Metal–Organic Framework (MOF)-Derived Metal Oxides for Selective Catalytic Reduction (SCR) of NOx
Abstract
1. Introduction
2. Preparation Method of MOF-Derived Metal Oxides
2.1. Self-Pyrolysis
2.2. Loading Self-Pyrolysis
2.3. Chemical Reaction
3. Application of MOF-Derived Metal Oxides in SCR Reactions
3.1. MIL-Derived Metal Oxides
3.2. ZIF-Derived Metal Oxides
3.3. BTC Series MOF-Derived Metal Oxides
3.4. UiO-Derived Metal Oxides
3.5. MOF-74- and MOF-5-Derived Metal Oxides
3.6. Prussian Blue Analog-Derived Metal Oxides
4. Conclusions and Future Perspectives
- (1)
- There is an urgent need to strengthen research on the synthesis of MOF-derived materials. Developing highly active derivatives through optimized preparation processes and thoroughly investigating the structure–activity relationships between catalyst microstructure and catalytic performance are essential. Given the direct influence of synthesis methods on the interactions among active components, rational synthesis strategies should be developed to precisely regulate the structural characteristics of catalysts, thereby promoting the industrial application of MOF materials in denitrification. Additionally, the relatively low yield of MOF-derived metal oxides limits their large-scale production. Therefore, exploring novel preparation methods to improve product yield is of great significance for enhancing material synthesis efficiency.
- (2)
- The industrial application of MOF-derived metal oxide denitrification catalysts still faces challenges in balancing cost-effectiveness. The use of metal precursors with high crustal abundance and low price is a key factor to achieve the large-scale production of such catalysts.
- (3)
- Elucidating the catalytic reaction mechanism and revealing the synergistic effect of different elements are the keys to developing efficient and highly selective catalysts. The real-time tracking of reaction dynamics with the help of in situ characterization technology will provide an important basis for the mechanism study.
- (4)
- Future research should pay attention to the application value of density functional theory (DFT) calculations. This method can not only predict the catalyst activity and reduce the cost of experimental screening but also reveal the essence of the catalytic process from the theoretical level and realize the in-depth integration of experimental phenomena and theoretical mechanisms. At the same time, artificial intelligence and machine learning technologies show breakthrough application prospects in the field of material screening and structure design.
Author Contributions
Funding
Conflicts of Interest
References
- Ali, S.; Ali, S.; Ismail, A.; Zahid, M.; Raziq, F.; Qiao, L. Cu-based metal oxide catalysts for NH3-SCR of NO: From fundamentals to mechanistic insights. Coord. Chem. Rev. 2025, 536, 216676. [Google Scholar] [CrossRef]
- Guo, S.; Wang, S.; Chen, L.; Liu, J.; Hu, X.; Wang, F.; Xie, M.; Deng, J.; Zhang, D. Relayed regeneration of multiple metals-poisoned catalysts for elimination of NOx from flue gases. ACS ES T Eng. 2025. [Google Scholar] [CrossRef]
- Liu, X.; Cheng, S.; Yuan, S.; Zhu, X.; Sun, C.; Liu, H.; Chen, D.; Huang, F.; Dong, L. d-π orbital interaction promoting NOx selective reduction on the Mn-doped α-Fe2O3 (001) catalyst. Environ. Sci. Technol. 2025, 59, 4036–4046. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Feng, L.; Ma, B.; Zhang, X.; Zhong, R.; Zou, R. How do the morphology and crystal facet of CeO2 determine the catalytic activity toward NO removal? Small 2024, 21, 2407805. [Google Scholar] [CrossRef]
- Chen, W.; Zou, R.; Wang, X. Toward an atomic-level understanding of the catalytic mechanism of selective catalytic reduction of NOx with NH3. ACS Catal. 2022, 12, 14347–14375. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, X.; Wang, P.; Mansoor, M.; Zhang, J.; Peng, D.; Han, L.; Zhang, D. Challenges and perspectives of environmental catalysis for NOx reduction. JACS Au 2024, 4, 2767–2791. [Google Scholar] [CrossRef]
- Zhang, Y.; Guan, B.; Zheng, C.; Zhou, J.; Su, T.; Guo, J.; Chen, J.; Chen, Y.; Zhang, J.; Dang, H.; et al. Research on the resistance of catalysts for selective catalytic reduction: Current progresses and future perspectives. J. Clean. Prod. 2024, 434, 139920. [Google Scholar] [CrossRef]
