Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,265)

Search Parameters:
Keywords = SiC particles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3774 KB  
Article
A Study on Reinforcing Marine Soft Clay with Marine Recyclable Aggregate Prepared from Seawater, Alkali Activator, and Recycled Particles from Paste Using CT Observation
by Xiaoyang Chen, Mingyuan Wang, Yajun Wang, Zuguo Zhang and Jinjing Chen
J. Mar. Sci. Eng. 2026, 14(2), 180; https://doi.org/10.3390/jmse14020180 - 14 Jan 2026
Viewed by 7
Abstract
This study investigated the use of Marine Recyclable Aggregate (MRA), synthesized from Recycled Particles from Paste (RPPs) obtained from construction waste, seawater, and alkali activator (Na2O∙3.3SiO2, NS), for reinforcing marine soft clay. RPP is a laboratory-prepared material used to [...] Read more.
This study investigated the use of Marine Recyclable Aggregate (MRA), synthesized from Recycled Particles from Paste (RPPs) obtained from construction waste, seawater, and alkali activator (Na2O∙3.3SiO2, NS), for reinforcing marine soft clay. RPP is a laboratory-prepared material used to simulate construction waste. The physicochemical properties of MRA were characterized using X-ray diffraction (XRD), thermal field emission scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and thermogravimetric analysis (TGA). The results revealed that the key hydration products in MRA are Friedel’s salt (3CaO·Al2O3·CaCl2·10H2O, FS), xCaO·SiO2·nH2O (C-S-H), and CaO·Al2O3·2SiO2·4H2O (C-A-S-H). The formation of these hydration products enables MRA to maintain stability in marine environments. The deformation characteristics of MRA-reinforced soft clay under various conditions were investigated by integrating X-ray computed tomography with triaxial compression tests, allowing for the three-dimensional visualization and reconstruction of the failure process. The application of MRA for soft clay reinforcement in seawater environments enhances the bearing capacity of the clay and provided significant environmental benefits. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

18 pages, 4204 KB  
Article
Effect of Silicon Crystal Size on Electrochemical Properties of Magnesium-Doped SiOx Anode Materials for Lithium-Ion Batteries
by Junli Li, Chaoke Bulin, Jinling Song, Bangwen Zhang and Xiaolan Li
Physchem 2026, 6(1), 4; https://doi.org/10.3390/physchem6010004 - 13 Jan 2026
Viewed by 48
Abstract
This study aims to fabricate magnesium-doped SiOx materials through the integrated application of physical vapor deposition and chemical vapor deposition techniques, with the objective of developing high-performance anode materials for lithium-ion batteries. With the macroscopic particle size held constant, this study endeavors to [...] Read more.
This study aims to fabricate magnesium-doped SiOx materials through the integrated application of physical vapor deposition and chemical vapor deposition techniques, with the objective of developing high-performance anode materials for lithium-ion batteries. With the macroscopic particle size held constant, this study endeavors to explore the impact of variations in the size of microscopic silicon crystals on the properties of the material. Under the effect of magnesium doping, the influence mechanism of different microscopic grain sizes on the reaction kinetics behavior and structural stability of the material was systematically studied. Based on the research findings, a reasonable control range for the size of silicon crystals will be proposed. The research findings indicate that both relatively small and large silicon crystals are disadvantageous for cycling performance. When the silicon crystal grain size is 5.79 nm, the composite material demonstrates a relatively high overall capacity of 1442 mAh/g and excellent cycling stability. After 100 cycles, the capacity retention rate reaches 83.82%. EIS analysis reveals that larger silicon crystals exhibit a higher lithium ion diffusion coefficient. As a result, the silicon electrodes show more remarkable rate performance. Even under a high current density of 1C, the capacity of the material can still be maintained at 1044 mAh/g. Full article
(This article belongs to the Collection Batteries Beyond Mainstream)
Show Figures

