Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (266)

Search Parameters:
Keywords = SO2/NOx removal

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3300 KiB  
Article
Catalytic Ozonation of Nitrite in Denitrification Wastewater Based on Mn/ZSM-5 Zeolites: Catalytic Performance and Mechanism
by Yiwei Zhang, Yulin Sun, Yanqun Zhu, Wubin Weng, Yong He and Zhihua Wang
Processes 2025, 13(8), 2387; https://doi.org/10.3390/pr13082387 - 27 Jul 2025
Viewed by 358
Abstract
In wet flue gas desulfurization and denitrification processes, nitrite accumulation inhibits denitrification efficiency and induces secondary pollution due to its acidic disproportionation. This study developed a Mn-modified ZSM-5 zeolite catalyst, achieving efficient resource conversion of nitrite in nitrogen-containing wastewater through an O3 [...] Read more.
In wet flue gas desulfurization and denitrification processes, nitrite accumulation inhibits denitrification efficiency and induces secondary pollution due to its acidic disproportionation. This study developed a Mn-modified ZSM-5 zeolite catalyst, achieving efficient resource conversion of nitrite in nitrogen-containing wastewater through an O3 + Mn/ZSM-5 catalytic system. Mn/ZSM-5 catalysts with varying SiO2/Al2O3 ratios (prepared by wet impregnation) were characterized by BET, XRD, and XPS. Experimental results demonstrated that Mn/ZSM-5 (SiO2/Al2O3 = 400) exhibited a larger specific surface area, enhanced adsorption capacity, abundant surface Mn3+/Mn4+ species, hydroxyl oxygen species, and chemisorbed oxygen, leading to superior oxidation capability and catalytic activity. Under the optimized conditions of reaction temperature = 40 °C, initial pH = 4, Mn/ZSM-5 dosage = 1 g/L, and O3 concentration = 100 ppm, the NO2 oxidation efficiency reached 94.33%. Repeated tests confirmed that the Mn/ZSM-5 catalyst exhibited excellent stability and wide operational adaptability. The synergistic effect between Mn species and the zeolite support significantly improved ozone utilization efficiency. The O3 + Mn/ZSM-5 system required less ozone while maintaining high oxidation efficiency, demonstrating better cost-effectiveness. Mechanism studies revealed that the conversion pathway of NO2 followed a dual-path catalytic mechanism combining direct ozonation and free radical chain reactions. Practical spray tests confirmed that coupling the Mn/ZSM-5 system with ozone oxidation flue gas denitrification achieved over 95% removal of liquid-phase NO2 byproducts without compromising the synergistic removal efficiency of NOx/SO2. This study provided an efficient catalytic solution for industrial wastewater treatment and the resource utilization of flue gas denitrification byproducts. Full article
(This article belongs to the Special Issue Processes in 2025)
Show Figures

Figure 1

20 pages, 4894 KiB  
Article
Ag-Cu Synergism-Driven Oxygen Structure Modulation Promotes Low-Temperature NOx and CO Abatement
by Ruoxin Li, Jiuhong Wei, Bin Jia, Jun Liu, Xiaoqing Liu, Ying Wang, Yuqiong Zhao, Guoqiang Li and Guojie Zhang
Catalysts 2025, 15(7), 674; https://doi.org/10.3390/catal15070674 - 11 Jul 2025
Viewed by 365
Abstract
The efficient simultaneous removal of NOx and CO from sintering flue gas under low-temperature conditions (110–180 °C) in iron and steel enterprises remains a significant challenge in the field of environmental catalysis. In this study, we present an innovative strategy to enhance [...] Read more.
The efficient simultaneous removal of NOx and CO from sintering flue gas under low-temperature conditions (110–180 °C) in iron and steel enterprises remains a significant challenge in the field of environmental catalysis. In this study, we present an innovative strategy to enhance the performance of CuSmTi catalysts through silver modification, yielding a bifunctional system capable of oxygen structure regulation and demonstrating superior activity for the combined NH3-SCR and CO oxidation reactions under low-temperature, oxygen-rich conditions. The modified AgCuSmTi catalyst achieves complete NO conversion at 150 °C, representing a 50 °C reduction compared to the unmodified CuSmTi catalyst (T100% = 200 °C). Moreover, the catalyst exhibits over 90% N2 selectivity across a broad temperature range of 150–300 °C, while achieving full CO oxidation at 175 °C. A series of characterization techniques, including XRD, Raman spectroscopy, N2 adsorption, XPS, and O2-TPD, were employed to elucidate the Ag-Cu interaction. These modifications effectively optimize the surface physical structure, modulate the distribution of acid sites, increase the proportion of Lewis acid sites, and enhance the activity of lattice oxygen species. As a result, they effectively promote the adsorption and activation of reactants, as well as electron transfer between active species, thereby significantly enhancing the low-temperature performance of the catalyst. Furthermore, in situ DRIFTS investigations reveal the reaction mechanisms involved in NH3-SCR and CO oxidation over the Ag-modified CuSmTi catalyst. The NH3-SCR process predominantly follows the L-H mechanism, with partial contribution from the E-R mechanism, whereas CO oxidation proceeds via the MvK mechanism. This work demonstrates that Ag modification is an effective approach for enhancing the low-temperature performance of CuSmTi-based catalysts, offering a promising technical solution for the simultaneous control of NOx and CO emissions in industrial flue gases. Full article
(This article belongs to the Special Issue Environmentally Friendly Catalysis for Green Future)
Show Figures