- Li, R.; Yue, T.; Li, G.; Gao, J.; Tong, Y.; Cheng, S.; Li, G.; Hou, C.; Su, W. Global trends on NH3-SCR research for NOx control during 1994–2023: A bibliometric analysis. J. Energy Inst. 2024, 117, 101865. [Google Scholar] [CrossRef]
- Li, X.; Sun, F.; Qu, Z.; Wang, J.; Xu, Y.; Gao, J.; Zhao, G. A review of porous catalysts for low-temperature selective catalytic reduction of NO with NH3: Insights into the role of mass transfer within nanopores. Sep. Purif. Technol. 2025, 359, 130678. [Google Scholar] [CrossRef]
- Lian, D.; Chen, M.; Wang, H.; Liu, Y.; Liu, Y.; Li, C.; Liu, B.; Dai, G.; Hou, S.; Zhang, W.; et al. Promising selective catalytic reduction of NOx by CO: Status, Challenges, and perspective. Chem. Eng. J. 2024, 496, 154242. [Google Scholar] [CrossRef]
- Huang, W.; Yang, S.; Li, X.; Ding, C.; Ren, S.; Li, S.; Zhang, H.; Pi, X.; Yin, X. Performance, reaction mechanism and modification methods for Mn-based CO-SCR catalysts: A review. J. Environ. Chem. Eng. 2024, 12, 113593. [Google Scholar] [CrossRef]
- Elkaee, S.; Phule, A.; Yang, J. Advancements in (SCR) technologies for NOx reduction: A comprehensive review of reducing agents. Process Saf. Environ. 2024, 184, 854–880. [Google Scholar] [CrossRef]
- Kashif, M.; Yuan, M.; Su, Y.; Heynderickx, P.M.; Memon, A. A review on pillared clay-based catalysts for low-temperature selective catalytic reduction of NOx with hydrocarbons. Appl. Clay Sci. 2023, 233, 106847. [Google Scholar] [CrossRef]
- Sheikh, M.; Wang, P.; Chen, C.; Yin, J. Innovative catalysts for the selective catalytic reduction of NOx with H2: A systematic review. Fuel 2024, 355, 129364. [Google Scholar]
- Guan, Y.; Liu, Y.; Lv, Q.; Wang, B.; Che, D. Review on the selective catalytic reduction of NOx with H2 by using novel catalysts. J. Environ. Chem. Eng. 2021, 9, 106770. [Google Scholar] [CrossRef]
- Wu, H.; Li, J.; Gao, M.; Chen, Y.; Ren, S.; Yang, J.; Liu, Q. Deactivation mechanisms and strategies to mitigate deactivation of iron-based catalysts in NH3-SCR for NO reduction: A comprehensive review. Sep. Purif. Technol. 2025, 358, 130268. [Google Scholar] [CrossRef]
- Hou, S.; Fang, D.; Sheng, F.; He, F.; Xie, J. Design and regulation of acidic and redox sites in Mn-based spinel for low temperature selective catalytic reduction of NO with NH3. Sep. Purif. Technol. 2025, 369, 133054. [Google Scholar] [CrossRef]
- Niu, Z.; Gao, F.; Wu, W.; Yi, H.; Zhao, S.; Duan, E.; Wang, C.; Tang, X. Preparation and optimization of Mn-based catalysts for low-temperature NH3-SCR: Component selection, synthesis strategy and influencing factors. Sep. Purif. Technol. 2025, 357, 130103. [Google Scholar] [CrossRef]
- Chen, X.; Gao, P.; Huang, L.; Hu, Y.; Wang, J.; Liu, Z.; Shen, Y. Ultra-low temperature selective catalytic reduction of NOx into N2 by micron spherical CeMnOx in high-humidity atmospheres containing SO2. Appl. Catal. B Environ. 2025, 360, 124552. [Google Scholar] [CrossRef]
- Liu, S.; Gao, J.; Xu, W.; Ji, Y.; Zhu, T.; Xu, G.; Zhong, Z.; Su, F. Transition metal-based catalysts for selective catalytic reduction of NO by CO: A state-of-the-art review. Chem. Eng. J. 2024, 486, 150285. [Google Scholar] [CrossRef]
- Wang, K.; Li, Y.; Xie, L.; Li, X.; Li, J. Construction and application of base-stable MOFs: A critical review. Chem. Soc. Rev. 2022, 51, 6417–6441. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Wang, R.; Kozhevnikov, I.V. Versatile POMOF-based materials: Synthesis, mechanism, topology and catalytic applications. Coord. Chem. Rev. 2025, 524, 216304. [Google Scholar] [CrossRef]
- Villenoisy, T.; Zheng, X.; Wong, V.; Mofarah, S.; Arandiyan, H.; Yamauchi, Y.; Koshy, P.; Sorrell, C. Principles of design and synthesis of metal derivatives from MOFs. Adv. Mater. 2023, 35, 2210166. [Google Scholar] [CrossRef]
- Sahoo, S.; Kumar, R.; Dhakal, G.; Shim, J. Recent advances in synthesis of metal-organic frameworks (MOFs)-derived metal oxides and its composites for electrochemical energy storage applications. J. Energy Storage 2023, 74, 109427. [Google Scholar] [CrossRef]
- Qiu, X.; Wang, R. From construction strategies to applications: Multifunctional defective metal-organic frameworks. Coord. Chem. Rev. 2025, 526, 216356. [Google Scholar] [CrossRef]
