Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (153)

Search Parameters:
Keywords = SHPB impact test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5769 KB  
Article
Enhanced Dynamic Compressive Behavior of Rubberized Concrete with Steel–Glass Fibers
by Jiahao Wen, Zhe Xiong, Xianpeng Wu, Xiaohui Li and Wenhua Luo
Buildings 2026, 16(3), 472; https://doi.org/10.3390/buildings16030472 - 23 Jan 2026
Viewed by 72
Abstract
To enhance the damage resistance of protective engineering materials under extreme loads such as explosions and impacts, this study, building upon the improvement in impact resistance of concrete achieved by rubber modification, further incorporates steel fibers and glass fibers to synergistically enhance impact [...] Read more.
To enhance the damage resistance of protective engineering materials under extreme loads such as explosions and impacts, this study, building upon the improvement in impact resistance of concrete achieved by rubber modification, further incorporates steel fibers and glass fibers to synergistically enhance impact resistance and to investigate the underlying mechanisms. Using split Hopkinson pressure bar (SHPB) testing, a comparative investigation was conducted on the dynamic mechanical responses of four specimen groups, namely plain rubberized concrete, single steel fiber-reinforced, single glass fiber-reinforced, and hybrid steel–glass fiber-reinforced rubberized concrete, over a strain-rate range of 30–185 s−1. The results demonstrate that the incorporation of hybrid fibers significantly enhances the dynamic compressive performance of plain rubber concrete. Specifically, the dynamic compressive strength increases from 40.73–61.29 MPa to 60.25–101.86 MPa, accompanied by a 59.5% increase in strain-rate sensitivity. Meanwhile, the fragment fineness modulus after failure rises from 3.20–3.33 to 3.73–4.20, indicating improved post-impact integrity. In addition, the hybrid fiber-reinforced specimens exhibit the highest energy dissipation capacity at identical strain rates. Their dynamic stress–strain responses are characterized by higher stiffness, improved ductility, and more pronounced progressive failure behavior. These findings provide experimental evidence for the design of high-impact-resistant protective engineering materials. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 5944 KB  
Article
Effect of Vibratory Mixing on the Quasi-Static and Dynamic Compressive Properties of a Sustainable Concrete for Transmission Tower Foundations
by Guangtong Sun, Xingliang Chen, Fei Yang, Xinri Wang, Wanhui Feng and Hongzhong Li
Buildings 2026, 16(2), 310; https://doi.org/10.3390/buildings16020310 - 11 Jan 2026
Viewed by 96
Abstract
This study addresses the need for flexible and high-toughness materials for transmission tower pile foundations subjected to typhoons and earthquakes by investigating the static and dynamic mechanical behavior of rubberized concrete prepared using vibratory mixing. The objectives are to assess how vibratory mixing [...] Read more.
This study addresses the need for flexible and high-toughness materials for transmission tower pile foundations subjected to typhoons and earthquakes by investigating the static and dynamic mechanical behavior of rubberized concrete prepared using vibratory mixing. The objectives are to assess how vibratory mixing influences strength evolution, failure modes, strain rate sensitivity, and energy absorption of rubberized concrete compared with conventional mixing at 0%, 20%, and 30% rubber contents. Quasi-static compression tests and Split Hopkinson Pressure Bar (SHPB) dynamic compression tests were conducted to quantify these effects. The results show that vibratory mixing significantly improves the paste–aggregate–rubber interfacial structure. It increases the compressive strength by 8.4–30% compared with conventional mixing and reduces the strength loss at the 30% rubber content from 51.12% to 38.98%. Under high-speed impact loading, vibratory mixed rubber concrete exhibits higher peak strength, stronger energy absorption capacity, and a more stable strain rate response. The mixture with 20% rubber content shows the best comprehensive performance and is suitable for impact-resistant design of transmission tower foundations. Future research should extend this work by considering different rubber particle sizes and vibratory mixing frequencies to identify optimal combinations, and by incorporating quantitative fragment size distribution analysis under impact loading to further clarify the fracture mechanisms and enhance the application of rubberized concrete. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 3010 KB  
