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Abstract: Brown macroalgae, a key component of the vegetated coastal ecosystems, can sequester
a large amount of CO2, which is mainly converted to polysaccharides. These polysaccharides
confer complex structures and are difficult to be degraded by microbial communities. On the
surface of brown macroalgae in which bacteria lived, the diversity and encoded enzymes of these
bacteria involved in carbon cycling remain largely unknown. In this study, we used metagenomic
sequencing to survey bacteria communities associated with the Sargassum fusiforme under different
conditions and investigated the structure and function of these bacteria. A total of 5308 species were
discovered in all 15 samples from different conditions. Most of these species belonged to the phylum
Proteobacteria. Many S. fusiforme-associated bacteria could decompose algal polysaccharides under
different conditions. Our method could enhance the ability to understand the microbiome community.
To the best of our knowledge, this is the first report regarding metagenomics in S. fusiforme. The co-
occurrence network provides insights into the relationship of the polysaccharide degradation enzymes
(PDEs). These data provide a reference for the cultivation of S. fusiforme and the understanding of the
marine carbon cycle.
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1. Introduction

As crucial primary producers, macroalgae can sequester hundreds of Tg carbon
dioxide globally every year [1] and make a great contribution to climate change mitigation
and adaptation [2]. Sargassum is a genus of brown macroalgae that is a key component of
vegetated coastal ecosystems [3]. Floating mats of Sargassum macroalgae have increased
to generate an 8850-km-long belt containing >20 million metric tons of biomass in the
Atlantic Ocean in recent years [4]. The recurrent blooms of Sargassum can sequester a large
amount of CO2, most of which are converted to polysaccharides and play a major role in
carbon cycling [5]. The polysaccharides accounting for ~40% of the dry weight, mainly
constituted by alginate and fucoidan, confer high complex structure, causing difficulty in
microbial community degradation [6–8]. Therefore, research on the characteristics and
function of the Sargassum-related microbiome, especially the involved polysaccharide
degradation enzymes (PDE), is essential for understanding the degradation and recycling
of marine carbon.

Bacteria are abundant on the surface of brown macroalgae, with a density of about
1.1 × 108 organisms per cm2 [9]. These bacteria encode degradative enzymes to transform
carbohydrates for nutritional purposes when living in a nutrient-limited state or dead algae,
thus contributing to the recycling of marine carbon. In the isolated surface microbiota of
brown seaweed Ascophyllum nodosum, a quarter can act on at least one type of polysaccha-
rides, most of which are assigned to the Gammaproteobacteria and Flavobacteriia classes
based on the 16s rRNA information [10]. Whole genome sequencing was also used to
discover polysaccharides degrading bacteria with high alginolytic activity in the rotten
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Sargassum fusiforme [11]. However, there is limited information on the microbiome involved
in degrading brown-algae polysaccharides.

The structure of brown-algae polysaccharide is different from that present in ter-
restrial environments. The PDEs involved in marine bacteria should also be different.
Many new PDEs have been purified, and activity assays were performed from marine
bacteria [12]. Genome mining can also detect candidate PDEs by a curated reference
database [13]. The CAZy database is a knowledge-based resource widely used for anno-
tating carbohydrate-active enzymes [14]. According to the sequence similarity of catalytic
modules, cellulases are classified into several glycoside hydrolase (GH) families, and algi-
nate lyases are lodged into a dozen of polysaccharide lyases (PL) families (www.cazy.org,
accessed on 15 August 2022). Some families of the alginate lyases have been mostly isolated
from marine organisms, such as PL7, PL15, and PL17 [15].

S. fusiforme, known as brown macroalgae, grows in the lower intertidal zones along
the Pacific Northwest coastlines [16]. The alginate comprised in S. fusiforme (~30% of dry
weight) is larger than that in kelp (~25%) [17,18]. However, the taxonomy and function
of the related microbiome are poorly known. The exploration of metagenomic sequenc-
ing of marine environments provides the promise of massive screening of microbiome
community structure and candidate PDE enzymes [19,20]. In this study, we evaluated
the individual and combined effects of salinity and oxygen on the S. fusiforme-related
microbiota. We demonstrated microbial diversity, community structure and function, and
PDE co-occurrence network under different conditions using metagenomic technology,
providing a reference for the cultivation of S. fusiforme and the understanding of the marine
carbon cycle.

