Eco-Friendly Removal and IoT-Based Monitoring of CO2 Emissions Released from Gasoline Engines Using a Novel Compact Nomex/Activated Carbon Sandwich Filter
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Instruments
2.2. Preparation of Nomex/Activated Carbon Filters
2.3. Equipment for Sampling and Measuring Combustion Emissions
2.4. Emissions Monitoring
2.5. Adsorption Technique
2.6. Kinetic Modeling
3. Results and Discussion
3.1. Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX)
3.2. Surface Area and Pore Size Distribution of the Filter
3.3. Adsorption Kinetics
3.4. Effect of Fabric Type
3.5. Effect of the Mass of Activated Carbon (AC)
3.6. Effect of Filter Thickness
3.7. Effect of Filter Air Permeability
3.8. Effect of Time and Regeneration on CO2 Removal Efficiency
3.9. Comparison of Some Methods Used for CO2 Emission Removal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Jawad, Z.A. Membrane Technology for CO2 Sequestration; CRC Press: Boca Raton, FL, USA, 2019; Available online: https://books.google.com.eg/books?id=lQaQDwAAQBAJ (accessed on 1 November 2022).
- Moussa, R.R. Reducing carbon emissions in Egyptian roads through improving the streets quality. Environ. Dev. Sustain. 2023, 25, 4765–4786. [Google Scholar] [CrossRef]
- IEA. Global Energy & CO2 Status Report 2018; International Energy Agency: Paris, France, 2019; Available online: https://www.iea.org/reports/global-energy-co2-status-report-2019 (accessed on 31 August 2022).
- Ritchie, H.; Roser, M.; Rosado, P. CO2 and Greenhouse Gas Emissions. Our World Data. 2020. Available online: https://ourworldindata.org/greenhouse-gas-emissions (accessed on 8 March 2021).
- Morrow, D.R.; Thompson, M.S.; Anderson, A.; Batres, M.; Buck, H.J.; Dooley, K.; Geden, O.; Ghosh, A.; Low, S.; Njamnshi, A.; et al. Principles for thinking about carbon dioxide removal in just climate policy. One Earth 2020, 3, 150–153. [Google Scholar] [CrossRef]
- Smith, S.; Geden, O.; Gidden, M.; Lamb, W.; Nemet, G.; Minx, J.; Buck, H.; Burke, J.; Cox, E.; Edwards, M. The State of Carbon Dioxide Removal. 2024. Available online: https://pure.iiasa.ac.at/id/eprint/19787/1/The-State-of-Carbon-Dioxide-Removal-2Edition.pdf (accessed on 8 March 2025).
- Gilfillan, D.; Marland, G. CDIAC-FF: Global and national CO2 emissions from fossil fuel combustion and cement manufacture: 1751–2017. Earth Syst. Sci. Data 2021, 13, 1667–1680. [Google Scholar] [CrossRef]
- Moussa, R.R. The Effect of Piezo-Bumps on Energy Generation and Reduction of the Global Carbon Emissions. 2019. Available online: https://buescholar.bue.edu.eg/cgi/viewcontent.cgi?article=1005&context=arch_eng (accessed on 6 October 2022).
- Nations, U. Kyoto Protocol to the United Nations Framework Convention on Climate Change. 1998. Available online: https://unfccc.int/resource/docs/convkp/kpeng.pdf (accessed on 16 May 2023).
- Bodansky, D.; Brunnée, J.; Rajamani, L. Paris Agreement. United Nations Audiovisual Library of International Law. 2015. Available online: https://legal.un.org/avl/pdf/ha/pa/pa_e.pdf (accessed on 15 February 2021).