Figure 1

17 pages, 3839 KB  
Article
Characteristics of Steel Slag and Properties of High-Temperature Reconstructed Steel Slag
by Zhiqiang Xu and Xiaojun Hu
Metals 2026, 16(1), 85; https://doi.org/10.3390/met16010085 - 13 Jan 2026
Viewed by 68
Abstract
The chemical composition, mineral composition, and mineral distribution characteristics of steel slag were characterized through petrographic analysis, X-ray diffraction (XRD), and particle size analysis. Limestone, silica, and silicomanganese slag were blended with converter steel slag to fabricate a reconstructed steel slag. Through burden [...] Read more.
The chemical composition, mineral composition, and mineral distribution characteristics of steel slag were characterized through petrographic analysis, X-ray diffraction (XRD), and particle size analysis. Limestone, silica, and silicomanganese slag were blended with converter steel slag to fabricate a reconstructed steel slag. Through burden calculation, the chemical composition ratio of this reconstructed steel slag approximated the silicate phase region. The high-temperature reconstruction process outside the furnace was simulated through reheating. The composition, structure, and cementitious characteristics of the reconstructed steel slag were investigated through X-ray diffraction (XRD), FactSage software (FactSage version 7.0 (GTT-Technologies, Aachen, Germany, 2015))analysis, scanning electron microscopy–energy dispersive spectroscopy (SEM–EDS) analysis, setting time determination, compressive strength measurement, and thermodynamic computation. The findings indicated that the primary mineral compositions of the reconstructed steel slag were predominantly silicates, such as Ca3Al2O6, Ca2SiO4, Ca2MgSi2O7, Ca2Al(AlSiO7), Ca2(SiO4), and FeAlMgO4. In comparison with the original steel slag, these compositions underwent substantial alterations. The α′-C2S phase appears at 1100 K and gradually transforms into α-C2S at 1650 K. The liquid phase begins to precipitate at approximately 1550 K. Spinel exists in the temperature range from 1300 to 1700 K, and Ca3MgSi2O8 melts into the liquid phase at 1400 K. As the temperature increases to 1600 K, the minerals C2AF, Ca2Fe2O5, and Ca2Al2O5 gradually melt into the liquid phase. Melilite melts into the liquid phase at 1700 K. It was observed that the initial and final setting times of the reconstructed steel slag exhibited reductions of 7 and 43 min, respectively, in comparison to those of the original steel slag. In comparison with steel slag, the compressive strength of the reconstructed steel slag exhibited an increase of 0.6 MPa at the 3-day strength stage, 1.6 MPa at the 7-day strength stage, and 3.4 MPa at the 28-day strength stage. The reduction in setting time and the enhancement in compressive strength verified the improved cementitious activity of the reconstructed steel slag. Thermodynamic calculations of the principal reactions of the reconstructed steel slag at elevated temperatures verified that the primary reaction at 1748 K is thermodynamically favorable. Full article
Show Figures

Graphical abstract

14 pages, 1933 KB  
Article
Effect of Annealing Treatment on Precipitation Behavior of α-Al(MnCr)Si Phases in Al–Mg–Si–Mn Alloy
by Yuxi Chen, He Jin, Haotian Liu, Zhongwen Wang, Xiaoyu Li, Qiangbing Liu, Youcheng Zhang, Zihao Li, Yunhao Wang and Chunyan Ban
Metals 2026, 16(1), 83; https://doi.org/10.3390/met16010083 - 12 Jan 2026
Viewed by 146
Abstract
Micro-segregation of solute elements is inevitable during the casting process of Al–Mg–Si alloys, significantly influencing the precipitation behavior of dispersed phases during subsequent heat treatment, ultimately influencing alloy performance. Mn and Si are typical positive segregation elements and the principal constituents of the [...] Read more.
Micro-segregation of solute elements is inevitable during the casting process of Al–Mg–Si alloys, significantly influencing the precipitation behavior of dispersed phases during subsequent heat treatment, ultimately influencing alloy performance. Mn and Si are typical positive segregation elements and the principal constituents of the dispersed phases in aluminum alloys, and their diffusion behavior directly affects the precipitation of nano-scale α-Al(MnCr)Si phases within grains during subsequent annealing. This study systematically investigates the effects of different annealing conditions (430 °C × 12 h and 530 °C × 12 h) on the precipitation behavior of α-Al(MnCr)Si phases in the Al–Mg–Si–Mn alloy. After annealing at 430 °C, the relatively low diffusion rate promoted the dispersed precipitation of α-Al(MnCr)Si phases as high-density, nano-scale particles within grains. In contrast, annealing at 530 °C substantially enhanced the elements diffusion, accelerating both nucleation and growth of α-Al(MnCr)Si phases and inducing notable Ostwald ripening, resulting in larger α-Al(MnCr)Si phases with a lower number density within grains. This study indicates that the control of annealing parameters can effectively tailor the size, distribution, and number density of nano-scale α-Al(MnCr)Si phases. The findings provide critical theoretical and practical guidance for optimizing annealing processes in Al-Mg-Si-Mn alloys. Full article
(This article belongs to the Special Issue Solidification and Microstructure of Metallic Alloys)
Show Figures