Graphical abstract

18 pages, 3259 KiB  
Article
Emission Characteristics and Environmental Impact of VOCs from Bagasse-Fired Biomass Boilers
by Xia Yang, Xuan Xu, Jianguo Ni, Qun Zhang, Gexiang Chen, Ying Liu, Wei Hong, Qiming Liao and Xiongbo Chen
Sustainability 2025, 17(14), 6343; https://doi.org/10.3390/su17146343 - 10 Jul 2025
Viewed by 440
Abstract
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, [...] Read more.
This study investigates the emission characteristics and environmental impacts of pollutants from bagasse-fired biomass boilers through the integrated field monitoring of two sugarcane processing plants in Guangxi, China. Comprehensive analyses of flue gas components, including PM2.5, NOx, CO, heavy metals, VOCs, HCl, and HF, revealed distinct physicochemical and emission profiles. Bagasse exhibited lower C, H, and S content but higher moisture (47~53%) and O (24~30%) levels compared to coal, reducing the calorific values (8.93~11.89 MJ/kg). Particulate matter removal efficiency exceeded 98% (water film dust collector) and 95% (bag filter), while NOx removal varied (10~56%) due to water solubility differences. Heavy metals (Cu, Cr, Ni, Pb) in fuel migrated to fly ash and flue gas, with Hg and Mn showing notable volatility. VOC speciation identified oxygenated compounds (OVOCs, 87%) as dominant in small boilers, while aromatics (60%) and alkenes (34%) prevailed in larger systems. Ozone formation potential (OFP: 3.34~4.39 mg/m3) and secondary organic aerosol formation potential (SOAFP: 0.33~1.9 mg/m3) highlighted aromatic hydrocarbons (e.g., benzene, xylene) as critical contributors to secondary pollution. Despite compliance with current emission standards (e.g., PM < 20 mg/m3), elevated CO (>1000 mg/m3) in large boilers indicated incomplete combustion. This work underscores the necessity of tailored control strategies for OVOCs, aromatics, and heavy metals, advocating for stricter fuel quality and clear emission standards to align biomass energy utilization with environmental sustainability goals. Full article
Show Figures

Figure 1

23 pages, 3308 KiB  
Review
Metal–Organic Framework (MOF)-Derived Metal Oxides for Selective Catalytic Reduction (SCR) of NOx
by Yu Zhang and Rui Wang
Molecules 2025, 30(13), 2836; https://doi.org/10.3390/molecules30132836 - 2 Jul 2025
Viewed by 580
Abstract
Metal–organic frameworks (MOFs) are a novel type of porous crystalline materials assembled from metal ions and organic linkers. Their derivatives can inherit characteristics such as high specific surface area, tunable porosity, and unique topological structures, which make MOF-derived metal oxides ideal catalysts for [...] Read more.
Metal–organic frameworks (MOFs) are a novel type of porous crystalline materials assembled from metal ions and organic linkers. Their derivatives can inherit characteristics such as high specific surface area, tunable porosity, and unique topological structures, which make MOF-derived metal oxides ideal catalysts for the selective catalytic reduction (SCR) of NOx. This review focuses on the synthetic strategies of MOF-derived metal oxides and the latest progress of oxides derived from various typical MOFs materials (including MILs, ZIFs, UiO, BTC series, MOF-74, MOF-5, and Prussian blue analogs, etc.) in the catalytic reduction in NOx, and analyzes the mechanisms for the enhanced catalytic performance. In addition, the challenges and prospects of MOF derivatives in catalytic applications are discussed. It is hoped that this review will help researchers understand the latest research progress of MOF-derived metal oxide materials in the catalytic removal of NOx pollution. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