2. Materials and Methods
2.1. Sample Collection and Whole Metagenome Sequencing

Samples for metagenomic sequencing were obtained from rotten vesicles of S. fusiforme
cultivated in the Wenzhou Dongtou District, Zhejiang Province of China (27.82◦ N, 121.18◦ E)
(Table 1). The isolates were randomly collected at the southeast-facing shallow sea on
28 May 2020. Three isolates were cultivated in seawater (salinity of 30‰) for two days. For
each of them, we divided it into five parts. One part was stored in the −80 ◦C ultra-low
temperature freezers, and the other four parts were cultivated in four different conditions
for 10 additional days: Seawater + Air; Seawater; Freshwater + Air; and Freshwater (Table 1).
These 12 samples were frozen at −80 ◦C. The total microbial genomic DNA of these samples
was extracted by the Magnetic Soil and Stool DNA Kit (Tiangen Biotech Co., Ltd., Beijing,
China), and the quantity and integrity were confirmed by NanoDrop, Qubit 2.0, and
1% agarose gel electrophoresis. Metagenomic sequencing was conducted with a 150 bp
paired-end on the Illumina HiSeq platform (Novogene Bioinformatics Technology Co., Ltd.,
Beijing, China).

Table 1. Sample information.

Samples
Seawater (2 d)

/ Seawater + Air
(10 d)

Seawater
(10 d)

Freshwater + Air
(10 d)

Freshwater
(10 d)

Isolate 1 A1 B1 C1 D1 E1
Isolate 2 A2 B2 C2 D2 E2
Isolate 3 A3 B3 C3 D3 E3

2.2. Sequencing Data Processing, Assembly and Gene Annotation

Quality control was performed by the KneadData tool (version 0.10.0) (https://huttenhower.
sph.harvard.edu/kneaddata/, accessed on 23 June 2022), which integrates the tool Trimmo-
matic (version 0.33) [21] and Bowtie 2 [22] for quality filtering and host DNA decontam-
ination. The clean data was assembled with MEGAHIT (V1.2.9) to acquire contigs with
default parameters [23]. The clean data were realigned to the assembled contigs to get
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the unmapped reads by Bowite 2 [22]. QUAST was implemented to evaluate assembly
quality [24]. To minimize the effect of low abundance, we implemented an additional
mixed assembly by combining all unmapped reads from each sample with MEGAHIT.

All obtained contigs were subjected to prodigal (V2.6.3,-p meta -m) for the prokaryotic
gene prediction [25]. The predicted genes >100 nt were subjected to CDHIT (V4.8.1, -c 0.95
-n 10 -aS 0.9 -aL 0.9 -d 0 -M 0) to remove redundancy and get the initial gene catalog [26],
which was used to build reference gene database for following analysis by bowtie2-build
(V2.4.5) [22]. The clean data from each sample were aligned to this reference gene database
with parameters: -I 200-X 400. A unigene was considered present when at least 10 mapped
reads were detected in each of the 6 samples.

We calculated the relative abundance of a unigene k in a sample by a modified formula
from a previous study [27]:

Gk =
xk
Lk

× 1
∑n

i=1
xi
Li

× 106, (1)

Gk: The relative abundance of unigene k.
Lk: The lenth of unigene k.
xk: The number of mapped reads by unigene k.
n: The total number of unigenes.

2.3. Taxonomic Assignment and Diversity

The unigene dataset was aligned to the National Center for Biotechnology Information
(NCBI) Non-redundant (NR) protein database by using DIAMOND (V2.0.14) with an
e-value of 1e-5 [28]. The aligned output was subjected to MEGAN (V6.21.7) to determine
the taxonomic level of each gene by the lowest common ancestor (LCA) algorithm [29].
The relative abundance of each taxonomic level was calculated using the Pandas library
with concat function in Python. The Shannon diversity index was calculated by QIIME 2 to
measure the diversity of species in a community [30]. Linear discriminant analysis effect
size (Lefse) analysis was used to find the different genes and species among groups [31].

2.4. Gene Functional Classification and Polysaccharide Degrading Enzymes Detecting

EggNOG-mapper was used to predict gene functional classification by querying
unigenes against annotation sources, including Gene Ontology (GO) labels and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways [32]. GO enrichment analysis was
performed by TopGO with Benjamini-Hochberg correction [33]. The projection of unigenes
on the KEGG pathways was done using iPath [34].

