Predictive Modeling of Air Purification Efficiency in Nano-TiO2-Modified Photocatalytic Cementitious Composites Using High-Resolution EDS Mapping and Mercury Intrusion Porosimetry
Abstract
1. Introduction
2. Research Significance and Framework
3. Materials and Methods
3.1. Materials
3.2. Methods
- I > 0: positive spatial autocorrelation, indicating clustering of similar values.
- I = 0: no spatial autocorrelation, suggesting a random distribution.
- I < 0: negative spatial autocorrelation, indicating a dispersed or checkerboard-like pattern.
- C ≈ 1: random spatial distribution.
- C < 1: clustering of similar values, indicating local autocorrelation.
- C > 1: dispersion or dissimilarity between neighboring cells.
4. Results
4.1. Air Purification Performance
4.2. Photocatalyst Distribution
- No Clustering (Highly Dispersed Distribution of Photocatalysts): Characterized by Moran’s I values below 0.2 and Geary’s C values above 0.7, such as PCM-4-2 (Moran’s I = 0.0245, Geary’s C = 0.9639). These values indicate a highly dispersed photocatalyst distribution with minimal or no agglomeration.
- Low Clustering: Defined by Moran’s I values between 0.2 and 0.4 and Geary’s C values between 0.6 and 0.7, such as PCM-2-2 and PCM-5-1. These samples show a slight tendency for clustering, indicating a distribution with some minor aggregation but retaining partial uniformity.
- Intermediate Clustering (Localized Agglomerations of Photocatalysts): Characterized by Moran’s I values between 0.4 and the observed maximum of 0.66 and Geary’s C values below 0.6, such as PCM-6-1 (Moran’s I = 0.663, Geary’s C = 0.3373) and PCM-3-2. While not representing the highest possible clustering on the theoretical Moran’s I scale, these values indicated relatively strong clustering compared to other samples in this dataset, with notable localized agglomerations.
4.3. Pore Structure
5. Discussion
5.1. TiO2 Distribution and Air Purification Efficiency Correlation
5.2. Pore Structure and Air Purification Efficiency Correlation
5.3. Predictive Modeling of Air Purification Efficiency
6. Conclusions
- An increase in the area of the photoactive surface covered with TiO2 grains significantly increased the NO removal rate in all considered irradiation conditions;
- A reduction in the content of pores of diameters exceeding 0.1 µm (capillary pores and macropores) significantly increased the NO2 generation rate of investigated composites in all considered light sources, impeding the quality of secondary oxidation reactions;
- A synergistic influence of both pore network characteristics and TiO2 exposure was identified as two main phenomena driving the overall photocatalytic performance of investigated cementitious composites;
- Investigated cementitious composites were characterized by air purification properties allowing for significant reduction in the concentration of NOx in irradiation conditions mimicking those occurring commonly in urban settings, confirming their potential to passively offset urban pollutants;
- Future research should focus on optimizing the balance between photocatalyst distribution and pore structure to minimize undesirable byproducts like NO2 while enhancing overall pollutant removal efficiency;
- The durability and long-term performance of these composites under varying environmental conditions should be explored further to ensure sustained effectiveness in practical applications.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fuller, R.; Landrigan, P.J.; Balakrishnan, K.; Bathan, G.; Bose-O’Reilly, S.; Brauer, M.; Caravanos, J.; Chiles, T.; Cohen, A.; Corra, L.; et al. Pollution and Health: A Progress Update. Lancet Planet. Health 2022, 6, e535–e547. [Google Scholar] [CrossRef]
- Park, H.-J.; Hossain, S.M.; Choi, K.; Shon, H.-K.; Kim, J.-H. A Study on the Evaluation Methods of Nitrogen Oxide Removal Performance of Photocatalytic Concrete for Outdoor Applications. Catalysts 2022, 12, 846. [Google Scholar] [CrossRef]
- Chilmon, K.; Kalinowski, M.; Jackiewicz-Rek, W. Influence of Coarse Aggregate Exposure on Air Purification Efficiency in Photocatalytic Cement Composites. Buildings 2024, 14, 3639. [Google Scholar] [CrossRef]