11 pages, 1639 KiB  
Article
New Approach to the Combined Removal of NOx and SO2 for Circulating Fluidized Beds
by Chao Wang and Qinggang Lyu
ChemEngineering 2025, 9(4), 67; https://doi.org/10.3390/chemengineering9040067 - 25 Jun 2025
Viewed by 315
Abstract
Post-combustion technology is a new kind of low-nitrogen combustion technology. To achieve the combined removal of nitrogen oxides (NOx) and sulfur dioxide (SO2) emissions, the post-combustion technology combined with the sorbent injection in the furnace and post-combustion chamber is [...] Read more.
Post-combustion technology is a new kind of low-nitrogen combustion technology. To achieve the combined removal of nitrogen oxides (NOx) and sulfur dioxide (SO2) emissions, the post-combustion technology combined with the sorbent injection in the furnace and post-combustion chamber is proposed. Experiments investigating the effects of the sorbent addition in a post-combustion chamber and post-combustion air arrangement on NOx and SO2 emissions were conducted in a 0.1 MWth circulating fluidized bed test platform. In addition, a comparative analysis of the NOx and SO2 emissions under both combined removal methods was also performed. The results indicated that adding sorbent to the post-combustion chamber can reduce SO2 emissions, but further increasing the amount of sorbent will not significantly improve the desulfurization effect. The injection position of the post-combustion air will affect the emissions of NOx and SO2 in the flue gas. When the three-stage distribution of post-combustion air is adopted, the further back the third nozzle is distributed, the lower the temperature in the post-combustion chamber, which is beneficial to the control of NOx and SO2 emissions. Compared with the conventional combined removal method, the NOx emissions were significantly reduced under the new combined removal method. Through secondary desulfurization in the furnace and post-combustion chamber, oxygen-deficient combustion in the furnace can achieve the combined removal of NOx and SO2. Full article
(This article belongs to the Special Issue Fuel Engineering and Technologies)
Show Figures