To detect candidate PDE genes distributed in Sargassum-associated bacteria, we imple-
mented a method previously used to combine sequence alignment and domain search [13].
Reference PDE-related protein sequences were collected from the CAZyme database and lit-
erature mining [14]. The catalytic domain information and our unigenes were then located
by aligning reference sequences to dbCAN HMMdb v8 by HMMER (V3.3.2, hmmscan-
domtblout) [35]. Basic Local Alignment Search Tool (BLAST) was used to find the overlap
information between unigenes and the reference sequences with an e-value of 0.001, where
at least one matched region with an identity larger than 30% was needed. The PDE gene
in unigenes was determined if it matched the following criterion: (1) The same best cat-
alytic domain should be aligned (≥80% of full domain region) for the gene and reference
sequence by BLAST search; (2) The relative abundance should be greater than 1 in more
than 3 samples.

To analyze the relationship among the PDE genes, metagenomic reads were remapped
to detect PDE genes by Bowtie 2 again. To reduce the effect of cross-mapping by a similar
sequence, we kept reads with only one best hit for calculating the abundance in PDE genes.
The co-occurrence network was visualized in Cytoscape v3.9.1 [36].
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3. Results
3.1. Metagenomic Data Assembly and Gene Prediction

Metagenomic sequencing of 15 samples collected from vesicles of S. fusiforme resulted
in ~984 million clean reads, with an average of ~66 million reads per sample (Supplementary
Table S1). About 150 million reads were mapped to the S. fusiforme genome and removed.
MEGAHIT reconstructed an average of ~123 thousand contigs per sample. The cumulative
contig length of each sample was plotted (Figure 1A). Contigs in each sample were split
into nonoverlapping 100 bp windows, and the GC content of each window was counted
(Figure 1B). The GC content distribution from conditions A and C presented normal
distribution, while others presented bimodal distribution, which means that the microbiota
structure has dramatically changed in these three conditions.

J. Mar. Sci. Eng. 2022, 10, 1401 5 of 13 
 

 

 
Figure 1. Statistics for the assembly and unigenes. (A) The cumulative plot. (B) GC content plot. On 
the x-axis, contigs are ordered from the longest to the shortest. The y-axis shows the cumulative 
length. (C) Sample correlation plot based on the relative abundance of unigenes. Colors show the 
Pearson correlation coefficient. 

  

Figure 1. Statistics for the assembly and unigenes. (A) The cumulative plot. (B) GC content plot.
On the x-axis, contigs are ordered from the longest to the shortest. The y-axis shows the cumulative
length. (C) Sample correlation plot based on the relative abundance of unigenes. Colors show the
Pearson correlation coefficient.



J. Mar. Sci. Eng. 2022, 10, 1401 5 of 12

The open reading frames (ORFs) predicted from the prodigal were sent to CD-HIT to
get the original gene catalog. After mapping reads by Bowtie, we got 173,411 unigenes after
filtering reads in less than 6 samples. The relative abundance of unigenes was calculated
in each sample. Gene abundance correlation among the sample was calculated based on
the relative abundance of unigenes (Figure 1C). The samples from the same condition had
a high correlation coefficient (≥0.89). However, they were different isolates, especially
the correlation coefficient from the three samples that were initially collected, which was
equal to one, suggesting that the environment had more influence on the S. fusiforme-
associated microbiome than host genetic information. Samples from conditions A and C
had a high correlation coefficient, while a sample from freshwater and seawater had a low
correlation coefficient.

3.2. Microbial Community Analysis

Based on the unigenes and LCA algorithm, we detected 5308 species, most of which
belong to phylum Proteobacteria, followed by Uroviricota (Supplementary Table S1). About
half species were shared by all 15 samples from different conditions, while many species
could not be detected by one specific condition (Figure 2A).

J. Mar. Sci. Eng. 2022, 10, 1401 6 of 13 
 

 

3.2. Microbial Community Analysis 
Based on the unigenes and LCA algorithm, we detected 5308 species, most of which 

belong to phylum Proteobacteria, followed by Uroviricota (Supplementary Table S1). 
About half species were shared by all 15 samples from different conditions, while many 
species could not be detected by one specific condition (Figure 2A). 