Article
Dynamic Splitting Tensile Behavior of Rubber-Toughened Ceramsite Concrete for Transmission Structure Foundations Under a Wide Range of Strain Rates
by Guangtong Sun, Hanwei Qiu, Wanhui Feng, Lin Chen, Hongzhong Li and Fei Yang
Buildings 2026, 16(2), 269; https://doi.org/10.3390/buildings16020269 - 8 Jan 2026
Viewed by 156
Abstract
To address the impact-induced damage to concrete pile foundations of transmission structures caused by nearby blasting vibrations, this study investigates the dynamic splitting tensile behavior of an environmentally friendly lightweight rubberized concrete—Rubber-Toughened Ceramsite Concrete (RTCC)—under impact loading. Quasi-static tests show that the static [...] Read more.
To address the impact-induced damage to concrete pile foundations of transmission structures caused by nearby blasting vibrations, this study investigates the dynamic splitting tensile behavior of an environmentally friendly lightweight rubberized concrete—Rubber-Toughened Ceramsite Concrete (RTCC)—under impact loading. Quasi-static tests show that the static splitting tensile strength increases first and then decreases with increasing rubber content, reaching a maximum value of 2.01 MPa at a 20% replacement ratio. Drop-weight impact tests indicate that RTCC20 exhibits the highest peak impact force (42.48 kN) and maximum absorbed energy (43.23 J) within the medium strain-rate range. Split Hopkinson Pressure Bar (SHPB) tests further demonstrate that RTCC20 shows the highest strain-rate sensitivity. Overall, RTCC with 20% rubber content provides the best comprehensive performance, achieving a favorable balance between strength and toughness across the entire strain-rate range. These findings offer experimental support for applying RTCC to blast-vibration-resistant transmission structure foundations. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 5137 KB  
Article
Energy Evolution and Fine Structure Effects in Typical Rocks Subjected to Impact Loading
by Ding Deng, Gaofeng Liu, Lianjun Guo, Yuling Li and Jiawei Hua
Materials 2026, 19(1), 3; https://doi.org/10.3390/ma19010003 - 19 Dec 2025
Viewed by 355
Abstract
To investigate the mechanical behavior and energy evolution characteristics of various rock materials under impact loading, dynamic impact tests were conducted on five representative rock types using a split Hopkinson pressure bar (SHPB) apparatus, combined with X-ray diffraction (XRD) and scanning electron microscopy [...] Read more.
To investigate the mechanical behavior and energy evolution characteristics of various rock materials under impact loading, dynamic impact tests were conducted on five representative rock types using a split Hopkinson pressure bar (SHPB) apparatus, combined with X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The dynamic mechanical response, energy characteristics, mineral composition, and associated microstructural features of these typical rocks were systematically analyzed. The results show that basalt exhibits the highest peak strength, followed by blue sandstone and granite; all three display typical brittle failure characteristics, whereas red sandstone and green sandstone demonstrate greater ductility and plastic deformation capacity. By introducing the energy-time density index, the energy-time density of the rocks ranks from strongest to weakest as follows: green sandstone, red sandstone, granite, blue sandstone, and basalt. An innovative dynamic strength–energy-time density mapping model was established to elucidate the clustering and distinguishing characteristics of these rock materials. Assay results and mesoscopic images confirm the relationship between mineral composition and the fine structure of rock fragmentation mechanisms, highlighting that the critical transition from intergranular to transgranular fracture is the key mechanism governing impact pulverization. Furthermore, fractal analysis reveals that higher fractal dimensions are associated with more complex microcrack structures and may correlate with the corresponding energy dissipation intensity. These findings provide profound insight into the failure mechanisms of rocks under dynamic loading, offering significant theoretical value and engineering application prospects, particularly in fields such as mining excavation and rock mass stability assessment. Full article
(This article belongs to the Section Mechanics of Materials)
Show Figures