Figure 1

58 pages, 949 KiB  
Review
Excess Pollution from Vehicles—A Review and Outlook on Emission Controls, Testing, Malfunctions, Tampering, and Cheating
by Robin Smit, Alberto Ayala, Gerrit Kadijk and Pascal Buekenhoudt
Sustainability 2025, 17(12), 5362; https://doi.org/10.3390/su17125362 - 10 Jun 2025
Viewed by 1564
Abstract
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past [...] Read more.
Although the transition to electric vehicles (EVs) is well underway and expected to continue in global car markets, most vehicles on the world’s roads will be powered by internal combustion engine vehicles (ICEVs) and fossil fuels for the foreseeable future, possibly well past 2050. Thus, good environmental performance and effective emission control of ICE vehicles will continue to be of paramount importance if the world is to achieve the stated air and climate pollution reduction goals. In this study, we review 228 publications and identify four main issues confronting these objectives: (1) cheating by vehicle manufacturers, (2) tampering by vehicle owners, (3) malfunctioning emission control systems, and (4) inadequate in-service emission programs. With progressively more stringent vehicle emission and fuel quality standards being implemented in all major markets, engine designs and emission control systems have become increasingly complex and sophisticated, creating opportunities for cheating and tampering. This is not a new phenomenon, with the first cases reported in the 1970s and continuing to happen today. Cheating appears not to be restricted to specific manufacturers or vehicle types. Suspicious real-world emissions behavior suggests that the use of defeat devices may be widespread. Defeat devices are primarily a concern with diesel vehicles, where emission control deactivation in real-world driving can lower manufacturing costs, improve fuel economy, reduce engine noise, improve vehicle performance, and extend refill intervals for diesel exhaust fluid, if present. Despite the financial penalties, undesired global attention, damage to brand reputation, a temporary drop in sales and stock value, and forced recalls, cheating may continue. Private vehicle owners resort to tampering to (1) improve performance and fuel efficiency; (2) avoid operating costs, including repairs; (3) increase the resale value of the vehicle (i.e., odometer tampering); or (4) simply to rebel against established norms. Tampering and cheating in the commercial freight sector also mean undercutting law-abiding operators, gaining unfair economic advantage, and posing excess harm to the environment and public health. At the individual vehicle level, the impacts of cheating, tampering, or malfunctioning emission control systems can be substantial. The removal or deactivation of emission control systems increases emissions—for instance, typically 70% (NOx and EGR), a factor of 3 or more (NOx and SCR), and a factor of 25–100 (PM and DPF). Our analysis shows significant uncertainty and (geographic) variability regarding the occurrence of cheating and tampering by vehicle owners. The available evidence suggests that fleet-wide impacts of cheating and tampering on emissions are undeniable, substantial, and cannot be ignored. The presence of a relatively small fraction of high-emitters, due to either cheating, tampering, or malfunctioning, causes excess pollution that must be tackled by environmental authorities around the world, in particular in emerging economies, where millions of used ICE vehicles from the US and EU end up. Modernized in-service emission programs designed to efficiently identify and fix large faults are needed to ensure that the benefits of modern vehicle technologies are not lost. Effective programs should address malfunctions, engine problems, incorrect repairs, a lack of servicing and maintenance, poorly retrofitted fuel and emission control systems, the use of improper or low-quality fuels and tampering. Periodic Test and Repair (PTR) is a common in-service program. We estimate that PTR generally reduces emissions by 11% (8–14%), 11% (7–15%), and 4% (−1–10%) for carbon monoxide (CO), hydrocarbons (HC), and oxides of nitrogen (NOx), respectively. This is based on the grand mean effect and the associated 95% confidence interval. PTR effectiveness could be significantly higher, but we find that it critically depends on various design factors, including (1) comprehensive fleet coverage, (2) a suitable test procedure, (3) compliance and enforcement, (4) proper technician training, (5) quality control and quality assurance, (6) periodic program evaluation, and (7) minimization of waivers and exemptions. Now that both particulate matter (PM, i.e., DPF) and NOx (i.e., SCR) emission controls are common in all modern new diesel vehicles, and commonly the focus of cheating and tampering, robust measurement approaches for assessing in-use emissions performance are urgently needed to modernize PTR programs. To increase (cost) effectiveness, a modern approach could include screening methods, such as remote sensing and plume chasing. We conclude this study with recommendations and suggestions for future improvements and research, listing a range of potential solutions for the issues identified in new and in-service vehicles. Full article
Show Figures

Figure 1

19 pages, 2494 KiB  
Article
Mesoporous MCM-48 and MCM-41 Silicas Modified with Copper by ADP Method as Effective Catalysts for Low-Temperature NH3-SCR—The Role of Synthesis Conditions and Associated Reactions
by Aleksandra Gomułka, Andrzej Kowalczyk, Izabela Majewska, Pegie Cool and Lucjan Chmielarz
Catalysts 2025, 15(6), 578; https://doi.org/10.3390/catal15060578 - 10 Jun 2025
Viewed by 767
Abstract
Mesoporous silicas of MCM-41 and MCM-48 types were synthesized and modified with copper using the ammonia-driven deposition precipitation (ADP) method, resulting in highly dispersed copper species. Samples with varying copper loadings were thoroughly characterized in terms of their porous structure, metal content, copper [...] Read more.
Mesoporous silicas of MCM-41 and MCM-48 types were synthesized and modified with copper using the ammonia-driven deposition precipitation (ADP) method, resulting in highly dispersed copper species. Samples with varying copper loadings were thoroughly characterized in terms of their porous structure, metal content, copper species’ aggregation, and the stability of deposited forms under reaction conditions. Copper-modified mesoporous silicas exhibited excellent catalytic performance in the low-temperature NH3-SCR process. Their activity in NO to NO2 oxidation suggests that the fast-SCR pathway plays a significant role in NOx conversion at low temperatures. However, direct ammonia oxidation limited SCR efficiency at higher temperatures. These findings demonstrate the potential of ADP-modified copper–silica catalysts for effective and selective NOx removal under low-temperature conditions. Full article
(This article belongs to the Special Issue Exclusive Feature Papers in Catalytic Materials)
Show Figures