- Fei, H.; Wu, J.; Zhang, J.; Zhao, T.; Guo, W.; Wang, X.; Yang, S.; Liu, G. Photocatalytic Performance and Its Internal Relationship with Hydration and Carbonation of Photocatalytic Concrete: A Review. J. Build. Eng. 2024, 97, 110782. [Google Scholar] [CrossRef]
- Staub de Melo, J.V.; Trichês, G. Evaluation of the Influence of Environmental Conditions on the Efficiency of Photocatalytic Coatings in the Degradation of Nitrogen Oxides (NOx). Build. Environ. 2012, 49, 117–123. [Google Scholar] [CrossRef]
- Kalinowski, M.; Woyciechowski, P.; Jackiewicz-Rek, W. Surface Modification of Photocatalytic Cementitious Composites with Polyacrylic Superabsorbent Polymers (SAP). Mater. Proc. 2023, 13, 23. [Google Scholar] [CrossRef]
- Seo, D.; Yun, T.S. NOx Removal Rate of Photocatalytic Cementitious Materials with TiO2 in Wet Condition. Build. Environ. 2017, 112, 233–240. [Google Scholar] [CrossRef]
- Wang, H.; Wu, Z.; Zhao, W.; Guan, B. Photocatalytic Oxidation of Nitrogen Oxides Using TiO2 Loading on Woven Glass Fabric. Chemosphere 2007, 66, 185–190. [Google Scholar] [CrossRef]
- Chen, C.; Tang, B.; Cao, X.; Gu, F.; Huang, W. Enhanced Photocatalytic Decomposition of NO on Portland Cement Concrete Pavement Using Nano-TiO2 Suspension. Constr. Build. Mater. 2021, 275, 122135. [Google Scholar] [CrossRef]
- Jędrzejczak, P.; Janczarek, M.; Parus, A.; Gapiński, B.; Hotěk, P.; Fiala, L.; Klapiszewski, Ł. Carbon-Modified TiO2 as a Promising and Efficient Admixture for Cementitious Composites: A Comprehensive Study of Photocatalytic, Mechanical and Structural Properties. J. Build. Eng. 2023, 78, 107747. [Google Scholar] [CrossRef]
- Zhao, A.; Yang, J.; Yang, E.H. Self-Cleaning Engineered Cementitious Composites. Cem. Concr. Compos. 2015, 64, 74–83. [Google Scholar] [CrossRef]
- Macphee, D.E.; Folli, A. Photocatalytic Concretes—The Interface Between Photocatalysis and Cement Chemistry. Cem. Concr. Res. 2016, 85, 48–54. [Google Scholar] [CrossRef]
- Guo, M.-Z.; Maury-Ramirez, A.; Poon, C.S. Self-Cleaning Ability of Titanium Dioxide Clear Paint Coated Architectural Mortar and Its Potential in Field Application. J. Clean. Prod. 2016, 112, 3583–3588. [Google Scholar] [CrossRef]
- Boonen, E.; Beeldens, A. Recent Photocatalytic Applications for Air Purification in Belgium. Coatings 2014, 4, 553–573. [Google Scholar] [CrossRef]
- Guo, M.-Z.; Ling, T.-C.; Poon, C.S. Photocatalytic NOx Degradation of Concrete Surface Layers Intermixed and Spray-Coated with Nano-TiO2: Influence of Experimental Factors. Cem. Concr. Compos. 2017, 83, 279–289. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, H.; Deng, X. NOx Removal Ability of Photocatalytic Cement-Based Materials with Porous Structure. J. Clean. Prod. 2022, 377, 134396. [Google Scholar] [CrossRef]
- Hamdany, A.H.; Satyanaga, A.; Zhang, D.; Kim, Y.; Kim, J.R. Photocatalytic Cementitious Material for Eco-Efficient Construction—A Systematic Literature Review. Appl. Sci. 2022, 12, 8741. [Google Scholar] [CrossRef]
- Chilmon, K.; Kalinowski, M.; Jackiewicz-Rek, W. Effect of Cement Substitution with Mineral Fillers on NOx Air-Purification Efficiency and Photocatalytic Reaction Selectivity of Nano-TiO2-Modified Cementitious Composites. Materials 2024, 17, 5775. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Meng, H.; Wu, Q.; Bai, X.; Zhang, Y. TiO2-Based Photocatalytic Building Material for Air Purification in Sustainable and Low-Carbon Cities: A Review. Catalysts 2023, 13, 1466. [Google Scholar] [CrossRef]
- Lorencik, S.; Yu, Q.L.; Brouwers, H.J.H. Design and Performance Evaluation of the Functional Coating for Air Purification under Indoor Conditions. Appl. Catal. B Environ. 2015, 168–169, 77–86. [Google Scholar] [CrossRef]
- Zha, Y.; He, X.; Wang, Y.; Chen, W.; Chen, L.; Chen, L.; Wang, S.; Yan, B.; Ma, B.; Li, J. Visible-Light-Response Fe-Doped BiOCl Microspheres with Efficient Photocatalysis-Fenton Degradation of Antibiotics. J. Water Process Eng. 2024, 67, 106225. [Google Scholar] [CrossRef]
- Gao, X.; Zheng, K.; Zhang, Q.; Cao, X.; Wu, S.; Su, J. Self-Assembly TiO2-RGO/LDHs Nanocomposite: Photocatalysis of VOCs Degradation in Simulation Air. Appl. Surf. Sci. 2022, 586, 152882. [Google Scholar] [CrossRef]
- PN-EN 197-1:2012; Cement Composition, Specifications and Conformity Criteria for Common Cements. PKN—The Polish Committee for Standardization: Warsaw, Poland, 2012.