Figure 1

16 pages, 9834 KB  
Article
Study on the Dynamic Mechanical Properties of Polypropylene Fiber-Reinforced Concrete Based on a 3D Microscopic Model
by Shiliang Liu, Zhimin Du, Yanan Wang, Jiawei Wang and Zhibo Dong
Buildings 2025, 15(24), 4427; https://doi.org/10.3390/buildings15244427 - 8 Dec 2025
Viewed by 302
Abstract
Polypropylene (PP) fibers, known for their high fracture strength, low density, and cost-effectiveness, can significantly enhance the impact resistance of concrete, making the material suitable for specialized engineering applications. This study combined Split Hopkinson Pressure Bar (SHPB) tests with a three-dimensional mesoscale numerical [...] Read more.
Polypropylene (PP) fibers, known for their high fracture strength, low density, and cost-effectiveness, can significantly enhance the impact resistance of concrete, making the material suitable for specialized engineering applications. This study combined Split Hopkinson Pressure Bar (SHPB) tests with a three-dimensional mesoscale numerical model to investigate the dynamic compressive behavior of PP fiber-reinforced concrete (PFRC). The model, developed using MATLAB, explicitly represented polyhedral aggregates, mortar, the interfacial transition zone (ITZ), and PP fibers. Numerical simulations of impact compression were then performed using LS-DYNA and validated against experimental results. The simulated results exhibit close agreement with the experimental data in terms of peak stress, peak strain, and failure characteristics. The incorporation of 0.1% polypropylene fibers significantly enhanced the dynamic compressive strength of the specimen by 24.45%, with a mere 2.10% deviation from the experimental measurement. When the impact velocity was increased to 8 m/s and 10 m/s, the peak stress showed increases of 6.14% and 22.62%, respectively, while the peak strain increased by 11.72% and 23.32%. Damage analysis revealed that the aggregates experienced minimal failure, with cracks primarily initiating from the mortar and the ITZ. The polypropylene fibers improved the dynamic mechanical performance by dissipating energy through both fiber fracture and pull-out mechanisms. Furthermore, as the impact velocity increased, the fibers absorbed more energy, leading to a progressive increase in their own damage. Full article
(This article belongs to the Topic Sustainable Building Materials)
Show Figures

Figure 1

23 pages, 7706 KB  
Article
Dynamic Splitting Tensile Behavior of Hybrid Fibers-Reinforced Cementitious Composites: SHPB Tests and Mesoscale Industrial CT Analysis
by Xiudi Li, Tao Cai, Weilai Yao, Hui Wang and Xin Shu
Buildings 2025, 15(23), 4381; https://doi.org/10.3390/buildings15234381 - 3 Dec 2025
Viewed by 383
Abstract
Building structures are inherently susceptible to damage from extreme dynamic loads, while conventional concrete exhibits inadequate tensile resistance. While hybrid fibers systems can surpass the limitations of single-fiber reinforcement through their synergistic action, their internal damage mechanisms under impact loading remain inadequately understood. [...] Read more.
Building structures are inherently susceptible to damage from extreme dynamic loads, while conventional concrete exhibits inadequate tensile resistance. While hybrid fibers systems can surpass the limitations of single-fiber reinforcement through their synergistic action, their internal damage mechanisms under impact loading remain inadequately understood. This study investigates the dynamic splitting behavior of hybrid fibers-reinforced cementitious composites combining polyvinyl alcohol (PVA) with either steel (SF) or polyethylene (PE) fibers, using Split Hopkinson Pressure Bar (SHPB) tests at strain rates of 5–31 s−1, along with industrial CT scanning for meso-scale damage analysis. Results indicate that the SF–PVA hybrid improved strength by up to 15.6% compared to mono-PVA, while the PE–PVA hybrid achieved an 11.1% increase. All hybrid systems exhibited improved energy dissipation (which rose 25–45% with strain rate) and displayed secondary stress peaks. Quantitative CT analysis revealed distinct damage patterns: the mono-PVA specimen developed extensive damage networks (porosity: 7.20%; crack ratio: 4.48%), the SF-PVA hybrid system displayed the lowest damage indices (porosity: 3.29%; crack ratio: 1.76%), whereas the PE-PVA hybrid system exhibited the most significant dispersed damage pattern (crack-to-pore ratio: 39.32%). The hybrid systems function via distinct mechanisms: SF–PVA offers multi-scale reinforcement and superior damage suppression, whereas PE–PVA enables sequential energy dissipation, effectively dispersing concentrated damage. These insights support tailored fiber hybridization for impact-resistant structural design. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 4102 KB  
Article
Dynamic Mechanical Performance of 3D Woven Auxetic Reinforced Thermoplastic Composites
by Muhammad Umair, Tehseen Ullah, Adeel Abbas, Yasir Nawab and Abdel-Fattah M. Seyam
J. Compos. Sci. 2025, 9(12), 649; https://doi.org/10.3390/jcs9120649 - 1 Dec 2025
Viewed by 498
Abstract
The assessment of the dynamic mechanical performance of fiber-reinforced composites has gained importance in specific high-tech applications like aerospace and automobiles. However, three dimensional (3D) auxetic reinforcements offering viable performance have remained unexplored. Hence, this study investigates the energy absorption capabilities and high [...] Read more.
The assessment of the dynamic mechanical performance of fiber-reinforced composites has gained importance in specific high-tech applications like aerospace and automobiles. However, three dimensional (3D) auxetic reinforcements offering viable performance have remained unexplored. Hence, this study investigates the energy absorption capabilities and high strain impact behaviors of 3D woven fabric-reinforced composites. Three different types of 3D woven reinforcements i.e., warp interlock (Wp), weft interlock (Wt), and bidirectional interlock (Bi) were developed from jute yarn, and their corresponding composites were fabricated using polycarbonate (PC) and polyvinyl butyral (PVB). Out-of-plane auxeticity was measured for reinforcements while composites were analyzed under dynamic tests. Wp exhibited the highest auxeticity with a value of −1.29, Bi showed the least auxeticity with a value of −0.31, while Wt entailed an intermediate value of −0.46 owing to variable interlacement patterns. The dynamic mechanical analysis (DMA) results revealed that composite samples developed with PC resin showed a higher storage modulus with the least tan delta values less than 0.2, while PVB-based samples exhibited higher loss modulus with tan delta values of 0.6. Split Hopkinson pressure bar (SHPB) results showed that, under 2 and 4 bar pressure tests, PVB-based composites exhibited the highest maximum load while PC-based composites exhibited the least. Warp interlock-based composites with higher auxeticity showed better energy absorption when compared with the bidirectional interlock reinforcement based (with lower auxeticity) composites that exhibited lower peak load and energy dissipation. Full article
Show Figures

