Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = Sargassum fusiforme polysaccharides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2595 KiB  
Review
Recent Advances in the Structure, Extraction, and Biological Activity of Sargassum fusiforme Polysaccharides
by Shun Zhang, Liang Chen, Nan Shang, Kefeng Wu and Wang Liao
Mar. Drugs 2025, 23(3), 98; https://doi.org/10.3390/md23030098 - 23 Feb 2025
Cited by 4 | Viewed by 1811
Abstract
Sargassum fusiforme polysaccharides (SFPs) are acidic polysaccharides that possess significant medicinal and commercial potential. This review aims to summarize recent advances in the structure, extraction methods, and diverse biological activities of SFPs, including their antioxidant, antitumor, immunomodulatory, antiviral, intestinal flora-regulating, and anti-diabetic properties. [...] Read more.
Sargassum fusiforme polysaccharides (SFPs) are acidic polysaccharides that possess significant medicinal and commercial potential. This review aims to summarize recent advances in the structure, extraction methods, and diverse biological activities of SFPs, including their antioxidant, antitumor, immunomodulatory, antiviral, intestinal flora-regulating, and anti-diabetic properties. The key findings reveal the complex composition of polysaccharides, highlighting alginic acid, fucoidan, and laminaran as the primary constituents, and detailing their structural features. At the same time, the characteristics as well as the advantages and disadvantages of hot water extraction, acid extraction, alkali extraction, ultrasonic extraction, microwave extraction, and enzyme extraction were systematically compared. Finally, this review concludes by emphasizing the necessity for further research to elucidate the structure–function relationships of SFPs, optimize their extraction techniques, and provide a theoretical foundation for subsequent studies. Full article
(This article belongs to the Section Biomaterials of Marine Origin)
Show Figures

Figure 1

11 pages, 1292 KiB  
Article
Brown Seaweed Byproduct Extracts Improve Intestinal Motility and Auto-Inflammation in Mice with Loperamide-Induced Constipation
by Eun-Jeong Koh, Kwang-Soon Shin, In Yung Sunwoo, Junseong Kim and Woon-Yong Choi
Foods 2024, 13(13), 2037; https://doi.org/10.3390/foods13132037 - 27 Jun 2024
Cited by 5 | Viewed by 2103
Abstract
Sargassum fusiforme and Sargassum fulvellum are types of brown algae used for their nutritional value and medicinal properties, including anti-inflammatory, antioxidant, and anticancer effects. Despite their importance in various industries, many seaweed byproducts containing dietary fiber and polysaccharides are discarded in landfills. These [...] Read more.
Sargassum fusiforme and Sargassum fulvellum are types of brown algae used for their nutritional value and medicinal properties, including anti-inflammatory, antioxidant, and anticancer effects. Despite their importance in various industries, many seaweed byproducts containing dietary fiber and polysaccharides are discarded in landfills. These byproducts can be recycled and repurposed for different applications. In this study, we investigated the impact of S. fusiforme food processing byproducts (MbP-SFF) and S. fulvellum food processing byproducts (MbP-SFV) on improving intestinal motility and reducing inflammation in mice with constipation induced by loperamide. To evaluate this, mice were orally administered 500 mg/kg/day of the byproducts once daily for 8 days. Constipation was induced by 5 mg/kg/day of loperamide for two days after oral administration for 6 days. Each sample contained approximately 70% carbohydrates. MbP-SFF had 52.0% mannuronic acid and 18.8% guluronic acid, while MbP-SFV had 36.9% mannuronic acid and 32.9% guluronic acid. These byproducts enhanced fecal excretion and intestinal motility by modulating inflammatory responses. Furthermore, they restored the balance of the gut microbiota disrupted by loperamide, increasing beneficial Bifidobacterium and reducing harmful Staphylococcus aureus. Overall, MbP-SFF and MbP-SFV improved intestinal motility and inflammation by influencing the gut microbiota and inflammatory responses in a loperamide-induced mouse model. These byproducts show potential as ingredients in functional foods aimed at enhancing gut health, potentially reducing waste disposal costs and addressing environmental concerns associated with their utilization. Full article
Show Figures

