Dynamic Response and Energy Dissipation Mechanisms of Soil–Lightweight Foam Composite Protective Layers Under Impact Loading
Abstract
1. Introduction
2. Experimental Design
2.1. Test Material
2.2. SHPB Testing Apparatus and Improved Sleeve
2.3. Sample Preparation and Testing Procedure
3. Results and Analysis
3.1. Test Validity Verification
3.2. Compressive Stress Wave Propagation and Attenuation Characteristics
3.3. Laws of Energy Evolution and Dissipation
3.3.1. Characterization of Energy Evolution
3.3.2. Energy Dissipation Characteristics
3.3.3. Compression Properties of Foam
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, X.M.; Wang, M.; GUO, X.; Yan, J.L.; Ying, C.P. Measurement of stress attenuation effect in the sand under explosion wave. Appl. Mech. Mater. 2014, 556–562, 3187–3190. [Google Scholar] [CrossRef]
- Yu, X.; Wang, J.R.; Zhou, B.K.; Chen, L.; Fang, Q. Experimental study on the mechanical behavior and energy absorption capacity of coral sand at high strain rates. Ocean Eng. 2024, 291, 116343. [Google Scholar] [CrossRef]
- Song, B.; Chen, W.W.; Luk, V. Impact compressive response of Dry sand. Mech. Mater. 2009, 41, 777–785. [Google Scholar] [CrossRef]
- US Department of the Army. Structures to Resist the Effects of Accidental Explosions: TM5-1300; US Department of the Army: Washington, DC, USA, 1990.
- Jia, J.X.; Tang, H.P.; Chen, H.J. Dynamic mechanical properties and energy dissipation characteristics of frozen soil under passive confined pressure. Acta Mech. Solida Sin. 2021, 34, 184–203. [Google Scholar] [CrossRef]
- Ma, Q.; Cao, Z. Experimental study on fractal characteristics and energy dissipation of stabilized soil based on SHPB test. J. Mater. Civ. Eng. 2019, 31, 04019264. [Google Scholar] [CrossRef]
- Yan, S.; Wang, Y.; Wang, D.P.; He, S.M. Application of EPS geofoam in rockfall galleries: Insights from large-scale experiments and FDEM simulations. Geotext. Geomembr. 2022, 50, 677–693. [Google Scholar] [CrossRef]
- Zhao, P.; Yuan, S.; Li, L.; Ge, Q.; Liu, J.; Du, L. Experimental study on the multi-impact resistance of a composite cushion composed of sand and geofoam. Geotext. Geomembr. 2021, 49, 45–56. [Google Scholar] [CrossRef]
- Ouyang, C.J.; Liu, Y.; Wang, D.; He, S.M. Dynamic Analysis of Rockfall Impacts on Geogrid Reinforced Soil and EPS Absorption Cushions. KSCE J. Civ. Eng. 2019, 23, 37–45. [Google Scholar] [CrossRef]
- Cui, P.; Luo, G.; Liu, L.; Cao Xi Li, B.; Mei, X. Experimental study on crushing characteristics and energy absorption effect of silica sand under dynamic loading. Explos. Shock. Waves 2025, 45, 093101. [Google Scholar] [CrossRef]
- Lv, Y.R.; Li, X.; Wang, Y. Particle breakage of calcareous sand at high strain rates. Powder Technol. 2020, 366, 776–787. [Google Scholar] [CrossRef]
- Bakken, J.; Slungaard, T.; Engebretsen, T.; Christensen, S.O. Attenuation of shock waves by granular filters. Shock Waves 2003, 13, 33–40. [Google Scholar] [CrossRef]
- Balan, S.G.; Raj, A.S. Impact load bearing and energy absorption in sandwich polymer composites: Projectile versus shock loadings. Results Eng. 2025, 25, 103815. [Google Scholar] [CrossRef]