- Wu, R.; Qian, X.; Rui, X.; Liu, H.; Yadian, B.; Zhou, K.; Wei, J.; Yan, Q.; Feng, X.Q.; Long, Y.; et al. Zeolitic imidazolate framework 67-derived high symmetric porous Co3O4 hollow dodecahedra with highly enhanced lithium storage capability. Small 2014, 10, 1932–1938. [Google Scholar] [CrossRef]
- Song, K.; Shi, J.; Zhou, X.; Gui, Y.; Li, J.; Ma, D.; Chen, Y.; He, C.; Jia, Y.; Qin, B.; et al. Design of dual-ligand coordination in metal organic frameworks for breaking the seesaw effect between de-NOx activity and N2 selectivity. Appl. Catal. B Environ. 2024, 354, 124131. [Google Scholar] [CrossRef]
- Sun, Q.; Gao, H.; Xiao, M.; Sema, T.; Liang, Z. Cerium-MOF-derived composite hierarchical catalyst enables energy-efficient and green amine regeneration for CO2 capture. Environ. Sci. Technol. 2024, 58, 10052–10059. [Google Scholar] [CrossRef]
- Zhou, W.; Tang, Y.; Zhang, X.; Zhang, S.; Xue, H.; Pang, H. MOF derived metal oxide composites and their applications in energy storage. Coord. Chem. Rev. 2023, 477, 214949. [Google Scholar] [CrossRef]
- He, Y.; Yin, Z.; Wang, Z.; Wang, H.; Xiong, W.; Song, B.; Qin, H.; Xu, P.; Zeng, G. Recent progress on mixed transition metal nanomaterials based on metal-organic frameworks for energy-related applications. J. Mater. Chem. A 2022, 10, 9788–9820. [Google Scholar] [CrossRef]
- Yi, S.; Shi, W.; Yang, X.; Yao, Z. Engineering sensitive gas sensor based on MOF-derived hollow metal-oxide semiconductor heterostructures. Talanta 2023, 258, 124442. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Yan, E.; Lv, Y.; Zhou, Y.; Chu, X. Engineering MOF-derived hollow metal oxides toward enhanced electrocatalytic oxygen evolution reaction. Appl. Catal. A 2024, 681, 119772. [Google Scholar] [CrossRef]
- Salunkhe, R.; Kaneti, Y.; Yamauchi, Y. Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: Progress and prospects. ACS Nano 2017, 11, 5293–5308. [Google Scholar] [CrossRef] [PubMed]
- Payam, A.; Khalil, S.; Chakrabarti, S. Synthesis and characterization of MOF-derived structures: Recent advances and future perspectives. Small 2024, 20, 2310348. [Google Scholar] [CrossRef]
- Kaneti, Y.; Tang, J.; Salunkhe, R.; Jiang, X.; Yu, A.; Wu, K.; Yamauchi, Y. Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 2017, 29, 1604898. [Google Scholar] [CrossRef]
- Li, L.; Liang, Y.; Liu, Y.; Wei, M.; Wang, B.; Wang, D. Facile preparation of MnOx catalysts derived from MOFs for efficient toluene oxidation: Synergistic enhancement of active site density and reactivity. Sep. Purif. Technol. 2025, 363, 132214. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, H.B.; Madhavi, S.; Hng, H.H.; Lou, X.W. Formation of Fe2O3 microboxes with hierarchical shell structures from metal-organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 2012, 134, 17388–17391. [Google Scholar] [CrossRef]
- Tao, Y.; Tang, Z.; Xie, L.; Xu, X.; Zhao, W.; Xu, W.; Bao, D.; Zhong, Y.; Gao, Z.; Wen, Z.; et al. Surface-enhanced light harvesting over MOF-derived porous ZnO films for highly efficient QDs-based photoelectrochemical hydrogen generation. Green. Energy Environ. 2024, 10, 1270–1279. [Google Scholar] [CrossRef]
- Dong, Z.; Zhao, Z.; Wang, F.; Wang, F.; Xia, M.; Ding, C. Innovative application and micro-catalytic mechanism of MOF-74 derived Ni-Co bimetallic oxides in catalytic wet oxidation of high-concentration 2,4-dinitroanisole wastewater. Appl. Catal. B Environ. 2025, 367, 125082. [Google Scholar] [CrossRef]
- Chen, J.; Wang, P.F.; Kang, Y.; Zhang, Y.H.; Yang, D.X.; Shi, F.N. Co3O4/LaCoO3 nanocomposites derived from MOFs as anodes for high-performance lithium-ion batteries. Inorg. Chem. Commun. 2022, 140, 109447. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, S.; Cui, Z.; Gao, F.; Tai, Y.; Liu, Q. Enhanced photocatalytic ozonation of bisphenol A using Ce doped Bi-MOF derived oxygen-rich vacancies Bi2O3/CeO2. Sep. Purif. Technol. 2025, 364, 132350. [Google Scholar] [CrossRef]
- Alhakemy, A.; Elsayed, M.; Algethami, F.; Abdelhamid, H. Metal-organic framework (MOF)-derived bimetallic (Ni, Cu) Oxide@C electrocatalyst for oxygen evolution reaction. Int. J. Hydrogen Energy 2025, 115, 289–298. [Google Scholar] [CrossRef]