Figure 1

11 pages, 2493 KiB  
Article
UV/H2O2-Degraded Polysaccharides from Sargassum fusiforme: Purification, Structural Properties, and Anti-Inflammatory Activity
by Shiyuan Chang, Xiaoyong Chen, Yifan Chen, Lijun You and Kseniya Hileuskaya
Mar. Drugs 2023, 21(11), 561; https://doi.org/10.3390/md21110561 - 26 Oct 2023
Cited by 8 | Viewed by 2389
Abstract
The main purpose of this study was to analyze the structural properties and anti-inflammatory activity of the purified fractions derived from UV/H2O2-degraded polysaccharides from Sargassum fusiforme. Results indicated that twofractions with different monosaccharide compositions and morphological characteristics, PT-0.25 [...] Read more.
The main purpose of this study was to analyze the structural properties and anti-inflammatory activity of the purified fractions derived from UV/H2O2-degraded polysaccharides from Sargassum fusiforme. Results indicated that twofractions with different monosaccharide compositions and morphological characteristics, PT-0.25 (yield 39.5%) and PT-0.5 (yield 23.9%), were obtained. The average molecular weights of PT-0.25 and PT-0.5 were 14.52 kDa and 22.89 kDa, respectively. In addition, PT-0.5 exhibited better anti-inflammatory activity with a clear dose dependence. The mechanism was associated with the inhibition of LPS-activated Toll-like receptor 4-mediated inflammatory pathways in RAW264.7 cells. The results showed that PT-0.5 was a complex polysaccharide mainly composed of 4-Fucp, t-Manp, 6-Galp, t-Fucp, and 3,4-GlcAp. These results would provide theoretical support for studying the structural properties and biological activities of UV/H2O2-degraded polysaccharides. Full article
Show Figures

Figure 1

16 pages, 2615 KiB  
Article
Physicochemical Properties and Biological Characteristics of Sargassum fusiforme Polysaccharides Prepared through Fermentation of Lactobacillus
by Ying Yang, Dan Ouyang, Jiayao Song, Chunyang Chen, Chenjing Yin, Laijin Su and Mingjiang Wu
Fermentation 2023, 9(9), 835; https://doi.org/10.3390/fermentation9090835 - 13 Sep 2023
Cited by 9 | Viewed by 2331
Abstract
Sargassum fusiforme polysaccharides (SFPs) have multiple activities. The fermentation of S. fusiforme by Lactobacillus can alter its polysaccharide properties and biological activities. In this study, three different Lactobacillus species (Lactobacillus plantarum (LP), Lactobacillus acidophilus (LA), and Lactobacillus rhamnosus (LR)) were selected to ferment [...] Read more.
Sargassum fusiforme polysaccharides (SFPs) have multiple activities. The fermentation of S. fusiforme by Lactobacillus can alter its polysaccharide properties and biological activities. In this study, three different Lactobacillus species (Lactobacillus plantarum (LP), Lactobacillus acidophilus (LA), and Lactobacillus rhamnosus (LR)) were selected to ferment S. fusiforme. The polysaccharides SFP (unfermented) and FSFP (fermented by LP, LA, or LR denoted as LP-SFP, LA-SFP, and LR-SFP, respectively) were extracted, and their physicochemical properties and biological activities were investigated. According to the results, fermentation caused significant changes in the physicochemical properties and biological activities of SFP. Specifically, FSFP showed a significant increase in uronic acid and fucose content and a significant decrease in molecular weight; LA-SFP and LR-SFP had stronger DPPH scavenging abilities; LR-SFP had the strongest inhibition of ROS production and cell mortality; LP-SFP and LR-SFP significantly increased SOD activity in zebrafish; LA-SFP had a significant effect on the proliferation of Lactobacillus plantarum; LP-SFP had a significant effect on the proliferation of Lactobacillus rhamnosus; and LA-SFP had a stronger food-excretion-promoting activity. In conclusion, the fermentation of Lactobacillus for the preparation of SFPs can change the physicochemical properties of polysaccharides and has broad potential for improving their biological activity. Full article
(This article belongs to the Special Issue Polysaccharides Fermentation)
Show Figures