- da Graça Carvalho, M. EU energy and climate change strategy. Energy 2012, 40, 19–22. [Google Scholar] [CrossRef]
- Songolzadeh, M.; Soleimani, M.; Takht Ravanchi, M.; Songolzadeh, R. Carbon dioxide separation from flue gases: A technological review emphasizing reduction in greenhouse gas emissions. Sci. World J. 2014, 2014, 828131. [Google Scholar] [CrossRef] [PubMed]
- Raganati, F.; Miccio, F.; Ammendola, P. Adsorption of carbon dioxide for post-combustion capture: A review. Energy Fuels 2021, 35, 12845–12868. [Google Scholar] [CrossRef]
- Ramezani, R.; Di Felice, L.; Gallucci, F. A review on hollow fiber membrane contactors for carbon capture: Recent advances and future challenges. Processes 2022, 10, 2103. [Google Scholar] [CrossRef]
- Rochelle, G.T. Amine scrubbing for CO2 capture. Science 2009, 325, 1652–1654. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, B.; Li, L. Advance in post-combustion CO2 capture with alkaline solution: A brief review. Energy Procedia 2012, 14, 1515–1522. [Google Scholar] [CrossRef]
- Rao, A.B.; Rubin, E.S. A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. Environ. Sci. Technol. 2002, 36, 4467–4475. [Google Scholar] [CrossRef]
- Veawab, A.; Tontiwachwuthikul, P.; Chakma, A. Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions. Ind. Eng. Chem. Res. 1999, 38, 3917–3924. [Google Scholar] [CrossRef]
- Hassan, H.M.; Alruwaili, M.S.; Alsohaimi, I.H.; El-Hashemy, M.A.; Alqadami, A.A.; Alshammari, K.; Alali, I.K.; Alanazi, S.J.; El-Aassar, M. Electrospun polyacrylonitrile nanofiber composites integrated with Al-MOF/mesoporous carbon for superior CO2 capture and VOC removal. Diam. Relat. Mater. 2024, 149, 111649. [Google Scholar] [CrossRef]
- Ünveren, E.E.; Monkul, B.Ö.; Sarıoğlan, Ş.; Karademir, N.; Alper, E. Solid amine sorbents for CO2 capture by chemical adsorption: A review. Petroleum 2017, 3, 37–50. [Google Scholar] [CrossRef]
- Akaya, H.; Lamnini, S.; Sehaqui, H.; Jacquemin, J. Amine-Functionalized Cellulose as Promising Materials for Direct CO2 Capture: A Review. ACS Appl. Mater. Interfaces 2025, 17, 16380–16395. [Google Scholar] [CrossRef]
- Drzeżdżon, J.; Dai, S.; Fan, H.; Sikorski, A.; Baluk, M.A.; Datta, J.; Ranskiy, A.; Jacewicz, D. Synthesis of nanoporous poly (2-chloro-2-propen-1-ol) and its modification via ethylenediamine: Vanadyl-catalyzed process, structural characterization, and CO2 sorption. React. Chem. Eng. 2025. [Google Scholar] [CrossRef]
- ASTM D3776/D3776M-20; Standard Test Methods for Mass Per Unit Area (Weight) of Fabric. ASTM International: West Conshohocken, PA, USA, 2020. [CrossRef]
- ASTM D1777-96(2019); Standard Test Method for Thickness of Textile Materials. ASTM International: West Con-shohocken, PA, USA, 2019. [CrossRef]
- ASTM D737-04; Standard Test Method for Air Permeability of Textile Fabrics. ASTM International: West Conshohocken, PA, USA, 2004. [CrossRef]
- Hassan, S.S.M.; El-Shalakany, H.H.; Fathy, M.A.; Kamel, A.H. A magnetic macroporous α-Fe2O3/Mn2O3 nanocomposite as an efficient adsorbent for simple and rapid removal of Pb (II) from wastewater and electronic waste leachate. Environ. Sci. Pollut. Res. 2024, 31, 65648–65660. [Google Scholar] [CrossRef]
- Fathy, M.A.; Kamel, A.H.; Hassan, S.S.M. Novel magnetic nickel ferrite nanoparticles modified with poly (aniline-co-o-toluidine) for the removal of hazardous 2, 4-dichlorophenol pollutant from aqueous solutions. RSC Adv. 2022, 12, 7433–7445. [Google Scholar] [CrossRef]
