MGMT at both mRNA and protein levels in stem-enriched GBM cultures, supporting the premise that ATRA-induced differentiation can concurrently blunt CSC traits and TMZ-resistance mechanisms. These data provide a molecular rationale for testing ATRA in combination regimens aimed at improving GBM therapy. Full article
(This article belongs to the Special Issue The Pivotal Role of Tumor Stem Cells in Glioblastoma)
Show Figures

Figure 1

24 pages, 2686 KiB  
Article
Predicting Treatment Outcomes in Glioblastoma: A Risk Score Model for TMZ Resistance and Immune Checkpoint Inhibition
by Nazareno Gonzalez, Melanie Perez Küper, Matias Garcia Fallit, Alejandro J. Nicola Candia, Jorge A. Peña Agudelo, Maicol Suarez Velandia, Ana Clara Romero, Guillermo Agustin Videla-Richardson and Marianela Candolfi
Biology 2025, 14(5), 572; https://doi.org/10.3390/biology14050572 - 20 May 2025
Viewed by 866
Abstract
Glioblastoma (GBM) presents significant therapeutic challenges due to its invasive nature and resistance to standard chemotherapy, i.e., temozolomide (TMZ). This study aimed to identify gene signatures that predict poor TMZ response and high PD−L1/PD−1 tumor expression, and explore potential sensitivity to alternative drugs. [...] Read more.
Glioblastoma (GBM) presents significant therapeutic challenges due to its invasive nature and resistance to standard chemotherapy, i.e., temozolomide (TMZ). This study aimed to identify gene signatures that predict poor TMZ response and high PD−L1/PD−1 tumor expression, and explore potential sensitivity to alternative drugs. We analyzed The Cancer Genome Atlas (TCGA) biopsy data to identify differentially expressed genes (DEGs) linked to these characteristics. Among 33 upregulated DEGs, 5 were significantly correlated with overall survival. A risk score model was built using these 5 DEGs, classifying patients into low-, medium-, and high-risk groups. We assessed immune cell infiltration, immunosuppressive mediators, and epithelial–mesenchymal transition (EMT) markers in each group using correlation analysis, Gene Set Enrichment Analysis (GSEA), and machine learning. The model demonstrated strong predictive power, with high-risk patients exhibiting poorer survival and increased immune infiltration. GSEA revealed upregulation of immune and EMT-related pathways in high-risk patients. Our analyses suggest that high-risk patients may exhibit limited response to PD−1 inhibitors, but could show sensitivity to etoposide and paclitaxel. This risk score model provides a valuable tool for guiding therapeutic decisions and identifying alternative chemotherapy options to enable the development of personalized and cost-effective treatments for GBM patients. Full article
(This article belongs to the Special Issue Immune Microenvironment and Molecular Mechanism of Glioma)
Show Figures

Graphical abstract

16 pages, 8017 KiB  
Article
A Novel Squalenoylated Temozolomide Nanoparticle with Long Circulating Properties Reverses Drug Resistance in Glioblastoma
by Jiao Feng, Chengyong Wen, Xiao Zhang, Xiaolong Zhu, Mengmeng Ma, Xiaohong Zhao and Xinbing Sui
Int. J. Mol. Sci. 2025, 26(10), 4723; https://doi.org/10.3390/ijms26104723 - 15 May 2025
Viewed by 567
Abstract
Temozolomide (TMZ) remains the frontline chemotherapy for gliomas; yet its clinical efficacy is significantly compromised by inherent instability and the emergence of resistance mechanisms. To surmount these challenges, we engineered a squalenoylated TMZ nanoparticle (SQ-TMZ NPs) via conjugation of TMZ with squalene, enabling [...] Read more.
Temozolomide (TMZ) remains the frontline chemotherapy for gliomas; yet its clinical efficacy is significantly compromised by inherent instability and the emergence of resistance mechanisms. To surmount these challenges, we engineered a squalenoylated TMZ nanoparticle (SQ-TMZ NPs) via conjugation of TMZ with squalene, enabling enhanced drug stability and improved therapeutic potency against glioblastoma cells. The resulting SQ-TMZ NPs exhibited a precisely controlled nanoscale architecture (~126 nm), demonstrating exceptional stability under physiological and storage conditions, with minimal hemolytic toxicity (<5%). Notably, these nanoparticles conferred superior cytotoxicity in TMZ-resistant glioblastoma T98G cells, attributed to the amplification of intracellular reactive oxygen species (ROS) and DNA damage, along with MGMT (O-6-methylguanine-DNA methyltransferase) expression suppression. Furthermore, in vivo imaging confirmed their efficient blood–brain barrier (BBB) penetration and selective tumor accumulation. This study presents a transformative approach by integrating prodrug self-assembly with targeted drug delivery to not only enhance TMZ stability but also decisively reverse glioblastoma resistance, offering a compelling therapeutic advancement. Full article
(This article belongs to the Section Molecular Nanoscience)
Show Figures

Figure 1

Back to TopTop