Graphical abstract

16 pages, 6941 KB  
Article
Microstructural, Corrosion and Mechanical Properties of Ni–Al–Cr/SiC Coatings on Inconel 600 Deposited by Arc Welding
by Tayfun Çetin
Crystals 2026, 16(1), 49; https://doi.org/10.3390/cryst16010049 - 11 Jan 2026
Viewed by 181
Abstract
In this study, the microstructural, mechanical, wear, and corrosion behavior of Ni-Al-Cr and Ni–Al–Cr/SiC composite coatings with different composition ratios, produced by electric arc melting on Inconel 600 substrates, was systematically investigated. Microhardness measurements revealed a significant and consistent increase in the hardness [...] Read more.
In this study, the microstructural, mechanical, wear, and corrosion behavior of Ni-Al-Cr and Ni–Al–Cr/SiC composite coatings with different composition ratios, produced by electric arc melting on Inconel 600 substrates, was systematically investigated. Microhardness measurements revealed a significant and consistent increase in the hardness values of the coatings depending on the increase in SiC reinforcement ratio (1%, 3%, and 5%). Wear tests showed that the coated samples exhibited significantly higher wear resistance compared to the pure Inconel 600 substrate. A significant improvement in wear resistance was achieved with the addition of SiC at 1% and 3% weight percentages; the width and depth of wear tracks were significantly reduced with SiC reinforcement. In contrast, increasing the SiC ratio to 5% weight percentage led to a decrease in wear resistance. This was attributed to particle aggregation at high SiC content, weakening of bonds at the matrix-reinforcement interface, and the behavior of SiC particles separated from the matrix as third-body abrasives. Electrochemical corrosion tests have shown that SiC-reinforced coatings form a more stable and permanent passive film, and corrosion resistance increases as the SiC content increases (1%, 3%, and 5%). The results indicate that the SiC reinforcement ratio affects the mechanical and electrochemical properties of Ni-Al-Cr/SiC composite coatings produced by electric arc melting. Full article
(This article belongs to the Special Issue Microstructure Analysis, Phase Composition and Properties of Metal)
Show Figures

Figure 1

16 pages, 5764 KB  
Article
Effect of Bonding Pressure and Joint Thickness on the Microstructure and Mechanical Reliability of Sintered Nano-Silver Joints
by Phuoc-Thanh Tran, Quang-Bang Tao, Lahouari Benabou and Ngoc-Anh Nguyen-Thi
J. Manuf. Mater. Process. 2026, 10(1), 22; https://doi.org/10.3390/jmmp10010022 - 8 Jan 2026
Viewed by 150
Abstract
Sintered nano-silver is widely investigated as a die-attach material for next-generation power electronic modules due to its high thermal conductivity, favorable electrical performance, and stability at elevated temperatures. However, how bonding pressure and joint thickness jointly affect densification, interfacial diffusion, and mechanical reliability [...] Read more.
Sintered nano-silver is widely investigated as a die-attach material for next-generation power electronic modules due to its high thermal conductivity, favorable electrical performance, and stability at elevated temperatures. However, how bonding pressure and joint thickness jointly affect densification, interfacial diffusion, and mechanical reliability has not been systematically clarified, especially under the low-pressure conditions required for large-area SiC and GaN devices. In this work, nano-silver lap-shear joints with three bond-line thicknesses (50, 70, and 100 μm) were fabricated under two applied pressures (1.0 and 1.5 MPa) using a controlled sintering fixture. Shear testing and cross-sectional SEM were employed to evaluate the relationships between microstructural evolution and joint integrity. When the bonding pressure was increased from 1.0 to 1.5 MPa, more effective particle rearrangement and reduced pore connectivity were observed, together with improved metallurgical bonding at the Ag–Au interface, leading to a strength increase from 15.3 to 28.2 MPa. Although thicker joints exhibited slightly higher bulk relative density due to greater heat retention and accelerated local sintering, this densification advantage did not lead to improved mechanical performance. Instead, the lower strength of thicker joints is attributed to a narrower Ag–Au interdiffusion region, which limited the formation of continuous load-bearing paths at the interface. Fractographic analyses confirmed that failure occurred predominantly by interfacial delamination rather than cohesive fracture, indicating that the reliability of the joints under low-pressure sintering is governed by the quality of interfacial bonding rather than by overall densification. The experimental results show that, under low-pressure sintering conditions (1.0–1.5 MPa), variations in bonding pressure and bond-line thickness lead to distinct effects on joint performance, with the extent of Ag–Au interfacial interaction playing a key role in determining the mechanical robustness of the joints. Full article
(This article belongs to the Special Issue Innovative Approaches in Metal Forming and Joining Technologies)
Show Figures