 
Figure 2. The microbial community analysis of 15 samples. (A) Upset plot shows the overlap infor-
mation of species in each sample; (B) Shannon diversity; (C) principal component analysis (PCA) 
plot. 

High bacterial diversity was observed among different conditions. Based on the 
Shannon diversity, the microbiome structure was more complex when the condition 
changed, and the effect of freshwater should be larger than oxygen (Figure 2B). The mi-
crobial community was largely consistent across samples from the same condition, although 
they belong to different isolates. Conditions A and C were clustered together (Figure 2C). 
Compared with the samples with air (B and D), the samples from freshwater (D and E) 

Figure 2. The microbial community analysis of 15 samples. (A) Upset plot shows the overlap information
of species in each sample; (B) Shannon diversity; (C) principal component analysis (PCA) plot.



J. Mar. Sci. Eng. 2022, 10, 1401 6 of 12

High bacterial diversity was observed among different conditions. Based on the Shan-
non diversity, the microbiome structure was more complex when the condition changed,
and the effect of freshwater should be larger than oxygen (Figure 2B). The microbial commu-
nity was largely consistent across samples from the same condition, although they belong
to different isolates. Conditions A and C were clustered together (Figure 2C). Compared
with the samples with air (B and D), the samples from freshwater (D and E) were clustered,
suggesting that salinity had a greater effect on Sargassum-associated bacteria.

The composition of the S. fusiforme microbiome was distinctive across all five conditions,
although they shared the same most abundant genus Vibrio (48.5% ± 0.04) (Figure 3A). In all
five conditions, A and C had a higher proportion of genus Vibrio; B was enriched with gen-
era Alteromonas and Marinomonas; C had an increased composition of the genus Reinekea;
D was enriched with genera Bradyrhizobium, Novosphingobium, and Sphingobium; and
E had a higher proportion of genus Sphingomonas (Figure 3B).
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For species, the Vibrio harveyi group (11.1% ± 0.01) was the most abundant species in
all treatments, although Alteromonas macleodii had a higher abundance in condition B and
the Novosphingobium sp. ABRDHK2 had a higher abundance in condition D (Figure 3C).
For Lefse analysis, the V. harveyi group had a higher relative abundance in condition
A. A. macleodii and Marinomonas sp. JHZ_47 were also over-represented in condition B.
The Reinekea marinisedimentorum and Novosphingobium sp. ABRDHK2 were enriched in
conditions C and D, respectively. Three Sphingomonas and one Bradyrhizobium species were
enriched in condition E (Figure 3D).

3.3. Gene Function and Polysaccharide Degrading Enzymes Analysis

Differential abundance analysis with Lefse analysis revealed 395 unigenes with sig-
nificantly different relative abundances among these five conditions, of which 302 and
52 unigenes were enriched in conditions B and D, respectively. GO enrichment analysis
of these unigenes showed that the enriched items were related to component/complex
assembly (Supplementary Table S2). These unigenes could be matched with 244 KEGG
Orthology (KOs), of which 204 and 22 were enriched in conditions B and D, respectively.
KEGG pathway suggested that both highly abundant unigenes from conditions B and D
enriched in oxidative phosphorylation pathway (Supplementary Figures S1 and S2).

By combing the local alignment and domain search, we detected 205 PDE genes by
the top-matched reference sequence, of which 158 and 47 genes were assigned to PL and
GH families, respectively. The relative abundance was calculated by the unique mapped
reads. Most CAZy families were found in similar proportions in the same group. Most PL
genes belong to the PL7 and PL17 families (Figure 4A), and they are highly correlated. A
co-occurrence network of the PDE was built by unique mapped reads to search for potential
associations (Figure 4B). For r ≥ 0.5, the final network comprised 128 nodes and 3216
edges, of which 3061 were positive. The PDE genes in the GH107 family had no negative
correlation with others. Except for the extremely low abundance family (GH19 and PL5),
most of the negative correlations came from the GH18 family, which had 52 negative
correlations and 106 positive correlations. For r ≥ 0.8, the number of edges decreased to
1190, and all correlations were positive (Supplementary Figure S3).
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4. Discussion