- Simonin, J.-P. On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef]
- Sinha, P.; Datar, A.; Jeong, C.; Deng, X.; Chung, Y.G.; Lin, L.-C. Surface area determination of porous materials using the Brunauer–Emmett–Teller (BET) method: Limitations and improvements. J. Phys. Chem. C 2019, 123, 20195–20209. [Google Scholar] [CrossRef]
- Saberi, M.; Rouhi, P. Extension of the Brunauer-Emmett-Teller (BET) model for sorption of gas mixtures on the solid substances. Fluid Phase Equilibria 2021, 534, 112968. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Maniarasu, R.; Rathore, S.K.; Murugan, S. Preparation, characterization, and performance of activated carbon for CO2 adsorption from CI engine exhaust. Greenh. Gases Sci. Technol. 2022, 12, 284–304. [Google Scholar] [CrossRef]
- Chue, K.; Kim, J.; Yoo, Y.; Cho, S.; Yang, R. Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption. Ind. Eng. Chem. Res. 1995, 34, 591–598. [Google Scholar] [CrossRef]
- Sun, W.; Shao, Y.; Zhao, L.; Wang, Q. Co-removal of CO2 and particulate matter from industrial flue gas by connecting an ammonia scrubber and a granular bed filter. J. Clean. Prod. 2020, 257, 120511. [Google Scholar] [CrossRef]
- Sepahvand, S.; Jonoobi, M.; Ashori, A.; Gauvin, F.; Brouwers, H.; Oksman, K.; Yu, Q. A promising process to modify cellulose nanofibers for carbon dioxide (CO2) adsorption. Carbohydr. Polym. 2020, 230, 115571. [Google Scholar] [CrossRef]
- Chiu, S.Y.; Tsai, M.T.; Kao, C.Y.; Ong, S.C.; Lin, C.S. The air-lift photobioreactors with flow patterning for high-density cultures of microalgae and carbon dioxide removal. Eng. Life Sci. 2009, 9, 254–260. [Google Scholar] [CrossRef]
- Qi, G.; Fu, L.; Choi, B.H.; Giannelis, E.P. Efficient CO2 sorbents based on silica foam with ultra-large mesopores. Energy Environ. Sci. 2012, 5, 7368–7375. [Google Scholar] [CrossRef]
- Romero-Guzmán, L.; Reyes-Gutiérrez, L.R.; Romero-Guzmán, E.T.; Savedra-Labastida, E. Carbon nanotube filters for removal of air pollutants from mobile sources. J. Miner. Mater. Charact. Eng. 2017, 6, 105–118. [Google Scholar] [CrossRef]
- Mulukutla, T.; Obuskovic, G.; Sirkar, K.K. Novel scrubbing system for post-combustion CO2 capture and recovery: Experimental studies. J. Membr. Sci. 2014, 471, 16–26. [Google Scholar] [CrossRef]
- Zareie-kordshouli, F.; Lashani-zadehgan, A.; Darvishi, P. Comparative evaluation of CO2 capture from flue gas by [Emim][Ac] ionic liquid, aqueous potassium carbonate (without activator) and MEA solutions in a packed column. Int. J. Greenh. Gas Control 2016, 52, 305–318. [Google Scholar] [CrossRef]
- Shirazian, S.; Ashrafizadeh, S. Mass transfer simulation of carbon dioxide absorption in a hollow-fiber membrane contactor. Sep. Sci. Technol. 2010, 45, 515–524. [Google Scholar] [CrossRef]
- Durán-Muñoz, F.; Romero-Ibarra, I.C.; Pfeiffer, H. Analysis of the CO2 chemisorption reaction mechanism in lithium oxosilicate (Li8SiO6): A new option for high-temperature CO2 capture. J. Mater. Chem. A 2013, 1, 3919–3925. [Google Scholar] [CrossRef]
- Nur, M.; Sumariyah, S.; Suseno, A. Removal of emission gas COx, NOx and SOx from automobile using non-thermal plasma. In Proceedings of the 13th Joint Conference on Chemistry (13th JCC), Semarang, Indonesia, 7–8 September 2018; p. 012085. [Google Scholar] [CrossRef]