- Li, A.; Yang, Y.; Bai, X.; Bao, H.; He, M.; Zeng, X.; Wang, Y.; Li, F.; Qin, S.; Yang, W.; et al. Trimetallic MOF-derived Fe–Mn–Sn oxide heterostructure enabling exceptional catalytic degradation of organic pollutants. J. Colloid. Interface Sci. 2025, 679, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Liu, C.; Wang, J.; Li, Q.; Zhang, Y.; Ma, C.; Sun, H.; Wang, J.; Qiao, W.; Ling, L. Two-dimensional MOF-derived porous nanosheets dotted with in-situ MgO/carbon heterostructure achieving striking performance in H2S catalytic oxidation at room temperature. Appl. Catal. B Environ. 2025, 366, 125005. [Google Scholar] [CrossRef]
- Wang, Z.; Yuan, Y.; Sun, K.; Yang, P.; Wang, Z.; Fan, R. MOF-derived metal oxides with hollow porous nanocube structure realize ultra-wideband, lightweight, and anticorrosion microwave absorber. Ceram. Int. 2024, 50, 48267–48279. [Google Scholar] [CrossRef]
- Huang, X.; Kang, Y.; Yan, S.; Elmarakbi, A.; Fu, Y.; Xie, W. Metal-organic framework-derived trimetallic oxides with dual sensing functions for ethanol. Nanoscale 2023, 15, 8181–8188. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, X.; Zhang, J.; Mai, Y.; Chen, J. Efficient MnCeOx catalyst derived from MnCe-MOF for chlorobenzene oxidation: Effects of metal ratio, pyrolysis atmosphere and pyrolysis temperature. Micropor. Mesopor. Mat. 2024, 368, 113035. [Google Scholar] [CrossRef]
- Bi, F.; Ma, S.; Gao, B.; Liu, B.; Huang, Y.; Qiao, R.; Zhang, X. Boosting toluene deep oxidation by tuning metal-support interaction in MOF-derived Pd@ZrO2 catalysts: The role of interfacial interaction between Pd and ZrO2. Fuel 2024, 357, 129833. [Google Scholar] [CrossRef]
- Zhang, J.; Zhuang, X.; Meng, W.; Tong, B.; Liu, L.; Wang, Y.; Han, C. Dual-confinement regulating ternary metal-oxide activity sites derived from Co-MOF for enhanced electrocatalytic activity for glucose oxidation. Chem. Eng. J. 2024, 489, 151398. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, W.; Li, W.; Cong, P.; Gao, D.; Jiang, X.; Hu, R.; Wang, R.; Chen, G. Insight into formaldehyde decomposition over MOFs-derived CeO2-MnOx bimetallic oxides. Sep. Purif. Technol. 2025, 358, 130287. [Google Scholar] [CrossRef]
- Shokry, R.; Salam, H.; Aman, D.; Mikhail, S.; Zaki, T.; Rouby, W.; Farghali, A.; Zoubi, W.; Ko, Y. MOF-derived core–shell MnO@Cu/C as high-efficiency catalyst for reduction of nitroarenes. Chem. Eng. J. 2023, 459, 141554. [Google Scholar] [CrossRef]
- Li, L.; Fu, S.; Tao, D.; Zhang, J.; Tian, M.; Shi, J.; Ma, M.; He, C. Heterobimetallic CoCeOx derived from cobalt partially-substituted Ce-UiO-66 for chlorobenzene efficient catalytic destruction. J. Rare Earth 2023, 41, 810–819. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, W.; Chen, M.; Liu, J.; Gu, Z.; Yan, X. Ligand-engineered Ru-doped cobalt oxides derived from metal-organic frameworks for large-current-density water splitting. J. Colloid. Interface Sci. 2024, 653, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Yang, J.; Rui, X.; Zhang, W.; Yan, Q.; Chen, P.; Huo, F.; Huang, W.; Dong, X. MOF-directed templating synthesis of a porous multicomponent dodecahedron with hollow interiors for enhanced lithium-ion battery anodes. J. Mater. Chem. A. 2015, 3, 8483–8488. [Google Scholar] [CrossRef]
- Zhang, J.; Luan, Y.; Lyu, Z.; Wang, L.; Xu, L.; Yuan, K.; Pan, F.; Lai, M.; Liu, Z.; Chen, W. Synthesis of hierarchical porous δ-MnO2 nanoboxes as an efficient catalyst for rechargeable Li-O2 batteries. Nanoscale 2015, 7, 14881–14888. [Google Scholar] [CrossRef]
- Abney, C.; Pashow, K.; Russel, S.; Chen, Y.; Samantaray, R.; Lockard, J.; Lin, W. Topotactic transformations of metal−organic frameworks to highly porous and stable inorganic sorbents for efficient radionuclide sequestration. Chem. Mater. 2014, 26, 5231–5243. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, X.; Li, T.; Zhang, Y.; Xu, H.; Sun, Y.; Gu, X.; Gu, C.; Luo, J.; Gao, B. MIL series of metal organic frameworks (MOFs) as novel adsorbents for heavy metals in water: A review. J. Hazard. Mater. 2022, 429, 128271. [Google Scholar] [CrossRef]