- PN-EN 196-1:2016-07; Methods of Testing Cement—Part 1: Determination of Strength. PKN—The Polish Committee for Standardization: Warsaw, Poland, 2016.
- PN-EN 196-3:2016; Methods of Testing Cement—Part 3: Determination of Setting Times and Soundness. PKN—The Polish Committee for Standardization: Warsaw, Poland, 2016.
- Witkowski, H.; Jackiewicz-Rek, W.; Jarosławski, J.; Chilmon, K.; Szkop, A. Ozone Formation during Photocatalytic Oxidation of Nitric Oxides under UV Irradiation with the Use of Commercial TiO2 Photocatalytic Powders. Materials 2022, 15, 5905. [Google Scholar] [CrossRef] [PubMed]
- Tobaldi, D.M.; Seabra, M.P.; Otero-Irurueta, G.; de Miguel, Y.R.; Ball, R.J.; Singh, M.K.; Pullar, R.C.; Labrincha, J.A. Quantitative XRD Characterisation and Gas-Phase Photocatalytic Activity Testing for Visible-Light (Indoor Applications) of KRONOClean 7000®. RSC Adv. 2015, 5, 102911–102918. [Google Scholar] [CrossRef]
- EN 13139:2002; Aggregates for Mortar. European Committee for Standardization: Brussels, Belgium, 2002.
- PN-EN 934-2+A1:2012; Admixtures for Concrete, Mortar and Cement Paste—Part 2: Admixtures for Concrete—Definitions, Requirements, Compliance, Marking and Labelling. Polish Committee for Standardization: Warsaw, Poland, 2012.
- ISO 22197-1:2016; Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Method For Air-Purification Performance of Semiconducting Photocatalytic Materials. Part 1: Removal of Nitric Oxide; ISO (the International Organization for Standardization): Geneva, Switzerland, 2016.
- Kalinowski, M.; Chilmon, K.; Bogacki, J.; Woyciechowski, P. Organic and Inorganic Modifications to Increase the Efficiency in Immobilization of Heavy Metal (Zn) in Cementitious Composites—The Impact of Cement Matrix Pore Network Characteristics. Materials 2024, 17, 5281. [Google Scholar] [CrossRef]
- Kępniak, M. Ocena Przydatności Odpadu z Odpylania Kruszywa jako Składnika Betonu Cementowego. Ph.D. Thesis, Oficyna Wydawnicza Politechniki Warszawskiej, Warsaw, Poland, 2019. [Google Scholar]
- Xu, M.; Clack, H.; Xia, T.; Bao, Y.; Wu, K.; Shi, H.; Li, V. Effect of TiO2 and Fly Ash on Photocatalytic NOx Abatement of Engineered Cementitious Composites. Constr. Build. Mater. 2020, 236, 117559. [Google Scholar] [CrossRef]
- Hassan, M.; Mohammad, L.N.; Asadi, S.; Dylla, H.; Cooper, S. Sustainable Photocatalytic Asphalt Pavements for Mitigation of Nitrogen Oxide and Sulfur Dioxide Vehicle Emissions. J. Mater. Civ. Eng. 2013, 25, 365–371. [Google Scholar] [CrossRef]
- Folli, A. Field study of air purifying paving elements containing TiO2. Atmos. Environ. 2015, 107, 44–51. [Google Scholar] [CrossRef]
- Gallus, M. Photocatalytic De-Pollution in the Leopold II Tunnel in Brussels: NOx Abatement Results. Build. Environ. 2015, 84, 125–133. [Google Scholar] [CrossRef]
- Ballari, M.M.; Brouwers, H.J.H. Full Scale Demonstration of Air-Purifying Pavement. J. Hazard. Mater. 2013, 254–255, 406–414. [Google Scholar] [CrossRef] [PubMed]