Figure 1

20 pages, 4452 KiB  
Article
Enhanced In Vitro Anti-Photoaging Effect of Degraded Seaweed Polysaccharides by UV/H2O2 Treatment
by Wanzi Yao, Jiayu Yong, Bingxue Lv, Siyu Guo, Lijun You, Peter Chi-Keung Cheung and Viktoryia I. Kulikouskaya
Mar. Drugs 2023, 21(8), 430; https://doi.org/10.3390/md21080430 - 29 Jul 2023
Cited by 11 | Viewed by 3011
Abstract
The high molecular weight and poor solubility of seaweed polysaccharides have limited their function and application. In this study, ultraviolet/hydrogen peroxide (UV/H2O2) treatment was used to prepare low-molecular-weight seaweed polysaccharides from Sargassum fusiforme. The effects of UV/H2 [...] Read more.
The high molecular weight and poor solubility of seaweed polysaccharides have limited their function and application. In this study, ultraviolet/hydrogen peroxide (UV/H2O2) treatment was used to prepare low-molecular-weight seaweed polysaccharides from Sargassum fusiforme. The effects of UV/H2O2 treatment on the physicochemical properties and anti-photoaging activity of S. fusiforme polysaccharides were studied. UV/H2O2 treatment effectively degraded polysaccharides from S. fusiforme (DSFPs), reducing their molecular weight from 271 kDa to 26 kDa after 2 h treatment. The treatment did not affect the functional groups in DSFPs but changed their molar percentage of monosaccharide composition and morphology. The effects of the treatment on the anti-photoaging function of S. fusiforme polysaccharides were investigated using human epidermal HaCaT cells in vitro. DFSPs significantly improved the cell viability and hydroxyproline secretion of UVB-irradiated HaCaT cells. In particular, DSFP-45 obtained from UV/H2O2 treatment for 45 min showed the best anti-photoaging effect. Moreover, DSFP-45 significantly increased the content and expression of collagen I and decreased those of pro-inflammatory cytokines, including interleukin-1β, interleukin-6, and tumor necrosis factor-α. Thus, UV/H2O2 treatment could effectively improve the anti-photoaging activity of S. fusiforme polysaccharides. These results provide some insights for developing novel and efficient anti-photoaging drugs or functional foods from seaweed polysaccharides. Full article
(This article belongs to the Section Structural Studies on Marine Natural Products)
Show Figures

Graphical abstract

18 pages, 109634 KiB  
Article
Anti-Leukemia Activity of Polysaccharide from Sargassum fusiforme via the PI3K/AKT/BAD Pathway In Vivo and In Vitro
by Haofei Du, Xudong Jin, Sizhou Jin, Donglei Zhang, Qiande Chen, Xuanan Jin, Caisheng Wang, Guoying Qian and Haomiao Ding
Mar. Drugs 2023, 21(5), 289; https://doi.org/10.3390/md21050289 - 8 May 2023
Cited by 14 | Viewed by 2777
Abstract
Studies have shown that Sargassum fusiforme and its extracts are effective herbal treatments for leukemia. We previously found that a polysaccharide from Sargassum fusiforme, SFP 2205, stimulated apoptosis in human erythroleukemia (HEL) cells. However, the structural characterization and antitumoral mechanisms of SFP [...] Read more.
Studies have shown that Sargassum fusiforme and its extracts are effective herbal treatments for leukemia. We previously found that a polysaccharide from Sargassum fusiforme, SFP 2205, stimulated apoptosis in human erythroleukemia (HEL) cells. However, the structural characterization and antitumoral mechanisms of SFP 2205 remain uncertain. Here, we studied the structural characteristics and anticancer mechanisms of SFP 2205 in HEL cells and a xenograft mouse model. The results demonstrated that SFP 2205, with a molecular weight of 41.85 kDa, consists of mannose, rhamnose, galactose, xylose, glucose, and fucose with monosaccharides composition of 14.2%, 9.4%, 11.8%, 13.7%, 11.0%, and 38.3%, respectively. On animal assays, SFP 2205 significantly inhibited growth of HEL tumor xenografts with no discernible toxicity to normal tissues. Western blotting showed that SFP 2205 therapy improved Bad, Caspase-9, and Caspase-3 protein expression, and ultimately induced HEL tumor apoptosis, indicating mitochondrial pathway involvement. Furthermore, SFP 2205 blocked the PI3K/AKT signaling pathway and 740 Y-P, an activator of the PI3K/AKT pathway, rescued the effects of SFP 2205 on HEL cell proliferation and apoptosis. Overall, SFP 2205 may be a potential functional food additive or adjuvant for preventing or treating leukemia. Full article
Show Figures