- Qin, G.; Zheng, J.; Li, Y.; Yang, Y.; Liu, X.; Han, X.; Huang, Z. Tailor the crystal planes of MIL-101(Fe) derivatives to enhance the activity of SCR reaction at medium and low temperature. J. Colloid. Interface Sci. 2022, 615, 432–444. [Google Scholar] [CrossRef]
- Hu, Y.; Cheng, T.; Jiang, Z.; Qin, K.; He, H.; Zhu, C. Metal-organic framework assisted preparation of α-Fe2O3 for selective catalytic reduction of NOX with NH3. J. Solid. State Chem. 2024, 329, 124420. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, L.; Chen, Z.; Li, X. Promotional effect for SCR of NO with CO over MnOx-doped Fe3O4 nanoparticles derived from metal-organic frameworks. Chin. J. Chem. Eng. 2022, 46, 113–125. [Google Scholar] [CrossRef]
- Jiang, M.; Yan, Z.; Zhang, Y.; Zhang, C.; Chang, C.; Xiao, M.; Ruan, L.; Yan, Y.; Yu, Y.; He, H. Simultaneous modification of redox and acidic properties of FeOx catalysts derived from MIL-100(Fe) via HPW incorporation for NH3-SCR. Appl. Catal. B Environ. 2024, 358, 124416. [Google Scholar] [CrossRef]
- Yu, S.; Xu, S.; Sun, B.; Lu, Y.; Li, L.; Zou, W.; Wang, P.; Gao, F.; Tang, C.; Dong, L. Synthesis of CrOx/C catalysts for low temperature NH3-SCR with enhanced regeneration ability in the presence of SO2. RSC Adv. 2018, 8, 3858–3868. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, R.; Chang, J.; Yue, M.; Cai, Y. Three-dimensional MOFs confined Anderson-type POMs clusters—Templated fabrication of porous Co-NiMo/Cr2O3 catalyst with superior NH3-SCR catalytic activity. Fuel 2025, 381, 133259. [Google Scholar] [CrossRef]
- Zhu, J.; Li, J.; Chu, B.; Liu, S.; Fu, S.; Qin, Q.; Dong, L.; Li, B. Excitation of catalytic performance on MOFs derivative carrier by residual carbon for low-temperature NH3-SCR reaction. Mol. Catal. 2023, 535, 112859. [Google Scholar] [CrossRef]
- Du, R.; Du, Y.; Liu, X.; Fan, Z.; Wu, X. NOx removal by selective catalytic reduction with NH3 over MOFs-derived MnTi catalyst. J. Environ. Chem. Eng. 2022, 10, 108028. [Google Scholar] [CrossRef]
- Zhu, J.; Mo, D.; Tao, L.; Li, J.; Fu, S.; Dong, L.; Li, B.; Chen, Z.; Fan, M. N-doped porous carbon material derived by MOFs calcined in proper oxygen atmosphere as high-performance catalyst for the low-temperature NH3-SCR. J. Environ. Chem. Eng. 2023, 11, 111218. [Google Scholar] [CrossRef]
- Li, X.; Liang, H.; Liu, X.; Zhang, Y.; Liu, Z.; Fan, H. Zeolite imidazolate frameworks (ZIFs) derived nanomaterials and their hybrids for advanced secondary batteries and electrocatalysis. Chem. Rec. 2022, 22, e202200105. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, B.; Wang, R. Functionally decorated metal-organic frameworks in environmental remediation. Chem. Eng. J. 2023, 455, 140741. [Google Scholar] [CrossRef]
- Yuan, Y.; Li, X.; Sun, X.; Sun, Y.; Yang, M.; Liu, B.; Yang, D.; Li, H.; Liu, Y. Recent advances in functionalizing ZIFs and their derived carbon materials towards electrocatalytic water splitting. Nano Energy 2025, 136, 110727. [Google Scholar] [CrossRef]
- Kaneti, Y.; Dutta, S.; Hossain, M.; Shiddiky, M.; Tung, K.; Shieh, F.; Tsung, C.; Wu, K.; Yamauchi, Y. Strategies for improving the functionality of zeolitic imidazolate frameworks: Tailoring nanoarchitectures for functional applications. Adv. Mater. 2017, 29, 1700213. [Google Scholar] [CrossRef]
- Shahzad, A.; Zulfiqar, F.; Nadeem, M. Cobalt containing bimetallic ZIFs and their derivatives as OER electrocatalysts: A critical review. Coord. Chem. Rev. 2023, 477, 214925. [Google Scholar] [CrossRef]
- Bai, Y.; Dong, J.; Hou, Y.; Guo, Y.; Liu, Y.; Li, Y.; Han, X.; Huang, Z. Co3O4@PC derived from ZIF-67 as an efficient catalyst for the selective catalytic reduction of NOx with NH3 at low temperature. Chem. Eng. J. 2019, 361, 703–712. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, R. Polymetallic MnW/Co3O4 porous composites derived from polyoxometalate-induced “cage-within-cage” zeolitic imidazolate frameworks with high efficiency towards NOx reduction. Process Saf. Environ. 2024, 191, 2686–2700. [Google Scholar] [CrossRef]
- Kim, H.; Lee, H.; Kim, H.; Jeon, S.; Hwang, K.; Kim, D. Enhanced NH3-SCR activity at low temperatures over MnOx supported on two-dimensional TiO2 derived from ZIF-8. J. Environ. Chem. Eng. 2023, 11, 110107. [Google Scholar] [CrossRef]