- Xiang, Z.; Hu, Z.; Cao, D.; Yang, W.; Lu, J.; Han, B.; Wang, W. Metal–organic frameworks with incorporated carbon nanotubes: Improving carbon dioxide and methane storage capacities by lithium doping. Angew. Chem. Int. Ed. 2011, 50, 491–494. [Google Scholar] [CrossRef]
- Lee, Z.H.; Lee, K.T.; Bhatia, S.; Mohamed, A.R. Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials. Renew. Sustain. Energy Rev. 2012, 16, 2599–2609. [Google Scholar] [CrossRef]
- Choi, W.-K.; Kwon, T.-I.; Yeo, Y.-K.; Lee, H.; Song, H.K.; Na, B.-K. Optimal operation of the pressure swing adsorption (PSA) process for CO2 recovery. Korean J. Chem. Eng. 2003, 20, 617–623. [Google Scholar] [CrossRef]
- Tlili, N.; Grévillot, G.; Vallières, C. Carbon dioxide capture and recovery by means of TSA and/or VSA. Int. J. Greenh. Gas Control 2009, 3, 519–527. [Google Scholar] [CrossRef]
- Zhang, J.; Webley, P.A.; Xiao, P. Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas. Energy Convers. Manag. 2008, 49, 346–356. [Google Scholar] [CrossRef]
Adsorbent | Pseudo-First-Order | Pseudo-Second-Order | |||||
---|---|---|---|---|---|---|---|
k1 (min−1) | qe1 (mg/g) | R2 | k2 (g/(mg·min) | qe2 (mg/g) | qeexp | R2 | |
Nomex/AC filter | 0.77519 ± 0.004 | 1191.5 ± 17.2 | 0.8207 | 0.0078 ± 4.2 × 10−5 | 399.6 ± 0.4 | 400 | 0.9919 |
Sorbent | Method of Synthesis | Measurement Conditions | CO2 Max. Removal Efficiency (%) | Ref. |
---|---|---|---|---|
Ammonia-based scrubber integrated with dual-layer granular bed filter | Engineered assembly (AC + zeolite 5A) | 8% aqueous ammonia, room temp., atmospheric pressure | 86 | [34] |
Phthalimide-modified cellulose nanofiber (CNF) aerogel | Surface functionalization of CNF with phthalimide, followed by freeze-drying | 85 °C, 95% RH, 1 bar, 8 h | 60 | [35] |
Chlorella sp. NCTU-2 (microalgal photobioreactor) | Isolation and cultivation in porous centric-tube photobioreactor | 10% CO2 aeration at 0.125 vvm, 26 ± 1 °C, biomass 5.15 g/L | 63 | [36] |
Amine-impregnated silica foam with ultra-large mesopores | Wet impregnation of PEI into silica foam synthesized from sodium silicate under neutral conditions | 75 °C, 1 atm dry CO2 (80%) for 1 h | 80 | [37] |
Multi-walled carbon nanotube (MWCNT) filter | Deposition of commercial MWCNTs into stainless steel filter housing with Whatman paper | 40–85 °C, CNT loading 0.2–1.6 mg/cm2, tailpipe gas from mobile sources | 60 | [38] |
[Bmim][DCA] ionic liquid with 20 wt% PAMAM dendrimer | Blending of [bmim][DCA] with 20 wt% PAMAM Gen 0 dendrimer, used in membrane contactor system | Feed gas 14.1% CO2, 50–55 °C absorption, 85–90 °C stripping, 1 atm | 62 | [39] |
1- Ethyl -3-methylimidazolium acetate [EMIM+] [AC−] ionic liquid | Commercial IL dried under vacuum at 85 °C prior to use in packed column | 70–80 °C, 4 bar, 7% CO2 in N2, counter-current flow | 70 | [40] |
Diethanolamine (DEA) aqueous solution in HF membrane contactor | Commercial DEA used in concurrent hollow-fiber module with polypropylene membrane | 298 K, 1 atm, 10% CO2/N2 gas mixture, concurrent shell-tube flow | 57 | [41] |
Lithium oxosilicate (Li8 SiO6) | Solid-state reaction of Li2O and SiO2, calcined at 800 °C | 500–700 °C, 1 atm CO2 flow (60 mL/min), isothermal capture | 71 | [42] |
Activated carbon from coconut shell (KOH activated) | Carbonization and chemical activation with KOH, followed by washing and drying | 50–100 °C, 0.2–1 bar, CI engine exhaust, 2500 g sorbent | 50 | [32] |