- Wu, J.L.; Hu, X.W.; Mei, X.F. Dynamic response of a combined structure of falling stone impacted concrete slab and buffer layer. Hydrogeol. Eng. Geol. 2021, 48, 78–87. [Google Scholar]
- Guo, Q.; Gou, Y.; Chen, J. Dynamic response of foam concrete under low-velocity impact: Experiments and numerical simulation. Int. J. Impact Eng. 2020, 146, 103693. [Google Scholar] [CrossRef]
- Pan, Y.H.; Zong, Z.H.; QIAN H., M.; Huang, J.; Shan, Y.L. Experiment study on blast wave propagation in calcareous sand. Explos. Shock Waves 2023, 43, 1–15. [Google Scholar]
- Peila, D.; Oggeri, C.; Castiglia, C. Ground reinforced embankments for rockfall protection: Design and evaluation of full scale tests. Landslides 2007, 4, 255–265. [Google Scholar] [CrossRef]
- Wu, L.; Lyu, Y.R.; Zhang, S.; Din, S.C. Research progress and discussion on problems of sandy soil SHPB impact tests and numerical simulations. Rock Soil Mech. 2024, 45, 3461–3480. [Google Scholar] [CrossRef]
- Yu, X.; Chen, L.; Fang, Q. Experimental study on the attenuation of stress wave in coral sand. Chin. J. Rock Mech. Eng. 2018, 37, 1520–1529. [Google Scholar]
- Hampton, D.; Wetzel, R.A. Stress Wave Propagation in Confined Soils. IIT Res. Inst Chic. IL 1966, AFWL-TR-66-56. Available online: https://www.semanticscholar.org/paper/STRESS-WAVE-PROPAGATION-IN-CONFINED-SOILS-Hampton-Wetzel/8898a6a555062f1682757ae19d62278ccd6573dd (accessed on 6 September 2025).
- Schindler, L. Design and Evaluation of a Device for Determining the One-Dimensional Compression Characteristics of Soils Subjected to Impulse-Type Loads; Army Engineer Waterways Experiment Station: Vicksburg, MS, USA, 1968. [Google Scholar]
- Yu, X.; Chen, L.; Fang, Q. A testing method on the attenuation of stress waves in loose porous media and its application to coral sand. Eng. Mech. 2019, 36, 44–52. [Google Scholar]
- Lv, Y.; Ng, C.W.; Wang, Y. Evaluation of wave dissipation in sand under impact loading. J. Geotech. Geoenvironmental Eng. 2019, 145, 06019007. [Google Scholar] [CrossRef]
- Yu, X.; Chen, L.; Zhou, B. Discussion of “Evaluation of Wave Dissipation in Sand under Impact Loading” by Yaru Lv, Charles, W.W. Ng, and Yuan Wang. J. Geotech. Geoenviron. Eng. 2019, 145, 06019007. [Google Scholar]
- Cui, P.; Su, T.; Liu, L.; Wang, T.; Li, B.X.; Guan, X.T.; Mei, X.F. Characteristics of compression wave propagation and energy absorption effects in dry sandy soil. Sci. Rep. 2024, 14, 31625. [Google Scholar] [CrossRef]
- Prabhu, S.; Qiu, T. Simulation of split Hopkinson pressure bar tests on sands with low water content. J. Eng. Mech. 2020, 146, 04020082. [Google Scholar] [CrossRef]
- Prabhu, S.; Qiu, T. Modeling of sand particle crushing in split Hopkinson pressure bar tests using the discrete element method. Int. J. Impact Eng. 2021, 156, 103974. [Google Scholar] [CrossRef]
- Lv, Y.R.; Wu, L.; Zhang, S.; Ding, S.C. Macro and micro quantitative study on impact behavior of glass beads by SHPB tests and FEM-DEM coupling analysis. Eng. Mech. 2023, 40, 245–256. [Google Scholar]
- JTGT D70-2010; Guidelines for Design of Highway, Tunnel. Ministry of Transport of the People’s Republic of China: Beijing, China, 2010. Available online: https://www.doc88.com/p-7327311462091.html (accessed on 6 September 2025).