- Guerrini, G.L. Photocatalytic Performances in a City Tunnel in Rome: NOx Monitoring Results. Constr. Build. Mater. 2012, 27, 165–175. [Google Scholar] [CrossRef]
- Maggos, T.; Plassais, A.; Bartzis, J.G.; Vasilakos, C.; Moussiopoulos, N.; Bonafous, L. Photocatalytic Degradation of NOx in a Pilot Street Canyon Configuration Using TiO2-Mortar Panels. Environ. Monit. Assess. 2008, 136, 35–44. [Google Scholar] [CrossRef]
- Boonen, E.; Beeldens, A. Photocatalytic Roads: From Lab Tests to Real-Scale Applications. Eur. Trans. Res. Rev. 2013, 5, 79–89. [Google Scholar] [CrossRef]
- Asadi, S.; Hassan, M.; Nadiri, A.; Dylla, H. Artificial Intelligence Modeling to Evaluate Field Performance of Photocatalytic Asphalt Pavement for Ambient Air Purification. Environ. Sci. Pollut. Res. Int. 2014, 21, 8847–8857. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Chu, J.W. NOx Photocatalytic Degradation on Active Concrete Road Surface—From Experiment to Real-Scale Application. J. Clean. Prod. 2011, 19, 1266–1272. [Google Scholar] [CrossRef]
- Kalinowski, M.; Chilmon, K.; Jackiewicz-Rek, W.; Rakowski, B. The Influence of Selected Material Variables of Photocatalytic Cementitious Composites on the Self-Cleaning Properties and Air Purification Efficiency from NOx Pollutants. Sustainability 2023, 15, 853. [Google Scholar] [CrossRef]
- Mishra, A.; Mehta, A.; Basu, S. Clay Supported TiO2 Nanoparticles for Photocatalytic Degradation of Environmental Pollutants: A Review. J. Environ. Chem. Eng. 2018, 6, 6088–6107. [Google Scholar] [CrossRef]
- Xue, T.; Li, J.; Chen, L.; Li, K.; Hua, Y.; Yang, Y.; Dong, F. Photocatalytic NOx Removal and Recovery: Progress, Challenges, and Future Perspectives. Chem. Sci. 2024, 15, 9026–9046. [Google Scholar] [CrossRef]
- Toma, F.L.; Devahasdin, S.; Dufour, A.; Dufour, L.; Dufour, M. Photocatalytic Degradation of Organic Pollutants in Water Using Immobilized TiO2. J. Photochem. Photobiol. A 2004, 162, 121–126. [Google Scholar] [CrossRef]
- Kalinowski, M.; Chilmon, K.; Jackiewicz-Rek, W. Carbon-Negative Nano-TiO2-Modified Photocatalytic Cementitious Composites: Removal of Airborne Pollutants (NOx and O3) and Its Impact on CO2 Footprint. Coatings 2024, 14, 1607. [Google Scholar] [CrossRef]
Mortar ID | w/c [-] | c/s [-] | Total Photocatalyst Content [kg/m3] | K7000/P25 Ratio [-] |
---|---|---|---|---|
PCM-1 | 0.40 | 0.80 | 12.5 | 0.625 |
PCM-2 | 0.68 | 12.5 | 1.000 | |
PCM-3 | 0.68 | 15.0 | 0.250 | |
PCM-4 | 0.68 | 15.0 | 0.625 | |
PCM-5 | 0.80 | 12.5 | 0.250 | |
PCM-6 | 0.80 | 15.0 | 0.250 |
CEM I 42.5 R | Flexural strength, MPa | Compressive strength, MPa | Initial setting time, min | Final setting time, min | Specific gravity, g/cm3 | Specific surface area, cm2/g | |||||||
4.46 | 44.4 | 190 | 270 | 3.09 | 3920 | ||||||||
Chemical composition, % of mass | |||||||||||||
CaO | SiO2 | Al2O3 | MgO | K2O | Na2O | Fe2O3 | P2O5 | LOI | |||||
61.4 | 21.7 | 5.2 | 2.6 | 0.7 | 0.2 | 2.4 | 0.2 | 2.3 |
Photocatalytic Material | Specific Surface, m2/g | Crystallite Diameter, nm | Crystalline Phase, % | ||