- Li, S.; Li, C.; Liu, C.; Song, L.; Guo, Q.; Peng, T.; Chai, Q.; Zheng, X. Mn MOF-derivatives synthesized based upon a mechanochemistry method for low-temperature NH3-SCR: From amorphous precursor to amorphous catalyst. Mol. Catal. 2024, 554, 113767. [Google Scholar] [CrossRef]
- Roy, S.; Darabdhara, J.; Ahmaruzzaman, M. Recent advances in Cu-BTC MOF-based engineered materials for the photocatalytic treatment of pharmaceutical wastewater towards environmental remediation. RSC Sustain. 2023, 1, 1952–1961. [Google Scholar] [CrossRef]
- Liu, Q.; Kashif, M.; Deng, W.; Zhao, B.; Heynderickx, P.M.; Su, Y. Exploring the role of Cu/Mn-BTC catalyst in the selective catalytic reduction of NOx by C3H6: Synthesis to in-situ DRIFTS study. Fuel 2024, 367, 131508. [Google Scholar] [CrossRef]
- Song, K.; Hu, J.; Lu, P.; Ma, D.; Zhou, X.; Li, J.; Jiang, T.; Li, L.; Wu, S.; Shi, J. Low-temperature selective catalytic reduction of NOx with NH3: Exploring the mechanism of enhancing H2O tolerance through methylation functionalization and structural regulation in IPAx-Mn-BTC. Appl. Catal. B Environ. 2024, 343, 123548. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, L.; Duan, J.; Bi, S. Insights into deNOx processing over Ce-modified Cu-BTC catalysts for the CO-SCR reaction at low temperature by in situ DRIFTS. Sep. Purif. Technol. 2020, 234, 116081. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, Y.; Zhao, P.; Shu, H.; Dou, C.; Sun, R.; Lian, F. Chemical thermodynamic and catalytic mechanism analysis of Cu-BTC-derived CuOx/C catalyst for selective catalytic reduction (SCR). Mol. Catal. 2022, 531, 112710. [Google Scholar]
- Zhang, L.; Huang, L.; Qin, Y.; Chen, B. Structure and denitration performance of carbon-based catalysts prepared from Cu-BTC precursor. T Nonferr Metal. Soc. 2018, 28, 980–988. [Google Scholar] [CrossRef]
- Qin, Y.; Huang, L.; Zhang, D.; Sun, L. Mixed-node A-Cu-BTC and porous carbon based oxides derived from A-Cu-BTC as low temperature NO-CO catalyst. Inorg. Chem. Commun. 2016, 66, 64–68. [Google Scholar] [CrossRef]
- Shi, Y.; Ma, X.; Gao, J.; Yu, F.; Li, C.; Xiong, W.; Huang, L. A comparative study on the activity and adsorption of bimetallic MOF-derived Me-Cu/TiO2 (Me = Fe, Co, Ni) for low-temperature selective catalytic reduction of NO by CO. Surf. Interfaces 2024, 53, 105030. [Google Scholar] [CrossRef]
- Ko, S.; Tamg, X.; Gao, F.; Wang, C.; Liu, H.; Liu, Y. Selective catalytic reduction of NOx with NH3 on Mn, Co-BTC-derived catalysts: Influence of thermal treatment temperature. J. Solid. State Chem. 2022, 307, 122843. [Google Scholar] [CrossRef]
- Zhao, R.; Wei, X.; Chu, B.; Chen, K.; Qin, Q.; Liu, H.; Zhou, Y.; Li, B.; Dong, L. Multi-phase coexisting metal oxide derived by MOFs for the CO-SCR reaction at low temperature and in situ DRIFTS study on reaction mechanism. Appl. Surf. Sci. 2022, 580, 152277. [Google Scholar] [CrossRef]
- Liu, T.; Han, Z.; Jing, J.; Zeng, Q.; Tian, Y.; Ma, D. Influence of calcination temperature on the NH3-SCR performance of CeTiOx catalysts derived from Ce-Ti MOFs. Energy Fuels 2024, 38, 21277–21286. [Google Scholar] [CrossRef]
- Rego, R.; Kurkuri, M.; Kigg, M. A comprehensive review on water remediation using UiO-66 MOFs and their derivatives. Chemosphere 2022, 302, 134845. [Google Scholar] [CrossRef]
- Amani, V.; Norouzi, F.; Akrami, Z. A review of UiO-based MOF detection and removal strategies for antibiotics in water. New J. Chem. 2024, 48, 18600–18617. [Google Scholar] [CrossRef]
- Wang, Q.; Sun, W.; Xie, T.; Cao, L.; Yang, J. Metal-organic framework (MOF) template based efficient Pt/ZrO2@C catalysts for selective catalytic reduction of H2 below 90 °C. Chem. Asian J. 2019, 14, 416–421. [Google Scholar] [CrossRef]
- Han, Z.; Hu, Y.; Liu, T.; Li, C.; Zhou, S.; Pan, X. The influence of annealing temperature on NH3-SCR performance of CexZr1-x/UiO-66 bimetal MOFs. J. Environ. Chem. Eng. 2023, 11, 110963. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, G.; Chen, G.; Leng, Z.; Xia, D.; Wang, Z. Enabling wide-temperature selective catalytic reduction of NOX via modulating redox ability of Mn-based catalysts. Energy Fuels 2024, 38, 8960–8967. [Google Scholar] [CrossRef]