- Zhao, P.; Xie, L.Z.; He, B.; Zhang, Y. Experimental study of rock-sheds constructed with PE fibres and composite cushion against rockfall impacts. Eng. Struct. 2018, 177, 175–189. [Google Scholar] [CrossRef]
- Huang, B.K.; Kin, S.K.; Kim, J.H.; Kim, J.D.; Lee, J.M. Dynamic compressive behavior of rigid polyurethane foam with various densities under different temperatures. Int. J. Mech. Sci. 2020, 180, 105657. [Google Scholar] [CrossRef]
- Mazek, S.A.; Mostafa, A.A. Impact of a shock wave on a structure strengthened by rigid polyurethane foam. Struct. Eng. Mech. 2013, 48, 569–585. [Google Scholar] [CrossRef]
- De, A.; Morgante, A.N.; Zimmie, T.F. Numerical and physical modeling of geofoam barriers as protection against effects of surface blast on underground tunnels. Geotext. Geomembr. 2016, 44, 1–12. [Google Scholar]
- Gupta, N. A functionally graded syntactic foam material for high energy absorption under co repression. Mater. Lett. 2007, 61, 979–982. [Google Scholar] [CrossRef]
- Hu, J.; Sun, Q.; Wu, X.T. Numerical analysis of the anti-explosion properties of tunnel constructions with EPS geofoam inclusions of different density. Proective Eng. 2012, 34, 38–43. Available online: https://kns.cnki.net/kcms2/article/abstract?v=Y2E-z2Sa5CMREp4uuR0fBdO2V7BoDY0AFcWlTikysKIj33sTDlGWbxXroreKhz4RE7-xx1VoqprnGF0Ngt-zYleLm1Uv_t8gHfOhKP8hzY3AjXO0Lr5OlV1_B20T9ZGkqvPwLAYgTjbk3CNL2FmsFHV3EoxHs6j6ECQx4oRiSKwoo0xMkUJJXg==&uniplatform=NZKPT&language=CHS (accessed on 6 September 2025).
- Zhao, P.; Xie, L.; Li, L.; Liu, Q.; Yuan, S.X. Large-scale rockfall impact experiments on a RC rock-shed with a newly proposed cushion layer composed of sand and epe. Eng. Struct. 2018, 175, 386–398. [Google Scholar]
- Hani, M.; Wang, D.P.; Yan, S.X.; Stéphane, L.; Chen, Y.H.; Qi, D. Optimization and performance analysis of novel waste EPS bead-sand composite cushions for rockfall mitigation: An integrated experimental and numerical study. Geotext. Geomembr. 2025, 53, 1314–1331. [Google Scholar]
- Wu, J.; Ma, G.; Zhou, Z.; Mei, X.F.; Hu, X.W. Experimental Investigation of Impact Response of RC Slabs with a Sandy Soil Cushion Layer. Adv. Civ. Eng. 2021, 2021, 1562158. [Google Scholar] [CrossRef]
- Ren, F.; Liu, J.; Huang, Q.; Ding, H.; Hu, Z.; Wang, G. Experimental study on the buffering mechanism of EPS bead-sand cushions under single and multiple impacts. Geoenviron. Disasters 2024, 11, 31. [Google Scholar] [CrossRef]
- Alaie, R.; Chenari, R.J. Dynamic Properties of EPS-Sand Mixtures Using Cyclic Triaxial and Bender Element Tests. Geosynth. Int. 2019, 26, 563–579. [Google Scholar] [CrossRef]
- Bhatti; Qadir, A. Computational Modeling of Energy Dissipation Characteristics of Expanded Polystyrene (EPS) Cushion of Reinforce Concrete (RC) Bridge Girder Under Rockfall Impact. Int. J. Civ. Eng. 2018, 16, 1635–1642. [Google Scholar] [CrossRef]
- Özgür, A.; Erdem, R.T.; Kantar, E. Improving the impact behavior of pipes using geofoam layer for protection. Int. J. Press. Vessel. Pip. 2015, 132–133, 52–64. [Google Scholar] [CrossRef]
- Wang, D.P.; Zhou, L.K.; Pei, X.J.; Huang, R.Q.; Liu, X.R. Experimental and numerical study on rockfall impacts on sand-soil cushions. J. Vib. Shock 2020, 39, 195–202. [Google Scholar]
- Pham, T.T.; Kurihashi, Y.; Masuya, H. Impact response of reinforced concrete beam with cushion using finite-element analysis. Case Stud. Constr. Mater. 2022, 17, e1147. [Google Scholar] [CrossRef]
- GB/T 50123–2019; Standard for Geotechnical Testing Method. Ministry of Housing and Urban-Rural Development of the People’s Republic of China : Beijing, China; Planning Press: Beijing, China, 2019.