Corona discharge plasma reactor in vehicle muffler | Integration of high-voltage corona discharge system into modified muffler chamber | 12 V, 34 Ah battery supply; stationary diesel engine; optimum at 2200 rpm | 86 | [43] |
Unmodified [Cu3(btc)2] | Standard solvothermal synthesis | 25 °C, 18 bar pure CO2, gravimetric method | 30 | [44] |
Li-doped [Cu3(btc)2] | Post-synthetic Li doping using lithium naphthalenide | 47 | ||
CNT@[Cu3(btc)2] | Solvothermal growth on carboxylated MWCNTs | 60 | ||
Li@CNT@[Cu3(btc)2] | Combination of Li doping and MWCNT incorporation | 66 | ||
Mesoporous MgO | Vacuum drying and calcination with carbon exotemplate | 25 °C, 101 kPa, 99.9% CO2 | 18 | [45] |
CaO nanopods | CO2 bubbling in Ca(OH)2 slurry with polymer block, followed by calcination | 600 °C, 101 kPa, 60% CO2 | 70 | |
Nano CaO/Al2O3 | Chemical synthesis from nano CaCO3 and aluminum sol | 650 °C, 101 kPa, 33.3% CO2 | 60 | |
MWCNT | Commercial MWCNTs grafted with amine groups | 60 °C, 101 kPa, 50% CO2 | 17 | |
Zeolite (13X) with pressure swing adsorption (PSA) | Commercial zeolite 13X packed into three-bed PSA system | 13% CO2 in N2, 1.5 atm adsorption, 0.05 atm desorption, room temp. | 69 | [46] |
Activated carbon with pressure swing adsorption (PSA) | Commercial BPL activated carbon used in PSA with 3-bed, 7-step cycle | 16% CO2 in N2, 830/760/50 mmHg (adsorption/purge/evacuation), 30 °C | 53 | [33] |
Zeolite 5A with swing adsorption (TSA) and/or vacuum swing adsorption (VSA) | Commercial zeolite 5A packed in stainless steel column; regenerated by heating and/or vacuum | 13% CO2 in N2, adsorption at 25 °C, desorption at 130–210 °C or 6–10 mbar | 45 | [47] |
Zeolite 13X with vacuum swing adsorption (VSA) | Commercial 13X from UOP packed in 3-bed pilot VSA system | 12% CO2 in dry air, 40–50 °C, 135 kPa adsorption, 5 kPa desorption | 70 | [48] |
Nomex/Activated Carbon Sandwich Filter | Sandwich assembly of Nomex layers with 2.89 mg/cm2 AC, heated at 120–130 °C under 520.5 kPa | Gasoline engine exhaust, 10 L/min flow, ambient temp., monitored with IoT system | 70 ± 3.4 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, S.S.M.; Mohamed, N.R.G.; Saad, M.M.A.; Ibrahim, Y.H.; Elshakour, A.A.; Fathy, M.A. Eco-Friendly Removal and IoT-Based Monitoring of CO2 Emissions Released from Gasoline Engines Using a Novel Compact Nomex/Activated Carbon Sandwich Filter. Polymers 2025, 17, 1447. https://doi.org/10.3390/polym17111447
Hassan SSM, Mohamed NRG, Saad MMA, Ibrahim YH, Elshakour AA, Fathy MA. Eco-Friendly Removal and IoT-Based Monitoring of CO2 Emissions Released from Gasoline Engines Using a Novel Compact Nomex/Activated Carbon Sandwich Filter. Polymers. 2025; 17(11):1447. https://doi.org/10.3390/polym17111447
Chicago/Turabian StyleHassan, Saad S. M., Nora R. G. Mohamed, Mohamed M. A. Saad, Yasser H. Ibrahim, Alia A. Elshakour, and Mahmoud Abdelwahab Fathy. 2025. "Eco-Friendly Removal and IoT-Based Monitoring of CO2 Emissions Released from Gasoline Engines Using a Novel Compact Nomex/Activated Carbon Sandwich Filter" Polymers 17, no. 11: 1447. https://doi.org/10.3390/polym17111447
APA StyleHassan, S. S. M., Mohamed, N. R. G., Saad, M. M. A., Ibrahim, Y. H., Elshakour, A. A., & Fathy, M. A. (2025). Eco-Friendly Removal and IoT-Based Monitoring of CO2 Emissions Released from Gasoline Engines Using a Novel Compact Nomex/Activated Carbon Sandwich Filter. Polymers, 17(11), 1447. https://doi.org/10.3390/polym17111447