Figure 1

31 pages, 1087 KiB  
Review
Global Trends in Air Pollution Modeling over Cities Under the Influence of Climate Variability: A Review
by William Camilo Enciso-Díaz, Carlos Alfonso Zafra-Mejía and Yolanda Teresa Hernández-Peña
Environments 2025, 12(6), 177; https://doi.org/10.3390/environments12060177 - 28 May 2025
Cited by 1 | Viewed by 850
Abstract
The objective of this article is to conduct a review to analyze global trends in the use of air pollution models under the influence of climate variability (CV) over urban areas. Five scientific databases were used (2013–2024): Scopus, ScienceDirect, SpringerLink, Web of Science, [...] Read more.
The objective of this article is to conduct a review to analyze global trends in the use of air pollution models under the influence of climate variability (CV) over urban areas. Five scientific databases were used (2013–2024): Scopus, ScienceDirect, SpringerLink, Web of Science, and Google Scholar. The frequency of citations of the variables of interest in the selected scientific databases was analyzed by means of an index using quartiles (Q). The results showed a hierarchy in the use of models: regional climate models/RCMs (Q3) > statistical models/SMs (Q3) > chemical transport models/CTMs (Q4) > machine learning models/MLMs (Q4) > atmospheric dispersion models/ADMs (Q4). RCMs, such as WRF, were essential for generating high-resolution projections of air pollution, crucial for local impact assessments. SMs, such as GAM, excelled in modeling nonlinear relationships between air pollutants and climate variables. CTMs, such as WRF-Chem, simulated detailed atmospheric chemical processes vital for understanding pollutant formation and transport. MLMs, such as ANNs, improved the accuracy of predictions and uncovered complex patterns. ADMs, such as HYSPLIT, evaluated air pollutant dispersion, informing regulatory strategies. The most studied pollutants globally were O3 (Q3) > PM (Q3) > VOCs (Q4) > NOx (Q4) > SO2 (Q4), with models adapting to their specific characteristics. Temperature emerged as the dominant climate variable, followed by wind, precipitation, humidity, and solar radiation. There was a clear differentiation in the selection of models and variables between high- and low-income countries. CTMs predominated in high-income countries, driven by their ability to simulate complex physicochemical processes, while SMs were preferred in low-income countries, due to their simplicity and lower resource requirements. Temperature was the main climate variable, and precipitation stood out in low-income countries for its impact on PM removal. VOCs were the most studied pollutant in high-income countries, and NOx in low-income countries, reflecting priorities and technical capabilities. The coupling between regional atmospheric models and city-scale air quality models was vital; future efforts should emphasize intra-urban models for finer urban pollution resolution. This study highlights how national resources and priorities influence air pollution research over cities under the influence of CV. Full article
(This article belongs to the Special Issue Air Pollution in Urban and Industrial Areas III)
Show Figures

Figure 1

16 pages, 6872 KiB  
Article
Eco-Friendly Removal and IoT-Based Monitoring of CO2 Emissions Released from Gasoline Engines Using a Novel Compact Nomex/Activated Carbon Sandwich Filter
by Saad S. M. Hassan, Nora R. G. Mohamed, Mohamed M. A. Saad, Yasser H. Ibrahim, Alia A. Elshakour and Mahmoud Abdelwahab Fathy
Polymers 2025, 17(11), 1447; https://doi.org/10.3390/polym17111447 - 23 May 2025
Viewed by 514
Abstract
A novel cost-effective, rapid, and eco-friendly method was described for the removal of carbon dioxide (CO2) from the gaseous emissions of gasoline engines. This involved the use of a sandwich filter (~10 cm diameter) made of a nonwoven poly (m [...] Read more.
A novel cost-effective, rapid, and eco-friendly method was described for the removal of carbon dioxide (CO2) from the gaseous emissions of gasoline engines. This involved the use of a sandwich filter (~10 cm diameter) made of a nonwoven poly (m-phenylene isophthalamide) (Nomex) fabric loaded with a thin layer of activated carbon. The optimized filter, with an activated carbon mass of 2.89 mg/cm2, a thickness of 4.8 mm, and an air permeability of 0.5 cm3/cm2/s, was tested. A simple homemade sampling device equipped with solid-state electrochemical sensors to monitor the concentration levels of CO2 before and after filtration of the emissions was utilized. The data were transmitted via a General Packet Radio Service (GPRS) link to an Internet of Things (IoT)-based gas monitoring system for remote management, and real-time data visualization. The proposed device achieved a 70 ± 3.4% CO2-removal efficiency within 7 min of operation. Characterization of the filter was conducted using a high-resolution scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX) and Brunauer–Emmett–Teller (BET) analysis. The effects of loaded activated carbon mass, fabric type, filter porosity, gaseous removal time, and adsorption kinetics were also examined. The proposed filter displayed several advantages, including simplicity, compactness, dry design, ease of regeneration, scalability, durability, low cost, and good efficiency. Heat resistance, fire retardancy, mechanical stability, and the ability to remove other gasoline combustion products such as CO, SOx, NOx, VOCs, and particulates were also offered. The filtration system enabled both in situ and on-line CO2 real-time continuous emission monitoring. Full article
(This article belongs to the Special Issue Polymers in Inorganic Chemistry: Synthesis and Applications)
Show Figures