- Sarmientom, A.M.; Guzman, H.L.; Morales, G. Expanded Polystyrene (EPS) and Waste Cooking Oil (WCO): From Urban Wastes to Potential Material of Construction. Waste Biomass Valorization 2016, 7, 1245–1254. [Google Scholar] [CrossRef]
- Tan, Y. Preparation and Properties of Room Temperature Vulcanized Silicone Foam Packaging Material. Ph.D. Thesis, Hunan University of Technology, Zhuzhou, China, 2020. Available online: https://kns.cnki.net/kcms2/article/abstract?v=Y2E-z2Sa5COK4_fBFkgt42UT6jokDbeDkS48CZDWwAegs3Qx2gjGY94YMgVSCASdpeoPIoDuQEAHokQByNg-23pWZwohr17z1zaCFJqX0KYtRQboinonr1aFGqOOVnC23eGjjWq1tHi3UfWBnFK3C9IkKBKal2EQGFjnwRC0scm2aW7jsLBBQ6n1WDTDg7SN&uniplatform=NZKPT&language=CHS (accessed on 6 September 2025).
- Fang, Q.; Liu, J.C. Underground Protective Structure; China Water and Power Press: Beijing, China, 2010. [Google Scholar]
- Fu, T.; Zhu, Z.; Cao, C. Simulating the dynamic behavior and energy consumption characteristics of frozen sandy soil under impact loading. Cold Reg. Sci. Technol. 2019, 166, 102821. [Google Scholar] [CrossRef]
- Yu, T.X.; Lu, G.X. Energy Absorption of Structures and Materials; Chemical Industry Press: Beijing, China, 2006. [Google Scholar]
Material | Length of Cushion Layer (mm) | Impact Velocity (m/s) |
---|---|---|
EPS | 40 | 10.7; 12.6; 15.3 |
60 | 10.5; 12.4; 15.2 | |
120 | 10.6; 12.9; 15.3 | |
160 | 10.4; 12.5; 15.4 | |
240 | 10.0; 11.7; 14.3 | |
300 | 10.0; 11.7; 14.4 | |
EPE | 40 | 10.1; 12.1; 15.1 |
80 | 10.1; 12.0; 15.3 | |
120 | 10.0; 12.5; 15.3 | |
160 | 10.1; 12.4; 15.1 | |
240 | 10.6; 12.1; 15.1 | |
300 | 10.5; 12.1; 15.1 | |
Soil + EPS | 30 + 30 | 10.2; 11.9; 14.8 |
40 + 20 | 9.9; 12.2; 14.8 | |
45 + 15 | 10.2; 12.3; 15.2 | |
Soil + EPE | 30 + 30 | 10.6; 12.7; 15.4 |
40 + 20 | 10.6; 12.5; 15.3 | |
45 + 15 | 10.6; 12.5; 15.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Liu, L.; Mei, X.; Li, D.; Wu, J.; Cui, P. Dynamic Response and Energy Dissipation Mechanisms of Soil–Lightweight Foam Composite Protective Layers Under Impact Loading. Coatings 2025, 15, 1074. https://doi.org/10.3390/coatings15091074
Gao J, Liu L, Mei X, Li D, Wu J, Cui P. Dynamic Response and Energy Dissipation Mechanisms of Soil–Lightweight Foam Composite Protective Layers Under Impact Loading. Coatings. 2025; 15(9):1074. https://doi.org/10.3390/coatings15091074
Chicago/Turabian StyleGao, Jianping, Le Liu, Xuefeng Mei, Dengfeng Li, Jianli Wu, and Peng Cui. 2025. "Dynamic Response and Energy Dissipation Mechanisms of Soil–Lightweight Foam Composite Protective Layers Under Impact Loading" Coatings 15, no. 9: 1074. https://doi.org/10.3390/coatings15091074
APA StyleGao, J., Liu, L., Mei, X., Li, D., Wu, J., & Cui, P. (2025). Dynamic Response and Energy Dissipation Mechanisms of Soil–Lightweight Foam Composite Protective Layers Under Impact Loading. Coatings, 15(9), 1074. https://doi.org/10.3390/coatings15091074