Figure 1

19 pages, 4292 KB  
Article
Degradation Law of Dynamic Mechanical Properties of Coral Concrete Under Marine Environment
by Yi Zhong, Yansong Luo, Jiafeng Zhang, Sheng He, Yuejing Luo and Peng Yu
Buildings 2025, 15(23), 4288; https://doi.org/10.3390/buildings15234288 - 26 Nov 2025
Viewed by 288
Abstract
The impact mechanical properties of coral aggregate seawater concrete (CASC) are crucial for its application in island construction. This study examines how the dynamic compressive mechanical properties of CASC degrade in a marine setting. Laboratory tests were conducted to simulate the corrosion of [...] Read more.
The impact mechanical properties of coral aggregate seawater concrete (CASC) are crucial for its application in island construction. This study examines how the dynamic compressive mechanical properties of CASC degrade in a marine setting. Laboratory tests were conducted to simulate the corrosion of CASC under three different immersion scenarios: full immersion (FI), semi-immersion (SI), and salt spray (SS). Dynamic compressive mechanical property tests were performed using a split Hopkinson pressure bar (SHPB). The study analyzed the effects of immersion condition and duration on key dynamic properties, including strength, elasticity, dynamic increase factor (DIF, defined as the ratio of dynamic strength to static strength), and energy dissipation. The experimental stress–strain data were fitted using the Guo model. Results show that the dynamic strength and energy dissipation in FI and SI conditions first increased, peaking at 30 days of corrosion, before decreasing. The DIF of CASC was linearly related to the strain rate and was largest in the SS zone, followed by the SI zone, and smallest in the FI zone. The experimental stress–strain data were well fitted by the Guo model, validating its effectiveness and offering insights into CASC use in island-reef engineering. Full article
Show Figures