- Liu, Z.; Sun, G.; Chen, C.; Sun, K.; Zeng, L.; Yang, L.; Chen, Y.; Wang, W.; Liu, B.; Lu, Y.; et al. Fe-doped Mn3O4 spinel nanoparticles with highly exposed Feoct-O-Mntet sites for efficient selective catalytic reduction (SCR) of NO with ammonia at low temperatures. ACS Catal. 2020, 10, 6803–6809. [Google Scholar] [CrossRef]
- Li, C.; Shi, Y.; Zhao, Q.; Xiong, W.; Ding, Y.; Sun, J.; Huang, Y.; Zhao, Z. A stable spherical MOF-derived Mnx-Fe2O3/C catalysts for low-temperature CO-SCR. Chem. Eng. J. 2023, 475, 146388. [Google Scholar] [CrossRef]
- Chen, C.; Wang, Y.; Li, J.; Tian, F.; Chen, W.; Feng, C.; Pan, Y.; Liu, Y. In situ construction of heteroatom F-doped Mn3O4 spinel catalysts with robust activity and SO2 resistance for NH3-SCR at low temperature. Appl. Catal. B Environ. 2023, 338, 123086. [Google Scholar] [CrossRef]
- Yao, H.; Cai, S.; Yang, B.; Han, L.; Wang, P.; Li, H.; Yan, T.; Shi, L.; Zhang, D. In situ decorated MOF-derived Mn-Fe oxides on Fe mesh as novel monolithic catalysts for NOx reduction. New J. Chem. 2020, 44, 2357–2366. [Google Scholar] [CrossRef]
- Zhou, N.; Yang, Y.; Tang, Y.; Zhang, M.; Zha, Y.; Liu, M.; Yu, F.; Liu, J. Modulation of active metal species in MOF-derived catalysts for efficient NO reduction by CO. J. Mater. Chem. A. 2024, 12, 12524–12532. [Google Scholar] [CrossRef]
- Tan, X.; Wu, Y.; Lin, X.; Zeb, A.; Xu, X.; Luo, Y.; Liu, J. Application of MOF-derived transition metal oxides and composites as anodes for lithium-ion batteries. Inorg. Chem. Front. 2020, 7, 4939–4955. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, Y.; Bi, S.; Liu, Q. Metal–organic framework-derived CeO2–ZnO catalysts for C3H6-SCR of NO: An in situ DRIFTS study. RSC Adv. 2019, 9, 19236–19242. [Google Scholar] [CrossRef]
- Zakaria, M.; Chikyow, T. Recent advances in Prussian blue and Prussian blue analogues: Synthesis and thermal treatments. Coord. Chem. Rev. 2017, 352, 328–345. [Google Scholar] [CrossRef]
- Wu, T.; Guo, R.; Li, C.; You, Y.; Pan, W. A novel MnCoOx@TiO2 double–wall nanocages derived from Prussian blue analogue for NH3-SCR of NOx. Fuel 2024, 364, 131094. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, G.; Tang, Z.; Zhang, J. MnFeOx@TiO2 nanocages for selective catalytic reduction of NO with NH3 at low temperature. ACS Appl. Nano Mater. 2021, 4, 6201–6211. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, G.; Tang, Z.; Zhang, J. MnFe@CeOx core–shell nanocages for the selective catalytic reduction of NO with NH3 at low temperature. ACS Appl. Nano Mater. 2022, 5, 3619–3631. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, G.; Tang, Z.; Zhang, J. Engineering yolk-shell MnFe@CeOx@TiOx nanocages as a highly efficient catalyst for selective catalytic reduction of NO with NH3 at low temperatures. Nanoscale 2022, 14, 12281–12296. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shi, L.; Huang, L.; Zhang, J.; Gao, R.; Zhang, D. Rational design of high-performance deNOx catalysts based on MnxCo3–xO4 nanocages derived from metal-organic frameworks. ACS Catal. 2014, 4, 1753–1763. [Google Scholar] [CrossRef]
- Yan, L.; Liu, Y.; Zha, K.; Li, H.; Shi, L.; Zhang, D. Scale-activity relationship of MnOx-FeOy nanocage catalysts derived from prussian blue analogues for low-temperature NO reduction: Experimental and DFT studies. ACS Appl. Mater. Interfaces 2017, 9, 2581–2593. [Google Scholar] [CrossRef]
Preparation Method | Typical Examples | Reaction Condition | Structural Feature | Advantage | Ref. |
---|---|---|---|---|---|
Self-pyrolysis | (Ni, Cu)O@C | air 400 °C 3 h | hierarchical porous composite with macropores | simple synthesis method, easy to operate, capable of precise control over the composition and morphology of the resulting oxides | [42] |
FeMnO@Sn | air 500 °C 6 h | heterostructure, high specific surface area | [43] | ||
MgO/C | N2 400 °C 3 h | nanosheets hierarchical nanopore structures | [44] | ||
Mn2O3-Fe3O4 | air 500 °C 2 h | hollow porous nanocube structure, low density, maintain fragment uniformity and porosity | [45] | ||
FeCoNi oxides | air 500 °C 3 h | ternary phase composite, hexagonal rod-like morphology, mesopores | [46] | ||
MnCeOx | Ar for 3 h, followed by air for 3 h | strong intermetallic interactions, high specific surface area, small-sized nanoparticles | [47] | ||