---|---|---|---|---|---|
Anatase | Rutile | Anatase | Rutile | ||
(TiO2)-FG | 53.8 ± 0.2 | 33 | 54 | 87 | 13 |
(TiO2)-SG | 246.8 ± 2.9 | 10 | - | 100 | - |
Characteristics | Fire-Dried Fine Aggregate 0.1/0.5 | Fire-Dried Aggregate 0.5/1.2 |
---|---|---|
Dust content, % | 0.1 | |
Water absorption, % | 0.1 | |
SiO2 content, % | 99.6 | 99.4 |
Sand equivalent, - | 99.06 | 99.17 |
Specific gravity, g/cm2 | 2.65 |
Sample ID | NO Removal Rate, µg/hm2 | NO2 Generation Rate, µg/hm2 | Selectivity, - | ||||||
---|---|---|---|---|---|---|---|---|---|
Visible Light | UV-A Light | Visible and UV-A Light | Visible Light | UV-A Light | Visible and UV-A Light | Visible Light | UV-A Light | Visible and UV-A Light | |
PCM-1-1 | 39.11 | 232.25 | 247.63 | 1.36 | 31.20 | 23.99 | 0.97 | 0.87 | 0.90 |
PCM-1-2 | 29.73 | 199.83 | 232.65 | 6.28 | 79.72 | 55.41 | 0.78 | 0.60 | 0.76 |
PCM-2-1 | 29.29 | 196.60 | 201.21 | 9.09 | 84.17 | 88.50 | 0.69 | 0.57 | 0.56 |
PCM-2-2 | 53.67 | 319.56 | 326.34 | 8.64 | 79.63 | 84.27 | 0.84 | 0.75 | 0.74 |
PCM-3-1 | 30.71 | 220.34 | 242.89 | 8.81 | 76.13 | 53.65 | 0.71 | 0.65 | 0.78 |
PCM-3-2 | 40.95 | 281.78 | 286.58 | 7.86 | 37.50 | 36.49 | 0.81 | 0.87 | 0.87 |
PCM-4-1 | 30.68 | 189.44 | 210.61 | 2.23 | 8.77 | 9.37 | 0.93 | 0.95 | 0.96 |
PCM-4-2 | 15.31 | 137.87 | 154.04 | 5.41 | 77.05 | 72.21 | 0.65 | 0.44 | 0.53 |
PCM-5-1 | 45.53 | 219.16 | 242.11 | 9.68 | 43.24 | 42.74 | 0.79 | 0.80 | 0.82 |
PCM-5-2 | 26.27 | 148.24 | 176.84 | 4.48 | 99.06 | 64.23 | 0.83 | 0.33 | 0.64 |
PCM-6-1 | 55.23 | 255.68 | 303.52 | 5.23 | 64.63 | 51.32 | 0.91 | 0.75 | 0.83 |
PCM-6-2 | 24.81 | 181.81 | 186.41 | 3.83 | 215.11 | 195.45 | 0.85 | −0.08 | −0.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chilmon, K.; Kalinowski, M.; Jackiewicz-Rek, W. Predictive Modeling of Air Purification Efficiency in Nano-TiO2-Modified Photocatalytic Cementitious Composites Using High-Resolution EDS Mapping and Mercury Intrusion Porosimetry. Purification 2025, 1, 1. https://doi.org/10.3390/purification1010001
Chilmon K, Kalinowski M, Jackiewicz-Rek W. Predictive Modeling of Air Purification Efficiency in Nano-TiO2-Modified Photocatalytic Cementitious Composites Using High-Resolution EDS Mapping and Mercury Intrusion Porosimetry. Purification. 2025; 1(1):1. https://doi.org/10.3390/purification1010001
Chicago/Turabian StyleChilmon, Karol, Maciej Kalinowski, and Wioletta Jackiewicz-Rek. 2025. "Predictive Modeling of Air Purification Efficiency in Nano-TiO2-Modified Photocatalytic Cementitious Composites Using High-Resolution EDS Mapping and Mercury Intrusion Porosimetry" Purification 1, no. 1: 1. https://doi.org/10.3390/purification1010001
APA StyleChilmon, K., Kalinowski, M., & Jackiewicz-Rek, W. (2025). Predictive Modeling of Air Purification Efficiency in Nano-TiO2-Modified Photocatalytic Cementitious Composites Using High-Resolution EDS Mapping and Mercury Intrusion Porosimetry. Purification, 1(1), 1. https://doi.org/10.3390/purification1010001