Graphical abstract

13 pages, 3607 KiB  
Article
Combined Removal of NOx and SO2 in Circulating Fluidized Beds with Post-Combustion
by Chao Wang and Qinggang Lyu
Processes 2025, 13(5), 1496; https://doi.org/10.3390/pr13051496 - 13 May 2025
Viewed by 419
Abstract
The post-combustion technology of circulating fluidized beds (CFBs) can largely reduce the emission of nitrogen oxides (NOx) in the process of combustion, significantly reducing the removal cost of NOx. To explore the potential of the combined removal of NO [...] Read more.
The post-combustion technology of circulating fluidized beds (CFBs) can largely reduce the emission of nitrogen oxides (NOx) in the process of combustion, significantly reducing the removal cost of NOx. To explore the potential of the combined removal of NOx and SO2 emissions under post-combustion technology, experiments were conducted on a 0.1 MWth circulating fluidized bed test platform. This paper focuses on the effect of temperature in CFB with limestone addition on NOx and SO2 emissions under post-combustion technology combined with sorbent injection into the furnace. The low-cost combined removal of NOx and SO2 can be realized by denitrification in the furnace and through secondary desulfurization in the furnace and post-combustion chamber. In the optimized experimental condition, with combustion temperatures at 845 °C and sorbent addition in the furnace under post-combustion, the emission of NOx can be reduced to 47.10 mg/Nm3(@6%O2), and meanwhile, the emission of SO2 can be reduced to 92.09 mg/Nm3. Sulfur removal efficiency is higher under lower temperatures in a weakly reducing atmosphere. The reaction of sulfur fixation occurred in the post-combustion chamber and caused the particle size of fly ashes at the tail flue to become bigger and the sulfur content in the fly ash at the tail flue to increase. At 845–905 °C, the combustion temperature had a bigger effect on the SO2 emission than the NOx with sorbent addition in the furnace under post-combustion. Full article
(This article belongs to the Special Issue Development and Utilization of Biomass, Coal and Organic Solid Wastes)
Show Figures