Graphical abstract

12 pages, 1803 KiB  
Article
The Structure and Function of the Sargassum fusiforme Microbiome under Different Conditions
by Chunchun Dai and Shengqin Wang
J. Mar. Sci. Eng. 2022, 10(10), 1401; https://doi.org/10.3390/jmse10101401 - 30 Sep 2022
Cited by 3 | Viewed by 2282
Abstract
Brown macroalgae, a key component of the vegetated coastal ecosystems, can sequester a large amount of CO2, which is mainly converted to polysaccharides. These polysaccharides confer complex structures and are difficult to be degraded by microbial communities. On the surface of [...] Read more.
Brown macroalgae, a key component of the vegetated coastal ecosystems, can sequester a large amount of CO2, which is mainly converted to polysaccharides. These polysaccharides confer complex structures and are difficult to be degraded by microbial communities. On the surface of brown macroalgae in which bacteria lived, the diversity and encoded enzymes of these bacteria involved in carbon cycling remain largely unknown. In this study, we used metagenomic sequencing to survey bacteria communities associated with the Sargassum fusiforme under different conditions and investigated the structure and function of these bacteria. A total of 5308 species were discovered in all 15 samples from different conditions. Most of these species belonged to the phylum Proteobacteria. Many S. fusiforme-associated bacteria could decompose algal polysaccharides under different conditions. Our method could enhance the ability to understand the microbiome community. To the best of our knowledge, this is the first report regarding metagenomics in S. fusiforme. The co-occurrence network provides insights into the relationship of the polysaccharide degradation enzymes (PDEs). These data provide a reference for the cultivation of S. fusiforme and the understanding of the marine carbon cycle. Full article
(This article belongs to the Special Issue Algal Cultivation and Breeding)
Show Figures

Figure 1

16 pages, 3227 KiB  
Article
Sargassum fusiforme Polysaccharide-Based Hydrogel Microspheres Enhance Crystal Violet Dye Adsorption Properties
by Bingxue Lv, Jiahao Ren, Yang Chen, Siyu Guo, Minqian Wu and Lijun You
Molecules 2022, 27(15), 4686; https://doi.org/10.3390/molecules27154686 - 22 Jul 2022
Cited by 3 | Viewed by 2318
Abstract
In this study, a polysaccharide-based hydrogel microsphere (SFP/SA) was prepared using S. fusiforme polysaccharide (SFP) and sodium alginate (SA). Fourier transform infrared spectroscopy (FT-IR) demonstrated that SFP was effectively loaded onto the hydrogel microsphere. Texture profile analysis (TPA) and differential scanning calorimetry (DSC) [...] Read more.
In this study, a polysaccharide-based hydrogel microsphere (SFP/SA) was prepared using S. fusiforme polysaccharide (SFP) and sodium alginate (SA). Fourier transform infrared spectroscopy (FT-IR) demonstrated that SFP was effectively loaded onto the hydrogel microsphere. Texture profile analysis (TPA) and differential scanning calorimetry (DSC) showed that, with the increase of SFP concentration, the hardness of SFP/SA decreased, while the springiness and cohesiveness of SFP/SA increased, and the thermal stability of SFP/SA improved. The equilibrium adsorption capacity of SFP/SA increased from 8.20 mg/g (without SFP) to 67.95 mg/g (SFP accounted 80%) without swelling, and from 35.05 mg/g (without SFP) to 81.98 mg/g (SFP accounted 80%) after 24 h swelling. The adsorption of crystal violet (CV) dye by SFP/SA followed pseudo-first order and pseudo-second order kinetics (both with R2 > 0.99). The diffusion of intraparticle in CV dye was not the only influencing factor. Moreover, the adsorption of CV dye for SFP/SA (SFP accounted 60%) fit the Langmuir and Temkin isotherm models. SFP/SA exhibited good regenerative adsorption capacity. Its adsorption rate remained at > 97% at the 10th consecutive cycle while SFP accounted for 80%. The results showed that the addition of Sargassum fusiforme polysaccharide could increase the springiness, cohesiveness and thermal stability of the hydrogel microsphere, as well as improve the adsorption capacity of crystal violet dye. Full article
(This article belongs to the Special Issue Isolation, Identification and Applications of Polysaccharides)
Show Figures