Figure 1

16 pages, 5794 KB  
Article
Dynamic Mechanical Properties and Mesoscopic Characteristics of Cemented Tailings Backfill Under Cyclic Dynamic Loading
by Ruhai Yin, Xi Yang, Chengbo Liu, Jiuyun Cui, Zhiyi Liu, Yuxi Zhang and Yunpeng Zhang
Minerals 2025, 15(11), 1140; https://doi.org/10.3390/min15111140 - 30 Oct 2025
Viewed by 364
Abstract
Cyclic dynamic loading significantly influences the dynamic mechanical properties of cemented tailings backfill (CTB). This study investigates the dynamic mechanical properties and mesoscopic characteristics of CTB under cyclic dynamic loading. Using a Split Hopkinson Pressure Bar (SHPB) system, impact tests were conducted on [...] Read more.
Cyclic dynamic loading significantly influences the dynamic mechanical properties of cemented tailings backfill (CTB). This study investigates the dynamic mechanical properties and mesoscopic characteristics of CTB under cyclic dynamic loading. Using a Split Hopkinson Pressure Bar (SHPB) system, impact tests were conducted on CTB specimens subjected to varying numbers of cyclic impacts. The dynamic peak compressive strength (DPCS), elastic modulus, energy evolution, and failure modes were analyzed. Additionally, computed tomography (CT) scanning and 3D reconstruction techniques were employed to examine the internal pore and crack distribution. Results indicate that cyclic impacts lead to a gradual reduction in DPCS and energy absorption capacity, while the elastic modulus shows strain-rate dependency. Mesostructural analysis reveals that cyclic loading promotes the initiation and propagation of microcracks. This study establishes a correlation between mesoscopic damage evolution and macroscopic mechanical degradation, providing insights into the durability and stability of CTB under repeated blasting disturbances in mining environments. Full article
Show Figures

Figure 1

21 pages, 5514 KB  
Article
Dynamic Constitutive Model of Basalt Fiber Concrete After High Temperature Based on Fractional Calculus
by Wenbiao Liang, Kai Ding, Yan Li, Yue Zhai, Lintao Li and Yi Tian
Materials 2025, 18(20), 4657; https://doi.org/10.3390/ma18204657 - 10 Oct 2025
Viewed by 606
Abstract
Concrete materials undergo a series of physical and chemical changes under high temperature, leading to the degradation of mechanical properties. This study investigates basalt fiber-reinforced concrete (BFRC) through high-temperature testing using the split Hopkinson pressure bar (SHPB) apparatus. Impact compression tests were conducted [...] Read more.
Concrete materials undergo a series of physical and chemical changes under high temperature, leading to the degradation of mechanical properties. This study investigates basalt fiber-reinforced concrete (BFRC) through high-temperature testing using the split Hopkinson pressure bar (SHPB) apparatus. Impact compression tests were conducted on specimens after exposure to elevated temperatures to analyze the effects of varying fiber content, temperature levels, and impact rates on the mechanical behaviors of BFRC. Based on fractional calculus theory, a dynamic constitutive equation was established to characterize the viscoelastic properties and high-temperature damage of BFRC. The results indicate that the dynamic compressive strength of BFRC decreases significantly with increasing temperature but increases gradually with higher impact rates, demonstrating fiber-toughening effects, thermal degradation effects, and strain rate strengthening effects. The proposed constitutive model aligns well with the experimental data, effectively capturing the dynamic mechanical behaviors of BFRC after high-temperature exposure, including its transitional mechanical characteristics across elastic, viscoelastic, and viscous states. The viscoelastic behaviors of BFRC are fundamentally attributed to the synergistic response of its multi-phase composite system across different scales. Basalt fibers enhance the material’s elastic properties by improving the stress transfer mechanism, while high-temperature exposure amplifies its viscous characteristics through microstructural deterioration, chemical transformations, and associated thermal damage. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 4733 KB  
Article
Dynamic Mechanical Properties and Damage Evolution Mechanism of Polyvinyl Alcohol Modified Alkali-Activated Materials
by Feifan Chen, Yunpeng Liu, Yimeng Zhao, Binghan Li, Yubo Zhang, Yen Wei and Kangmin Niu
Buildings 2025, 15(19), 3612; https://doi.org/10.3390/buildings15193612 - 9 Oct 2025
Viewed by 536
Abstract
To investigate the failure characteristics and high-strain-rate mechanical response of polyvinyl alcohol-modified alkali-activated materials (PAAMs) under static and dynamic impact loads, quasi-static and uniaxial impact compression tests were performed on AAMs with varying PVA content. These tests employed a universal testing machine and [...] Read more.
To investigate the failure characteristics and high-strain-rate mechanical response of polyvinyl alcohol-modified alkali-activated materials (PAAMs) under static and dynamic impact loads, quasi-static and uniaxial impact compression tests were performed on AAMs with varying PVA content. These tests employed a universal testing machine and an 80 mm diameter split Hopkinson pressure bar (SHPB). Digital image correlation (DIC) was then utilized to study the surface strain field of the composite material, and the crack propagation process during sample failure was analyzed. The experimental results demonstrate that the compressive strength of AAMs diminishes with higher PVA content, while the flexural strength initially increases before decreasing. It is suggested that the optimal PVA content should not exceed 5%. When the strain rate varies from 25.22 to 130.08 s−1, the dynamic compressive strength, dissipated energy, and dynamic compressive increase factor (DCIF) of the samples all exhibit significant strain rate effects. Furthermore, the logarithmic function model effectively fits the dynamic strength evolution pattern of AAMs. DIC observations reveal that, under high strain rates, the crack mode of the samples gradually transitions from tensile failure to a combined tensile–shear multi-crack pattern. Furthermore, the crack propagation rate rises as the strain rate increases, which demonstrates the toughening effect of PVA on AAMs. Full article
(This article belongs to the Special Issue Trends and Prospects in Cementitious Material)
Show Figures