Figure 1

16 pages, 4097 KiB  
Article
Study on Plasma-Chemical Mode of Pulsed Coaxial Dielectric Barrier Discharge Plasma Based on Mass Spectrometry
by Diankai Wang, Yongzan Zheng, Baosheng Du, Jianhui Han, Ming Wen and Tengfei Zhang
Aerospace 2025, 12(5), 433; https://doi.org/10.3390/aerospace12050433 - 13 May 2025
Viewed by 393
Abstract
This study systematically investigates the dynamic evolution of chemical regimes in pulsed coaxial dielectric barrier discharge (DBD) plasma under atmospheric pressure using mass spectrometry. An innovative real-time mass spectrometric monitoring methodology was established, enabling the dynamic tracking of the formation and consumption processes [...] Read more.
This study systematically investigates the dynamic evolution of chemical regimes in pulsed coaxial dielectric barrier discharge (DBD) plasma under atmospheric pressure using mass spectrometry. An innovative real-time mass spectrometric monitoring methodology was established, enabling the dynamic tracking of the formation and consumption processes of key reactive species such as ozone (O3) and nitrogen oxides (NOx). Energy density was the critical parameter governing the evolution of gaseous chemical components, with a quantitative elucidation of the regulatory mechanisms of air flow rate and control voltage on plasma chemical regime transition kinetics. Experimental results revealed significant parametric correlations: Under a constant control voltage of 140 V, increasing the gas flow rate from 0.5 to 5.5 L/min prolonged the transition duration from O3-NOx coexistence regime to a NOx-dominant regime from 408 s to 1210 s. Conversely, at a fixed flow rate of 3.5 L/min, elevating the control voltage from 120 V to 140 V accelerated this transition, reducing the required time from 2367 s to 718 s. Parametric sensitivity analysis demonstrated that control voltage exerts approximately 3.3 times greater influence on transition kinetics than flow rate variation. Through comprehensive analysis of the formation and consumption mechanisms of N, O, O3, and NOx species, we established a complete plasma chemical reaction network. This scheme provides fundamental insights into reaction pathways while offering practical optimization strategies for DBD systems. For aerospace applications, this work holds particular significance by demonstrating that the identified control parameters can be directly applied to plasma-assisted treatment of propellant wastewater at launch sites, where the efficient removal of nitrogen-containing pollutants is crucial. These findings advance both the fundamental understanding of atmospheric-pressure plasma chemistry and the engineering applications of plasma-based environmental remediation technologies in aerospace operations. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

24 pages, 4147 KiB  
Review
Research Progress on Flue Gas Desulfurization and Denitrification by Activated Carbon Method
by Lingyi Meng, Wenqi Li, Jianxiong Wang, Yan Shi and Changqing Hu
Processes 2025, 13(5), 1396; https://doi.org/10.3390/pr13051396 - 3 May 2025
Cited by 1 | Viewed by 775
Abstract
SO2 and NOx emissions from iron and steel production pollute the atmosphere. With the implementation of ultra-low emission standards, the requirements for flue gas purification have become more stringent. Activated carbon, due to its rich surface chemistry, stable physical structure, and [...] Read more.
SO2 and NOx emissions from iron and steel production pollute the atmosphere. With the implementation of ultra-low emission standards, the requirements for flue gas purification have become more stringent. Activated carbon, due to its rich surface chemistry, stable physical structure, and excellent adsorption and renewability, has a significant effect on the synergistic removal of multiple pollutants from industrial flue gas, and its industrial application has achieved a SO2 removal rate of ≥98% and a NOx removal rate of ≥83%. Firstly, we analyze the structure of activated carbon and the adsorption principle, discuss the mechanism of desulfurization and denitrification, and explore the shortcomings of the technology; then, we summarize the modification methods of activated carbon, determine the impregnation method of loading non-precious metal oxides as the optimal solution, and elucidate the loading conditions, process, and reaction mechanism; finally, we discuss the current status of the research, analyze the process deficiencies and the direction of optimization, and look forward to the prospect of development. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

13 pages, 2242 KiB  
Article
Application of Catalytic H2O2-Mediated NOx Removal Process Leveraging Solid Waste Residues: Exemplified by Copper Slag
by Huidong Tang, Jiacheng Bao, Chen Liu, Yuwen Deng, Yixing Ma, Lei Shi, Shuangyou Bao, Kai Li, Ping Ning and Xin Sun
Sustainability 2025, 17(6), 2469; https://doi.org/10.3390/su17062469 - 11 Mar 2025
Viewed by 653
Abstract
In pursuing sustainable environmental solutions, the concept of ‘waste to treasure’ has emerged as a promising approach. In this study, a new process is proposed to combine solid copper slag with hydrogen peroxide (H2O2) to remove nitrogen oxides (NOx) [...] Read more.
In pursuing sustainable environmental solutions, the concept of ‘waste to treasure’ has emerged as a promising approach. In this study, a new process is proposed to combine solid copper slag with hydrogen peroxide (H2O2) to remove nitrogen oxides (NOx) from acidic exhaust gases, thus effectively utilizing waste materials. Firstly, different smelting slags were screened to determine the catalytic potential of copper slag for hydrogen peroxide. Subsequently, the catalytic activity of the copper slags at various stages of the copper smelting process was thoroughly evaluated and optimized. In addition, a multifactorial evaluation of slow-cooled copper slag catalysts for removing NOx was carried out. Preliminary indications are that the iron phase in the copper slag is identified as the main source of catalytic activity sites. The results suggest that Fe2+/Fe3+ sites on the surface of the Fe phase in the slow-cooled copper slag may be crucial in improving the NOx removal efficiency. The main reactive oxygen species detected in the system were ·OH, ·O2⁻, and 1O2. In addition, the transformation products, formation pathways, and reaction mechanisms of NO in the liquid phase were initially investigated and determined. This study provides a green and sustainable path for the utilization of solid waste and management of atmospheric fumes in the non-ferrous metal industry and offers new perspectives to address environmental challenges in industrial processes. Full article
Show Figures