Figure 1

16 pages, 4343 KiB  
Article
The Beneficial Effects of Two Polysaccharide Fractions from Sargassum fusiform against Diabetes Mellitus Accompanied by Dyslipidemia in Rats and Their Underlying Mechanisms
by Rui-Bo Jia, Juan Wu, Donghui Luo, Lianzhu Lin, Chong Chen, Chuqiao Xiao and Mouming Zhao
Foods 2022, 11(10), 1416; https://doi.org/10.3390/foods11101416 - 13 May 2022
Cited by 13 | Viewed by 2890
Abstract
The current study aimed to assess the anti-diabetic effects and potential mechanisms of two Sargassum fusiform polysaccharide fractions (SFPs, named SFP-1 and SFP-2). The carbohydrate-loading experiment revealed that SFP-2 could control postprandial hyperglycemia by inhibiting the activity of digestive enzymes in rats. The [...] Read more.
The current study aimed to assess the anti-diabetic effects and potential mechanisms of two Sargassum fusiform polysaccharide fractions (SFPs, named SFP-1 and SFP-2). The carbohydrate-loading experiment revealed that SFP-2 could control postprandial hyperglycemia by inhibiting the activity of digestive enzymes in rats. The analysis of diabetic symptoms and serum profiles indicated that SFPs could mitigate diabetes accompanied by dyslipidemia, and SFP-2 showed better regulatory effects on body weight, food intake and the levels of total cholesterol (TC), triglycerides (TG), low density lipoprotein-cholesterol (LDL-C) and free fatty acid (FFA) in diabetic rats. Intestinal bacterial analysis showed that SFP treatment could reshape the gut flora of diabetic rats, and SFP-2 possessed a greater regulatory effect on the growth of Lactobacillus and Blautia than SFP-1. RT-qPCR analysis revealed that SFPs could regulate the genes involved in the absorption and utilization of blood glucose, hepatic glucose production and lipid metabolism, and the effects of SFP-2 on the relative expressions of Protein kinase B (Akt), Glucose-6-phosphatase (G-6-Pase), Glucose transporter 2 (GLUT2), AMP-activated protein kinase-α (AMPKα), Peroxisome proliferator-activated receptor γ (PPARγ) and Cholesterol 7-alpha hydroxylase (CYP7A1) were greater than SFP-1. All above results indicated that SFPs could be exploited as functional foods or pharmaceutical supplements for the treatment of diabetes and its complications. Full article
(This article belongs to the Section Food Nutrition)
Show Figures

Figure 1

13 pages, 1832 KiB  
Article
Evaluation of Antiviral Effect against SARS-CoV-2 Propagation by Crude Polysaccharides from Seaweed and Abalone Viscera In Vitro
by Sang-Min Kang, Dongseob Tark, Byeong-Min Song, Gun-Hee Lee, Ju-Hee Yang, Hee-Jeong Han and Sung-Kun Yim
Mar. Drugs 2022, 20(5), 296; https://doi.org/10.3390/md20050296 - 27 Apr 2022
Cited by 11 | Viewed by 3762
Abstract
Crude polysaccharides, extracted from two seaweed species (Hizikia fusiforme and Sargassum horneri) and Haliotis discus hannai (abalone) viscera, were evaluated for their inhibitory effect against SARS-CoV-2 propagation. Plaque titration revealed that these crude polysaccharides efficiently inhibited SARS-CoV-2 propagation with IC50 [...] Read more.
Crude polysaccharides, extracted from two seaweed species (Hizikia fusiforme and Sargassum horneri) and Haliotis discus hannai (abalone) viscera, were evaluated for their inhibitory effect against SARS-CoV-2 propagation. Plaque titration revealed that these crude polysaccharides efficiently inhibited SARS-CoV-2 propagation with IC50 values ranging from 0.35 to 4.37 μg/mL. The crude polysaccharide of H. fusiforme showed the strongest antiviral effect, with IC50 of 0.35 μg/mL, followed by S. horneri and abalone viscera with IC50 of 0.56 and 4.37 μg/mL, respectively. In addition, immunofluorescence assay, western blot, and quantitative RT-PCR analysis verified that these polysaccharides could inhibit SARS-CoV-2 replication. In Vero E6 cells, treatment with these crude polysaccharides before or after viral infection strongly inhibited the expression level of SARS-CoV-2 spikes, nucleocapsid proteins, and RNA copies of RNA-dependent RNA-polymerase and nucleocapsid. These results show that these crude marine polysaccharides effectively inhibit SARS-CoV-2 propagation by interference with viral entry. Full article
(This article belongs to the Special Issue Marine Natural Products against Coronaviruses)
Show Figures