Figure 1

14 pages, 2815 KB  
Article
Preparation and Research of a Metal Anti-Corrosion Coating Based on PDMS Reinforcement
by Chenyan Xie, Peng Dou, Gaojie Fu, Jiaqi Wang, Zeyi Wei, Xinglin Lu, Suji Sheng, Lixin Yuan and Bin Shen
Coatings 2026, 16(1), 74; https://doi.org/10.3390/coatings16010074 - 8 Jan 2026
Viewed by 204
Abstract
Metal materials are widely used in power grid infrastructure, but they are prone to metal corrosion due to long-term exposure to various environmental conditions, resulting in significant losses. The existing superhydrophobic coatings have good anti-corrosion performance, but poor wear resistance. Therefore, it is [...] Read more.
Metal materials are widely used in power grid infrastructure, but they are prone to metal corrosion due to long-term exposure to various environmental conditions, resulting in significant losses. The existing superhydrophobic coatings have good anti-corrosion performance, but poor wear resistance. Therefore, it is extremely important to improve the wear resistance of superhydrophobic coatings. In this study, a kind of fluorine-modified SiO2 particle was prepared with pentafluorooctyltrimethoxysilane (FAS-13) as the low surface energy modifier, following the fabrication of a superhydrophobic coating on metal substrate via a PDMS-doped spray deposition method to reinforcement wear resistance property. XPS, FT-IR and Raman spectra confirmed the successful introduction of FAS-13 on SiO2 particles, as evidenced by the characteristic fluorine-related peaks. TGA revealed that the fluorine modified SiO2 (F-SiO2) particles exhibited excellent thermal stability, with an initial decomposition temperature of 354 °C. From the perspective of surface morphology, the relevant data indicated a peak-to-valley height difference of only 88.7 nm, with Rq of 11.9 nm and Ra of 8.86 nm. And it also exhibited outstanding superhydrophobic property with contact angle (CA) of 164.44°/159.48°, demonstrating remarkable self-cleaning performance. And it still maintained CA of over 150° even after cyclic abrasion of 3000 cm with 800 grit sandpaper under a 100 g load, showing exceptional wear resistance. In addition, it was revealed that the coated electrode retained a high impedance value of 8.53 × 108 Ω·cm2 at 0.1 Hz after 480 h of immersion in 5 wt% NaCl solution, with the CPE exponent remaining close to unity (from 1.00 to 0.97), highlighting its superior anti-corrosion performance and broad application prospects for metal corrosion prevention. Full article
(This article belongs to the Collection Feature Paper Collection in Corrosion, Wear and Erosion)
Show Figures