To detect the structure and function of the S. fusiforme-associated microbiome, we
designed the method using metagenomic sequencing for 15 samples under five conditions.
Many species with relatively low abundance in a specific condition are difficult to be
detected by metagenomics. Different conditions can enhance the ability to understand
the microbiome community (Figure 2A). Metagenomic sequencing from rotten vesicles
of S. fusiforme contained ~15% host DNA, which suggests that the mixture of tissue and
bacterial genomes is an effective way to get bacterial sequences, which are also used in
kelp-associated microbiome analysis [37]. The analysis of GC content and microbial com-
munity has shown that compared with the change in the environment, the effect of genetic
information is still limited. Our previous study also showed low genetic diversity within
and between S. fusiforme populations [38]. The structure of the S. fusiforme microbiome did
not change much in the seawater environmental state after 10 days, which supports the
difficulty of degradation in the natural state. In this study, 10 days may not be enough to
establish a stable structure community for different environmental conditions. However,
changes in the environment can dramatically increase the complexity of the microbiome
community, and the Shannon diversity and principal component analysis (PCA) plot
support that the salinity may have more contribution than oxygen to the variation of
Sargassum-associated bacteria (Figure 2B,C). Most differential abundant unigenes were
found in conditions B and D, especially for condition B. The air should increase the abun-
dance of aerobic bacteria and the gene enriched in the oxidative phosphorylation pathway
(Supplementary Figures S1 and S2). Less differential abundant unigenes were found in the
change of salinity through a greater change of microbiome community structure (Figure 2B),
which means that the effect of salinity should be broad rather than a few specific species.

Our analysis revealed conditional differences in the relative abundance of certain
microbial taxa and PDE families (Figures 3 and 4A). Most Sargassum-associated bacteria
belong to the phylum Proteobacteria, which is the dominant organism on brown algal
tissue [39]. Some genera were reported to decompose algal polysaccharides, such as
Vibrio [40], Alteromonas [41], and Sphingomonas [42]. Vibrio is widespread in marine
water, and most of them (>70%) can encode alginate lyases [13]. The isolation of Vibrio spp.
can cause rot of algae [43], suggesting that the inhibition of this main genus in Sargassum-
associated bacteria may reduce the release of ocean carbon. Alteromonas, an important kelp-
associated genus, can be disrupted by elevated pCO2 [44]. A. macleodii, which was increased
in air condition (Figure 3C), can grow as the largest species in an alginate-supplemented
microcosm [45]. S. fusiforme grows in intertidal zones, where the salinity regime may change
by the effects of the river runoff. Sphingomonas, which was hardly detected in seawater
conditions, dramatically increased in freshwater conditions (Figure 3A). Therefore, some
S. fusiforme-associated bacteria could not be detected by one specific condition, and our
method can expand the ability to understand the microbiome community. Bacteria transfer
brown algae polysaccharides into inorganic carbon by utilizing a series of diverse PDEs,
sometimes hundreds of enzymes [8]. During PDE degradation by marine bacteria, various
enzymes are involved in extra- and intercellular degradation pathways. Although the
microbiome community changes under different conditions, the high abundance of PDEs
was similar (Figure 4A). Both PL7 and PL17 family are broadly available in nature and
has endolytic and exolytic alginate lyase activities [15,46]. In the present study, we only
detected a few PL15 families, which is thought to be another widely distributed PDE in
marine organisms [15]. The network suggests that these PDEs act together (Figure 4B),
supporting a pathway for polysaccharide degradation that should require many PDEs [8].

In conclusion, we investigated the individual and combined effects of salinity and
oxygen on the S. fusiforme-related microbiota, although this study focused only on the
early degradation phase, which may change as time increases. The structural analysis
of the microbiome detected may condition specific polysaccharide degradation-related
bacteria. The genes and PDEs were predicted from the assembled metagenomic data. The
co-occurrence network analysis support that encoded PDEs should act together. These data
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provide a reference for the cultivation of S. fusiforme and the understanding of the marine
carbon cycle.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/jmse10101401/s1, Figure S1: Projection of unigenes enriched in condition B
on the KEGG pathways using iPath; Figure S2: Projection of unigenes enriched in condition D on
the KEGG pathways using iPath; Figure S3: Co-occurrence network of the PDE (r ≥ 0.8). Table S1:
The species information of S. fusiforme-associated microbiome; Table S2: GO enrichment analysis of
unigenes with different relative abundances among five conditions.
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