Graphical abstract

27 pages, 1677 KiB  
Review
Hizikia fusiformis: Pharmacological and Nutritional Properties
by Maria Dyah Nur Meinita, Dicky Harwanto, Jae-Hak Sohn, Jin-Soo Kim and Jae-Suk Choi
Foods 2021, 10(7), 1660; https://doi.org/10.3390/foods10071660 - 19 Jul 2021
Cited by 27 | Viewed by 5715
Abstract
The brown seaweed Hizikia fusiformis (syn. Sargassum fusiforme), commonly known as “Hijiki”, has been utilized in traditional cuisine and medicine in East Asian countries for several centuries. H. fusiformis has attracted much attention owing to its rich nutritional and pharmacological properties. However, [...] Read more.
The brown seaweed Hizikia fusiformis (syn. Sargassum fusiforme), commonly known as “Hijiki”, has been utilized in traditional cuisine and medicine in East Asian countries for several centuries. H. fusiformis has attracted much attention owing to its rich nutritional and pharmacological properties. However, there has been no comprehensive review of the nutritional and pharmacological properties of H. fusiformis. The aim of this systematic review was to provide detailed information from the published literature on the nutritional and pharmacological properties of H. fusiformis. A comprehensive online search of the literature was conducted by accessing databases, such as PubMed, SpringerLink, ScienceDirect, and Google Scholar, for published studies on the nutritional and pharmacological properties of H. fusiformis between 2010 and 2021. A total of 916 articles were screened from all the databases using the preferred reporting items for systematic reviews and meta-analyses method. Screening based on the setdown criteria resulted in 59 articles, which were used for this review. In this review, we found that there has been an increase in the number of publications on the pharmacological and nutritional properties of H. fusiformis over the last 10 years. In the last 10 years, studies have focused on the proximate, mineral, polysaccharide, and bioactive compound composition, and pharmacological properties, such as antioxidant, anticancer, antitumor, anti-inflammatory, photoprotective, neuroprotective, antidiabetic, immunomodulatory, osteoprotective, and gastroprotective properties of H. fusiformis extracts. Overall, further studies and strategies are required to develop H. fusiformis as a promising resource for the nutrition and pharmacological industries. Full article
Show Figures