Figure 1

18 pages, 1298 KB  
Article
Improving Dynamic Material Characterization in SHPB Tests Through Optimized Friction Correction
by Alexis Rusinek, Tomasz Jankowiak and Amine Bendarma
Materials 2025, 18(18), 4327; https://doi.org/10.3390/ma18184327 - 16 Sep 2025
Viewed by 1032
Abstract
This study examines the influence of friction at the specimen–bar interface on the macroscopic response of materials during dynamic compression tests using the split Hopkinson Pressure Bar (SHPB) under high-deformation-rate conditions. A mesoscale model is employed to simulate and compare results with experimental [...] Read more.
This study examines the influence of friction at the specimen–bar interface on the macroscopic response of materials during dynamic compression tests using the split Hopkinson Pressure Bar (SHPB) under high-deformation-rate conditions. A mesoscale model is employed to simulate and compare results with experimental data, and a finite element model of cylindrical specimens with varying slenderness ratios is developed in Abaqus/Explicit. Numerical analyzes show that both specimen geometry and boundary conditions, particularly friction, have a decisive impact on the accuracy and reliability of SHPB measurements. A friction correction method based on barreling factor and plastic deformation demonstrates closer agreement with experimental observations than conventional approaches, revealing that the widely used Avitzur model may overestimate friction by 34–39%. The results highlight the importance of accurate friction correction and the selection of optimal specimen dimensions to minimize testing errors. These findings improve the precision of dynamic material characterization and support the development of more reliable constitutive models to predict material behavior across a broad range of strain rates. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Graphical abstract

22 pages, 4462 KB  
Article
Dynamic Response and Energy Dissipation Mechanisms of Soil–Lightweight Foam Composite Protective Layers Under Impact Loading
by Jianping Gao, Le Liu, Xuefeng Mei, Dengfeng Li, Jianli Wu and Peng Cui
Coatings 2025, 15(9), 1074; https://doi.org/10.3390/coatings15091074 - 12 Sep 2025
Viewed by 1074
Abstract
Engineering structures often face safety risks under impact or explosion loading, making the design of lightweight and efficient cushioning systems crucial. This study investigates the dynamic response and energy-dissipation characteristics of Expanded Polystyrene (EPS), Expanded Polyethylene (EPE), and soil–foam composite cushion layers under [...] Read more.
Engineering structures often face safety risks under impact or explosion loading, making the design of lightweight and efficient cushioning systems crucial. This study investigates the dynamic response and energy-dissipation characteristics of Expanded Polystyrene (EPS), Expanded Polyethylene (EPE), and soil–foam composite cushion layers under impact loading, using a Split Hopkinson Pressure Bar (SHPB) testing apparatus. The tests include pure foam layers (lengths ranging from 40 to 300 mm) and a soil–foam composite layer with a total length of 60 mm (soil/foam ratio 1:1 to 1:3), subjected to impact velocities of 9.9–15.4 m/s. The results show that the stress wave propagation velocity of EPE is 149.6 m/s, lower than that of EPS at 249.3 m/s. At higher velocities, the attenuation coefficient for the 40 mm EPE sample reaches as low as 0.22, while EPS is 0.31. Furthermore, the maximum energy absorption coefficient of EPE exceeds 98%, with better stability at high impact velocities. In composite cushion layers, both soil and foam collaborate in energy absorption, but an increased proportion of soil leads to a decrease in energy absorption efficiency and attenuation capacity. Under equivalent ratios, the soil–EPE combination performs better than the soil–EPS combination. By constructing a comprehensive evaluation system based on three indices: stress wave attenuation coefficient, energy absorption coefficient, and energy absorption density, this study quantifies the impact resistance performance of different cushioning layers, providing theoretical and parametric support for material selection in engineering design. Full article
Show Figures