Figure 1

61 pages, 4846 KiB  
Review
Metal-Free Carbon Catalysis for Flue Gas Pollutants Purification: A Review
by Le Huang, Caiting Li, Xuan Liu, Shanhong Li, Jungang Zhao, Kuang Yang, Ziang Zhang, Ying Zhang, Qi Huang, Miaomiao Hu and Miao Zhang
Catalysts 2025, 15(3), 240; https://doi.org/10.3390/catal15030240 - 1 Mar 2025
Viewed by 976
Abstract
Carbon materials have been employed in many applications in flue gas purification due to their high specific surface area, good chemical inertness, and tunable surface chemistry. However, traditional methods such as adsorption or metal-loaded catalysis can be financially burdensome. The surface of carbon [...] Read more.
Carbon materials have been employed in many applications in flue gas purification due to their high specific surface area, good chemical inertness, and tunable surface chemistry. However, traditional methods such as adsorption or metal-loaded catalysis can be financially burdensome. The surface of carbon materials contains abundant vacancies, interstitial atoms, boundaries, and other defects. These structural defects are often modified with saturated or unsaturated functional groups containing heteroatoms such as oxygen, nitrogen, etc., thus possessing a certain acid–base property and redox ability, which makes the carbon materials themselves have some catalytic activity. The metal-free carbon catalytic purification of flue gas pollutants offers a promising solution to improve removal efficiency while reducing costs significantly. This review examines the research on carbon materials for the removal of flue gas pollutants, presenting recent advancements in carbon catalysis purification of NOx, SO2, and VOCs. It analyzes the critical properties of carbon materials that govern carbon catalytic efficiency, such as surface functional groups, surface defects, and pore structure. Finally, it summarizes methods for regulating these properties to achieve higher efficiencies in the metal-free carbon-catalyzed purification of flue gas pollutants. Full article
Show Figures

Graphical abstract

27 pages, 10694 KiB  
Article
Predictive Modeling of Air Purification Efficiency in Nano-TiO2-Modified Photocatalytic Cementitious Composites Using High-Resolution EDS Mapping and Mercury Intrusion Porosimetry
by Karol Chilmon, Maciej Kalinowski and Wioletta Jackiewicz-Rek
Purification 2025, 1(1), 1; https://doi.org/10.3390/purification1010001 - 21 Feb 2025
Cited by 2 | Viewed by 1414
Abstract
This study investigates the relationship between surface properties and microstructural characteristics of photocatalytic composites and their impact on air purification efficiency. High-resolution energy-dispersive X-ray spectroscopy (EDS) mapping and mercury intrusion porosimetry (MIP) were employed to analyze photocatalyst distribution and pore structure quantitatively. The [...] Read more.
This study investigates the relationship between surface properties and microstructural characteristics of photocatalytic composites and their impact on air purification efficiency. High-resolution energy-dispersive X-ray spectroscopy (EDS) mapping and mercury intrusion porosimetry (MIP) were employed to analyze photocatalyst distribution and pore structure quantitatively. The findings demonstrated a strong correlation between TiO2 coverage on the photoactive surface and NO removal rates and between pore structure characteristics and NO2 generation rates. Two predictive models were developed to link NOx removal rates with photocatalytic cementitious mortars’ surface and structural properties. A stepwise regression approach produced a second-degree polynomial model with an adjusted R2 of 0.98 and a Mean Absolute Percentage Error (MAPE) of 8.34%, indicating high predictive accuracy. The results underscore the critical role of uniform photocatalyst distribution and optimized pore structure in enhancing NOx removal efficiency while promoting the generation of desirable products (NO3) and minimizing the formation of undesirable byproducts (NO2). Full article
Show Figures

Figure 1

Back to TopTop