Graphical abstract

11 pages, 1918 KiB  
Article
Comparative Study of Sargassum fusiforme Polysaccharides in Regulating Cecal and Fecal Microbiota of High-Fat Diet-Fed Mice
by Bin Wei, Qiao-Li Xu, Bo Zhang, Tao-Shun Zhou, Song-Ze Ke, Si-Jia Wang, Bin Wu, Xue-Wei Xu and Hong Wang
Mar. Drugs 2021, 19(7), 364; https://doi.org/10.3390/md19070364 - 24 Jun 2021
Cited by 6 | Viewed by 3430
Abstract
Seaweed polysaccharides represent a kind of novel gut microbiota regulator. The advantages and disadvantages of using cecal and fecal microbiota to represent gut microbiota have been discussed, but the regulatory effects of seaweed polysaccharides on cecal and fecal microbiota, which would benefit the [...] Read more.
Seaweed polysaccharides represent a kind of novel gut microbiota regulator. The advantages and disadvantages of using cecal and fecal microbiota to represent gut microbiota have been discussed, but the regulatory effects of seaweed polysaccharides on cecal and fecal microbiota, which would benefit the study of seaweed polysaccharide-based gut microbiota regulator, have not been compared. Here, the effects of two Sargassum fusiforme polysaccharides prepared by water extraction (SfW) and acid extraction (SfA) on the cecal and fecal microbiota of high-fat diet (HFD) fed mice were investigated by 16S rRNA gene sequencing. The results indicated that 16 weeks of HFD dramatically impaired the homeostasis of both the cecal and fecal microbiota, including the dominant phyla Bacteroidetes and Actinobacteria, and genera Coriobacteriaceae, S24-7, and Ruminococcus, but did not affect the relative abundance of Firmicutes, Clostridiales, Oscillospira, and Ruminococcaceae in cecal microbiota and the Simpson’s index of fecal microbiota. Co-treatments with SfW and SfA exacerbated body weight gain and partially reversed HFD-induced alterations of Clostridiales and Ruminococcaceae. Moreover, the administration of SfW and SfA also altered the abundance of genes encoding monosaccharide-transporting ATPase, α-galactosidase, β-fructofuranosidase, and β-glucosidase with the latter showing more significant potency. Our findings revealed the difference of cecal and fecal microbiota in HFD-fed mice and demonstrated that SfW and SfA could more significantly regulate the cecal microbiota and lay important foundations for the study of seaweed polysaccharide-based gut microbiota regulators. Full article
Show Figures

Figure 1

15 pages, 3095 KiB  
Article
Preparation of New Sargassum fusiforme Polysaccharide Long-Chain Alkyl Group Nanomicelles and Their Antiviral Properties against ALV-J
by Yuhao Sun, Xiaolin Chen, Hong Liu, Song Liu, Huahua Yu, Xueqin Wang, Yukun Qin and Pengcheng Li
Molecules 2021, 26(11), 3265; https://doi.org/10.3390/molecules26113265 - 28 May 2021
Cited by 11 | Viewed by 3115
Abstract
Avian leukosis virus subgroup J (ALV-J) is an immunosuppressive virus which has caused heavy losses to the poultry breeding industry. Currently, there is no effective medicine to treat this virus. In our previous experiments, the low-molecular-weight Sargassum fusiforme polysaccharide (SFP) was proven to [...] Read more.
Avian leukosis virus subgroup J (ALV-J) is an immunosuppressive virus which has caused heavy losses to the poultry breeding industry. Currently, there is no effective medicine to treat this virus. In our previous experiments, the low-molecular-weight Sargassum fusiforme polysaccharide (SFP) was proven to possess antiviral activity against ALV-J, but its function was limited to the virus adsorption stage. In order to improve the antiviral activity of the SFP, in this study, three new SFP long-chain alkyl group nanomicelles (SFP-C12M, SFP-C14M and SFP-C16M) were prepared. The nanomicelles were characterized according to their physical and chemical properties. The nanomicelles were characterized by particle size, zeta potential, polydispersity index, critical micelle concentration and morphology. The results showed the particle sizes of the three nanomicelles were all approximately 200 nm and SFP-C14M and SFP-C16M were more stable than SFP-C12M. The newly prepared nanomicelles exhibited a better anti-ALV-J activity than the SFP, with SFP-C16M exhibiting the best antiviral effects in both the virus adsorption stage and the replication stage. The results of the giant unilamellar vesicle exposure experiment demonstrated that the new virucidal effect of the nanomicelles might be caused by damage to the phospholipid membrane of ALV-J. This study provides a potential idea for ALV-J prevention and development of other antiviral drugs. Full article
(This article belongs to the Special Issue Marine Polysaccharides 2022)
Show Figures