Figure 1

28 pages, 13156 KB  
Article
Tailoring Microstructure and Performance of Cu/SiC Composites via Integrated Powder Metallurgy and Thermo-Compression Processing
by Mohammad Shan, Sajjad Arif, Muhammad Khairi Faiz, Mohd Ridha Muhamad, Ateyah Alzahrani, Ahmad Alghamdi and Anwar Ulla Khan
Materials 2026, 19(2), 243; https://doi.org/10.3390/ma19020243 - 7 Jan 2026
Viewed by 257
Abstract
This study reports the fabrication and characterization of copper–silicon carbide (Cu–SiC) metal matrix composites produced using powder metallurgy (PM) combined with thermo-compression processing (TCP), a dual route that remains limited in Cu–SiC research. Micro-sized SiC particles (1–25 wt.%) were incorporated into Cu, compacted, [...] Read more.
This study reports the fabrication and characterization of copper–silicon carbide (Cu–SiC) metal matrix composites produced using powder metallurgy (PM) combined with thermo-compression processing (TCP), a dual route that remains limited in Cu–SiC research. Micro-sized SiC particles (1–25 wt.%) were incorporated into Cu, compacted, sintered, and subsequently subjected to sequential forging and annealing. Unlike conventional PM-only processing, TCP significantly reduced porosity, promoted more uniform reinforcement dispersion, and relieved residual stresses, creating a strong synergy between densification and microstructural refinement. SEM, EDS, XRD, and Raman analyses confirmed phase stability, homogeneous reinforcement distribution, and the absence of deleterious interfacial phases. The integrated PM + TCP route achieved an ultimate tensile strength of ~209 MPa, hardness of ~65 HRB, and toughness of ~35 MJ/m3 at approximately 3 wt.% SiC. The superior performance at this composition resulted not from the lowest porosity but from the combined effects of uniform particle dispersion, improved particle–matrix bonding, and deformation-driven refinement. These findings establish TCP as an effective post-sintering strategy that overcomes intrinsic porosity and interfacial limitations in Cu–SiC composites. Overall, powder metallurgy combined with the thermo-compression processing is identified as a promising processing pathway for developing high-strength, thermally stable Cu–SiC materials for structural and thermal management applications. Full article
Show Figures

Graphical abstract

15 pages, 4923 KB  
Article
Interface, Mechanical and Thermal Properties of In Situ Generated V(C,N) Solid Solution Reinforced SiC–AlN–VC Multiphase Ceramics
by Liulin Li, Maoyuan Gong, Hai Zhang and Wanxiu Hai
J. Compos. Sci. 2026, 10(1), 29; https://doi.org/10.3390/jcs10010029 - 7 Jan 2026
Viewed by 201
Abstract
Silicon carbide (SiC) ceramics are regarded as high-performance structural materials due to their excellent high-temperature strength, wear resistance, and thermal stability. However, their inherent high brittleness, low fracture toughness, and difficulty in densification have limited their wider application. To overcome these challenges, introducing [...] Read more.
Silicon carbide (SiC) ceramics are regarded as high-performance structural materials due to their excellent high-temperature strength, wear resistance, and thermal stability. However, their inherent high brittleness, low fracture toughness, and difficulty in densification have limited their wider application. To overcome these challenges, introducing a second phase and/or sintering aids is necessary. In this paper, SiC–AlN–VC multiphase ceramics were fabricated via spark plasma sintering at 1800 °C to 2100 °C. The interface, mechanical, and thermal properties were examined. It was found that the VC particles effectively pin the grain boundaries and suppress the abnormal growth of SiC grains. At temperatures exceeding 1800 °C, the N atoms released from the decomposition of AlN diffuse into the VC lattice, forming a V(C,N) solid solution that enhances both the toughness and strength of the ceramics. With increasing sintering temperature, the mechanical properties of the SiC multiphase ceramics first improve and then deteriorate. Ultimately, a nearly fully dense SiC multiphase ceramic is obtained. The maximum hardness, flexural strength, and fracture toughness of SAV20 are 28.7 GPa, 508 MPa, and 5.25 MPa·m1/2, respectively. Furthermore, the room-temperature friction coefficient and wear rate are 0.41 and 3.41 × 10−5 mm3/(N·m), respectively, and the thermal conductivity is 58 W/(m·K). Full article
(This article belongs to the Special Issue High-Performance Composite Materials in Construction)
Show Figures