Figure 1

25 pages, 15114 KB  
Article
Strength Characteristics of Straw-Containing Cemented Tailings Backfill Under Different Strain Rates
by Zeyu Li, Xiuzhi Shi, Xin Chen, Jinzhong Zhang, Wenyang Wang and Xiaoyuan Li
Materials 2025, 18(17), 4193; https://doi.org/10.3390/ma18174193 - 6 Sep 2025
Viewed by 940
Abstract
The frequent blasting in underground mines results in stress waves of different intensities, which is one of the main factors leading to backfill collapse. Improving the strength of backfill is an effective way to reduce the backfill damage. In this study, rice straw [...] Read more.
The frequent blasting in underground mines results in stress waves of different intensities, which is one of the main factors leading to backfill collapse. Improving the strength of backfill is an effective way to reduce the backfill damage. In this study, rice straw fiber and graded tailings were used as raw materials to prepare rice straw fiber-reinforced cemented tailings backfill (RSCTB). An orthogonal experimental design was employed to perform unconfined compressive strength (UCS) tests, diffusivity measurements, and Split Hopkinson Pressure Bar (SHPB) tests. The results showed that straw fibers slightly reduce slurry fluidity. The UCS of RSCTB at a specific mix ratio was more than 50% higher than that of cemented tailings backfill (CTB) without rice straw. The dynamic unconfined compressive strength (DUCS) of RSCTB increased linearly at different strain rates. The effect of rice straw fibers on the UCS and DUCS was much smaller than that of cement content and solid mass concentration. Excessively long and abundant straw fibers are not conducive to improving the long-term impact resistance of RSCTB. Full article
Show Figures

Figure 1

18 pages, 9783 KB  
Article
The Dynamic Mechanical Properties of High Strength and High Ductility Concrete Under a Corrosion Environment
by Jie Yang, Sijie Han, Qixin Cao, Xin Zhao, Xinyang Yu and Jintao Liu
Buildings 2025, 15(17), 2983; https://doi.org/10.3390/buildings15172983 - 22 Aug 2025
Cited by 1 | Viewed by 916
Abstract
High strength and high ductility concrete (HSHDC) exhibit exceptional compressive strength (up to 90 MPa) and remarkable tensile ductility (ultimate tensile strain reaching 6%), making them highly resilient under impact loading. To elucidate the influence of strain rate and wet–dry cycling of salt [...] Read more.
High strength and high ductility concrete (HSHDC) exhibit exceptional compressive strength (up to 90 MPa) and remarkable tensile ductility (ultimate tensile strain reaching 6%), making them highly resilient under impact loading. To elucidate the influence of strain rate and wet–dry cycling of salt spray on the dynamic compressive response of HSHDC, a series of tests was conducted using a 75 mm split Hopkinson pressure bar (SHPB) system on specimens exposed to cyclic corrosion for periods ranging from 0 to 180 days. The alternating seasonal corrosion environment was reproduced by using a programmable walk-in environmental chamber. Subsequently, both uniaxial compression and SHPB tests were employed to evaluate the post-corrosion dynamic compressive properties of HSHDC. Experimental findings reveal that corrosive exposure significantly alters both the static and dynamic compressive mechanical behavior and constitutive characteristics of HSHDC, warranting careful consideration in long-term structural integrity assessments. As corrosion duration increases, the quasi-static and dynamic compressive strengths of HSHDC exhibit an initial enhancement followed by a gradual decline, with stress reaching its peak at 120 days of corrosion under all strain rates. All specimens demonstrated pronounced strain-rate sensitivity, with the dynamic increase factor (DIF) being minimally influenced by the extent of corrosion under dynamic strain rates (112.6–272.0 s−1). Furthermore, the peak energy-consumption capacity of HSHDC was modulated by both the duration of corrosion and the applied strain rate. Full article
(This article belongs to the Special Issue Properties and Applications of Sustainable Construction Materials)
Show Figures

Figure 1

Back to TopTop