Figure 1

14 pages, 1204 KiB  
Article
Inhibition of SARS-CoV-2 Virus Entry by the Crude Polysaccharides of Seaweeds and Abalone Viscera In Vitro
by Sung-Kun Yim, Kian Kim, Inhee Kim, SangHo Chun, TaeHwan Oh, Jin-Ung Kim, Jungwon Kim, WooHuk Jung, Hosang Moon, Bosung Ku and Kyoojin Jung
Mar. Drugs 2021, 19(4), 219; https://doi.org/10.3390/md19040219 - 15 Apr 2021
Cited by 65 | Viewed by 6799
Abstract
Much attention is being devoted to the potential of marine sulfated polysaccharides as antiviral agents in preventing COVID-19. In this study, sulfated fucoidan and crude polysaccharides, extracted from six seaweed species (Undaria pinnatifida sporophyll, Laminaria japonica, Hizikia fusiforme, Sargassum horneri, Codium fragile, Porphyra [...] Read more.
Much attention is being devoted to the potential of marine sulfated polysaccharides as antiviral agents in preventing COVID-19. In this study, sulfated fucoidan and crude polysaccharides, extracted from six seaweed species (Undaria pinnatifida sporophyll, Laminaria japonica, Hizikia fusiforme, Sargassum horneri, Codium fragile, Porphyra tenera) and Haliotis discus hannai (abalone viscera), were screened for their inhibitory activity against SARS-CoV-2 virus entry. Most of them showed significant antiviral activities at an IC50 of 12~289 μg/mL against SARS-CoV-2 pseudovirus in HEK293/ACE2, except for P. tenera (IC50 > 1000 μg/mL). The crude polysaccharide of S. horneri showed the strongest antiviral activity, with an IC50 of 12 μg/mL, to prevent COVID-19 entry, and abalone viscera and H. fusiforme could also inhibit SARS-CoV-2 infection with an IC50 of 33 μg/mL and 47 μg/mL, respectively. The common properties of these crude polysaccharides, which have strong antiviral activity, are high molecular weight (>800 kDa), high total carbohydrate (62.7~99.1%), high fucose content (37.3~66.2%), and highly branched polysaccharides. These results indicated that the crude polysaccharides from seaweeds and abalone viscera can effectively inhibit SARS-CoV-2 entry. Full article
(This article belongs to the Special Issue Marine Natural Products against Coronaviruses)
Show Figures

Figure 1

13 pages, 3091 KiB  
Article
Sargassum fusiforme Polysaccharides Prevent High-Fat Diet-Induced Early Fasting Hypoglycemia and Regulate the Gut Microbiota Composition
by Bin Wei, Qi-Wu Zhong, Song-Ze Ke, Tao-Shun Zhou, Qiao-Li Xu, Si-Jia Wang, Jian-Wei Chen, Hua-Wei Zhang, Wei-Hua Jin and Hong Wang
Mar. Drugs 2020, 18(9), 444; https://doi.org/10.3390/md18090444 - 27 Aug 2020
Cited by 24 | Viewed by 4050
Abstract
A low fasting blood glucose level is a common symptom in diabetes patients and can be induced by high-fat diet (HFD) feeding at an early stage, which may play important roles in the development of diabetes, but has received little attention. In this [...] Read more.
A low fasting blood glucose level is a common symptom in diabetes patients and can be induced by high-fat diet (HFD) feeding at an early stage, which may play important roles in the development of diabetes, but has received little attention. In this study, five polysaccharides were prepared from Sargassumfusiforme and their effects on HFD-induced fasting hypoglycemia and gut microbiota dysbiosis were investigated. The results indicated that C57BL/6J male mice fed an HFD for 4 weeks developed severe hypoglycemia and four Sargassumfusiforme polysaccharides (SFPs), consisting of Sf-2, Sf-3, Sf-3-1, and Sf-A, significantly prevented early fasting hypoglycemia without inducing hyperglycemia. Sf-1 and Sf-A could also significantly prevent HFD-induced weight gain. Sf-2, Sf-3, Sf-3-1, and Sf-A mainly attenuated the HFD-induced decrease in Bacteroidetes, and all five SFPs had a considerable influence on the relative abundance of Oscillospira, Mucispirillum, and Clostridiales. Correlation analysis revealed that the fasting blood glucose level was associated with the relative abundance of Mucispinllum and Oscillospira. Receiver operating characteristic analysis indicated that Mucispinllum and Oscillospira exhibited good discriminatory power (AUC = 0.745–0.833) in the prediction of fasting hypoglycemia. Our findings highlight the novel application of SFPs (especially Sf-A) in glucose homeostasis and the potential roles of Mucispinllum and Oscillospira in the biological activity of SFPs. Full article
(This article belongs to the Collection Marine Polysaccharides)
Show Figures

Figure 1

Back to TopTop