Figure 1

18 pages, 5716 KB  
Article
Influence of Coupled Activated Recycled Fine Powder on the Performance of Ultra-High-Performance Concrete
by Chun Lu, Ming Zhang, Nirmal Shrestha, Dongdong Yang and Chengxiao Yu
Materials 2026, 19(1), 201; https://doi.org/10.3390/ma19010201 - 5 Jan 2026
Viewed by 171
Abstract
Ultra-High-Performance Concrete (UHPC) is being increasingly utilized in major engineering projects due to its excellent mechanical properties, strong durability, and superior overall performance. Nevertheless, the widespread use of premium cementitious materials leads to high expenses and a substantial environmental impact. In this work, [...] Read more.
Ultra-High-Performance Concrete (UHPC) is being increasingly utilized in major engineering projects due to its excellent mechanical properties, strong durability, and superior overall performance. Nevertheless, the widespread use of premium cementitious materials leads to high expenses and a substantial environmental impact. In this work, crushed recycled paste was calcined at 600 °C for two hours to produce calcined recycled fine powder (RFP) with varying hydration reactivity. UHPC was produced using the RFP in place of some of the cement. Chemical activation was accomplished by adding a composite activator system made up of Ca(OH)2, Na2SO4, Na2SiO3·9H2O, and K2SO4 in order to further improve the performance of UHPC. Particle size, viscosity, fluidity, mechanical properties, and hydration products were analyzed to establish the best activator type and dosage, as well as the ideal activation procedure for recycled fine powder. By mass replacement of cementitious materials, when 15.0% of the calcined recycled fine powder was added, the compressive strength of UHPC reached 149.1 MPa, a 23.2% increase over reference UHPC without calcined recycled fine powder. The results show that the calcined recycled fine powder ground for 60 min exhibits the highest activity. More hydrated products were formed in UHPC as a result of the addition of Ca(OH)2. The compressive strength peaked at 162.2 MPa at an incorporation rate of 1.5%, which is 8.8% higher than UHPC without an activator. Full article
Show Figures

Figure 1

46 pages, 5142 KB  
Review
Optimization of the Effects of Electrodeposition Parameters on the Nickel-Based Composite Coatings’ Tribological Properties
by Yassine Abdesselam, Catalin Tampu, Abderrahim Belloufi, Imane Rezgui, Mourad Abdelkrim, Bogdan Chirita, Eugen Herghelegiu, Carol Schnakovszky and Raluca Tampu
Processes 2026, 14(1), 139; https://doi.org/10.3390/pr14010139 - 31 Dec 2025
Viewed by 440
Abstract
Mechanical forces, chemical and electrochemical reactions, and environmental variables can all lead to surface degradation of parts. Composite coatings can be applied to these materials to enhance their surface characteristics. Recently, nickel-based composite coatings have gained greater attention because of their remarkable wear [...] Read more.
Mechanical forces, chemical and electrochemical reactions, and environmental variables can all lead to surface degradation of parts. Composite coatings can be applied to these materials to enhance their surface characteristics. Recently, nickel-based composite coatings have gained greater attention because of their remarkable wear resistance. The efficiency, precision, and affordability of this process make it a popular method. In addition, electroplating nickel-based composites offers a more environmentally friendly alternative to traditional dangerous coatings such as hard chrome. Tribological and wear characteristics are highly dependent on several variables, such as particle parameters, deposition energy, fluid dynamics, and bath composition. Mass loss, coefficient of friction, hardness, and roughness are quantitative properties that provide useful information for coating optimization and selection. Under optimized electrodeposition conditions, the Ni-SiC-graphite coatings achieved a 57% reduction in surface roughness (Ra), a 38% increase in microhardness (HV), and a 25% reduction in wear rate (Ws) compared to pure Ni coatings, demonstrating significant improvements in tribological performance. Overall, the incorporation of SiC nanoparticles was found to consistently improve microhardness while graphite or MoS2 reduces friction. Differences in wear rate among studies appear to result from variations in current density, particle size, or test conditions. Furthermore, researchers run tribology studies and calculate the volume percentage using a variety of techniques, but they fall short in providing a sufficient description of the interface. This work primarily contributes to identifying gaps in tribological research. With this knowledge and a better understanding of electrodeposition parameters, researchers and engineers can improve the lifespan and performance of coatings by tailoring them to specific applications. Full article
Show Figures