Pd@ZrO2 | Ar at 600 °C for 3 h, followed 30 vol.% O2/Ar for another 30, 60, 120, and 180 min | large pore size, excellent reducibility, abundant oxygen vacancies | [48] | ||
Loading self-pyrolysis | Cux-O-Niy-O-Co3−x−y | calcination temperature (300, 350, 400, and 450 °C), reaction time (1, 2, 4, and 6 h) | dodecahedral shape, hollow | enhanced structural stability, precise morphology control, tailored composition and interfacescomposition and interfaces, extended functionality | [49] |
CeO2−x-MnOx | air 400 °C 20 min | small grain size, cubic-like structure, rough and porous | [50] | ||
MnO/Cu-C | N2 600 °C 4 h | nanotube-like morphology | [51] | ||
CoCeOx | air 500 °C 4 h | octahedral structure, high specific surface area | [52] | ||
ZIF-Co3O4-Ru | air 300 °C 2 h | hydrophilicity, nanosheets | [53] | ||
NiCo2O4/NiO | air 400 °C 1 h | hollow dodecahedron, polycrystallinity | [54] | ||
Chemical reaction | δ-MnO2 | NaOH room temperature | nanoboxes, hierarchical pore size, large surface area | low-temperature synthesis and energy conservation, pore size, structure, and composition of the material can be regulated by selecting the treatment solution | [55] |
TiOx, ZrOx | NaOH oscillation | mesopores, retain the volumetric surface area of the MOF precursor | [56] |
MOF Precursor | Derived Metal Oxides | Reaction Conditions | Tmax (°C) | NOx Conversion | Ref. |
---|---|---|---|---|---|
MIL-101 (Fe) | FeOx/C | [NH3] = [NO] = 500 ppm, [O2] = 5 vol.%, N2 balance, GHSV = 30,000 h−1 | 300 | 82.3% | [58] |
Fe-MIL-101-NH2 | α-Fe2O3 | [NH3] = [NO] = 500 ppm, [O2] = 3 vol.%, Ar balance, GHSV = 36,000 h−1 | 350 | 90.2% | [59] |
Mn-MIL-53 (Fe) | MnOx-Fe3O4 | [NO] = 1 vol.%, [CO] = 2 vol.%, Ar balance | 500 | 97.5% | [60] |
HPW-MIL-100 (Fe) | HPW-FeOx | [NH3] = [NO] = 500 ppm, [O2] = 5 vol.%, Ar balance, GHSV = 50,000 h−1 | 205 | over 90% | [61] |
MIL-101 (Cr) | CrOx/C | [NH3] = [NO] = 500 ppm, [O2] = 5 vol.%, N2 balance, GHSV = 30,000 h−1 | 150 | over 90% | [62] |
POMs@MIL-101 (Cr) | Co-NiMo/Cr2O3 | [NH3] = [NO] = 500 ppm, [O2] = 5 vol.%, N2 balance, GHSV = 60,000 h−1 | 150 | 95% | [63] |
MnCe@MOF-C | MnOx-CeOx | [NH3] = [NO] = 500 ppm, [O2] = 5 vol.% | 150 | 100% | [64] |
MnTi-MOFs | MnTi | [NH3] = [NO] = 500 ppm, [O2] = 5 vol.%, N2 balance, GHSV = 36,000 h−1 | 150 | 97% | [65] |
MOF Precursor | Derived Metal Oxides | Structures | Strategies | Reaction Conditions | T (°C) | NOx Conversion | Ref. |
---|---|---|---|---|---|---|---|
Mn-MOF-74 | MnOx | foam-like | calcination in various gas atmospheres (air, 3000 ppm NH3, air + NH3) | [NH3] = [NO] = 1000 ppm, [O2] = 7 vol.%, N2 balance, GHSV = 7200 h−1 | 223–445 | over 90% | [91] |
Fe-Mn-MOF-74 | FexMn3-xO4 | nanoparticles | pyrolysis-oxidation | [NH3] = [NO] = 600 ppm, [O2] = 5 vol.%, N2 balance, GHSV = 400,000 h−1 | 180 | over 90% | [92] |
MnFe-MOF-74 | Mn-Fe2O3/C | spherical | pyrolysis | [NO] = 500 ppm, [CO] = 1000 ppm, Ar balance, GHSV = 30,000 h−1 | 225–500 | 100% | [93] |
F-Mn-MOF-74 | F-Mn3O4-3% | hexagonal rod structures | crystallization-pyrolysis-oxidation | [NH3] = [NO] = 600 ppm, [O2] = 5 vol.%, N2 balance, GHSV = 400,000 h−1 | 150–310 | over 90% | [94] |
MnFe-MOF-74 | Mn–Fe oxides | rod polyhedral structure | calcination | [NH3] = [NO] = 500 ppm, [O2] = 5 vol.%, N2 balance, GHSV = 10,000 h−1 | 150–210 | over 90% | [95] |
Cu-MOF-74 | Cu/C | rod-like | calcination | [NO] = 500 ppm, [CO] = 1000 ppm, [O2] = 1 vol.%, N2 balance, GHSV = 30,000 h−1 | 350–500 | 100% | [96] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, R. Metal–Organic Framework (MOF)-Derived Metal Oxides for Selective Catalytic Reduction (SCR) of NOx. Molecules 2025, 30, 2836. https://doi.org/10.3390/molecules30132836
Zhang Y, Wang R. Metal–Organic Framework (MOF)-Derived Metal Oxides for Selective Catalytic Reduction (SCR) of NOx. Molecules. 2025; 30(13):2836. https://doi.org/10.3390/molecules30132836
Chicago/Turabian StyleZhang, Yu, and Rui Wang. 2025. "Metal–Organic Framework (MOF)-Derived Metal Oxides for Selective Catalytic Reduction (SCR) of NOx" Molecules 30, no. 13: 2836. https://doi.org/10.3390/molecules30132836
APA StyleZhang, Y., & Wang, R. (2025). Metal–Organic Framework (MOF)-Derived Metal Oxides for Selective Catalytic Reduction (SCR) of NOx. Molecules, 30(13), 2836. https://doi.org/10.3390/molecules30132836