Figure 1

20 pages, 6375 KB  
Article
Research on the Thermal–Mechanical Synergistic Activation Mechanism of Coal Gangue and Its Hydration Characteristics
by Jiajun Chen, Qianyu Sun, Miaomiao Li, Kuizhou Dou, Yirui Song and Xudong Tan
Buildings 2026, 16(1), 152; https://doi.org/10.3390/buildings16010152 - 29 Dec 2025
Viewed by 265
Abstract
The coal washing and processing industry generates substantial quantities of coal gangue, which exerts significant impacts on soil and groundwater environments. Activating the reactivity of inert coal gangue to achieve comprehensive utilization in the field of cementitious materials holds considerable importance. This study [...] Read more.
The coal washing and processing industry generates substantial quantities of coal gangue, which exerts significant impacts on soil and groundwater environments. Activating the reactivity of inert coal gangue to achieve comprehensive utilization in the field of cementitious materials holds considerable importance. This study investigates a method that synergistically utilizes thermal activation and mechanical activation to enhance the reactivity of coal gangue. The approach aims to reduce the temperature required for thermal activation while effectively stimulating the reactive properties. Furthermore, the mechanisms underlying the thermal–mechanical synergistic activation and its hydration characteristics are thoroughly examined. Experimental results demonstrate that thermo-mechanical synergistic activation, in comparison to sole thermal activation at 950 °C, enhances reaction activity by 28.3%, improves mechanical properties by 27.4%, reduces setting time by 65 min, and significantly optimizes flow performance. The XRD, FT-IR, and TG-DTG analyses demonstrate that the interlayer hydrogen bonds of kaolinite are disrupted during the thermal activation stage, resulting in the formation of amorphous and highly reactive metakaolinite. Subsequent mechanical activation after thermal treatment significantly reduces particle size, further breaks the interlayer hydrogen bonds of kaolinite, and leads to the complete disintegration of the lattice framework. This process markedly enhances the degree of amorphization and thoroughly disrupts the long-range ordered crystalline structure of the kaolinite mineral phase in coal gangue. Concurrently, the d002 interplanar spacing of kaolinite expands by 0.155 Å, leading to an increase in reactivity. SEM-EDS analysis reveals that C-S-H gel is embedded within the mortar matrix, with a reduction in calcium hydroxide content and Ca/Si ratio, and an increase in Al/Si ratio in coal gangue mortar. This confirms that the thermo-mechanical synergistic activation introduces highly reactive Ca2+ and Al3+ from coal gangue into the secondary hydration reaction, resulting in the formation of a gel structure characterized by high stability and enhanced durability. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

16 pages, 7447 KB  
Article
Effect of the Incorporation of 0.1 wt.% TiC on the Microstructure and Tensile Properties of AlSi7Mg0.3 Samples Produced by Investment Casting
by Ane Jimenez, Anna Wójcik, Wojciech Maziarz, Mikel Merchán and Maider García de Cortázar
Metals 2026, 16(1), 34; https://doi.org/10.3390/met16010034 - 27 Dec 2025
Viewed by 207
Abstract
Investment casting of aluminum alloys is widely used in the aeronautical and automotive sectors for manufacturing complex components. However, conventional alloys lack sufficient mechanical strength and high-temperature resistance, prompting the need for enhanced materials. This study investigated the addition of submicron TiC particles, [...] Read more.
Investment casting of aluminum alloys is widely used in the aeronautical and automotive sectors for manufacturing complex components. However, conventional alloys lack sufficient mechanical strength and high-temperature resistance, prompting the need for enhanced materials. This study investigated the addition of submicron TiC particles, introduced via stir casting process, to an AlSi7Mg0.3 alloy for investment casting. Chemical analysis confirmed the incorporation of up to 0.1 wt.% TiC, but no significant improvement in tensile properties was observed. High Resolution Scanning Electron Microscopy (HRSEM) and Transmission Electron Microscopy (TEM) revealed a complex microstructure with few TiC particles and needle-shaped intermetallic phases containing titanium, iron, silicon, or aluminum. The high mold temperature (700 °C) and slow solidification rate likely caused partial TiC dissolution and intermetallic precipitation, which may have offset strengthening mechanisms like the Hall–Petch effect. Notably, the partial dissolution of TiC particles in investment casting has not been previously reported in similar alloys. These findings highlight the challenges of using particle-reinforced alloys in this process and emphasize the need for further research into process–microstructure relationships. Full article
(This article belongs to the Special Issue Microstructure and Characterization of Metal Matrix Composites)
Show Figures

Figure 1

11 pages, 1457 KB  
Communication
Ammonia Synthesis via Chemical Looping Using Nano-Confined Lithium Hydride in Alloy Matrix
by Koki Tsunematsu, Hiroki Miyaoka and Takayuki Ichikawa
Hydrogen 2026, 7(1), 3; https://doi.org/10.3390/hydrogen7010003 - 26 Dec 2025
Viewed by 256
Abstract
Recently, the kinetic improvement of the nitrogenation reaction of lithium hydride (LiH) to form lithium imide (Li2NH) by adding a scaffold was reported. The scaffold prevents agglomeration of Li2NH and maintains the activity of LiH, achieving a reduction in [...] Read more.
Recently, the kinetic improvement of the nitrogenation reaction of lithium hydride (LiH) to form lithium imide (Li2NH) by adding a scaffold was reported. The scaffold prevents agglomeration of Li2NH and maintains the activity of LiH, achieving a reduction in reaction temperature and an increase in reaction rate. In this work, a Li–Si alloy, Li22Si5, was used as a starting material to form nano-sized LiH dispersed in a Li alloy matrix. Lithium nitride (Li3N) is generated by the reaction between Li22Si5 and N2 to form Li7Si3, and then Li3N is converted to LiH with ammonia (NH3) generation during heat treatment under H2 flow conditions. Since Li3N is formed at the nano-scale on the surface of alloy particles, LiH generated from the above nano-Li3N is also nano-scale. The differential scanning calorimetry results indicate that direct nitrogenation of LiH in the alloy matrix occurred from around 280 °C, which is much lower than that of the LiH powder itself. Such a highly active state might be achieved due to the nano-crystalline LiH confined by the Li alloy as a self-transformed scaffold. From the above experimental results, the nano-confined LiH in the alloy matrix was recognized as a potential NH3 synthesis technique based on the LiH-Li2NH type chemical looping process. Full article
Show Figures

Graphical abstract

13 pages, 3597 KB  
Article
Effects of SiC Particle Size on SiCp/Al Composite During Vacuum Hot Pressing
by Ruijie Feng, Haibo Wu, Huan Liu, Yitian Yang, Bingbing Pei, Jianshen Han, Zehua Liu, Xishi Wu and Zhengren Huang
Materials 2026, 19(1), 84; https://doi.org/10.3390/ma19010084 - 25 Dec 2025
Viewed by 287
Abstract
High-performance SiCp/Al composites were fabricated via a vacuum hot-pressing powder metallurgy process. The effects of SiC particle size on the composite microstructures and their thermal and mechanical properties were systematically investigated. The vacuum hot-pressed SiCp/Al composites exhibited a well-bonded [...] Read more.
High-performance SiCp/Al composites were fabricated via a vacuum hot-pressing powder metallurgy process. The effects of SiC particle size on the composite microstructures and their thermal and mechanical properties were systematically investigated. The vacuum hot-pressed SiCp/Al composites exhibited a well-bonded interface between the SiC particles and Al matrix, while not exhibiting any Al4C3 brittle phase. Particle gradation effectively enhanced the densification of SiCp/Al composites, resulting in dense bulks with a relative density of 99.7%. When the SiC particle size increased from 5 to 50 μm, the fracture morphologies gradually transitioned from intergranular to transgranular, while the relative density, bending strength, and thermal conductivity increased. Overall, SiCp/Al composites with excellent thermal conductivity (201.42 W/(m·K)) and bending strength (523 ± 29.45 MPa) were obtained. To address the scarcity of research on SiCp/Al composites’ thermal properties, this study establishes SiC size/gradation–property relationships, innovatively filling the gap in thermal performance regulation. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

Back to TopTop