The Dynamic Mechanical Properties of High Strength and High Ductility Concrete Under a Corrosion Environment
Abstract
1. Introduction
2. Experimental Programs
2.1. Raw Materials and Specimen Preparation
2.2. Aggressive Environments
2.3. Compressive Test
2.4. Microscopic Test
3. Results and Discussions
3.1. Results from the Static and Quasi-Static Experiments
3.1.1. X-Ray Diffraction Tests
3.1.2. Stress–Strain Curve
3.1.3. Compressive Strength, Strain and Energy Consumption
3.1.4. Elastic Properties
3.1.5. Single Fiber Pull-Out Test
3.2. Results from the Dynamic Experiments
3.2.1. Stress–Strain Curve
3.2.2. Dynamic Strength and Stress
3.2.3. Energy Consumption
3.3. HSHDC Quasi-Dynamic and Dynamic Compression DIF Under Corrosion
4. Conclusions
- The quasi-static and dynamic compressive strengths of HSHDC increased and then decreased with corrosion time, with a peak at 120 days. The strength at 120 days was 1.2 times higher than the uncorroded specimens at a strain rate of 2.4 × 10−3. However, the effect of corrosion on peak strain and energy consumption was minimal, indicating that HSHDC maintains its energy absorption capacity even with increased corrosion.
- Peak compressive strains ranged from 0.28% to 0.38% in the quasi-dynamic range, with a slight decrease as strain rate increased. When the strain rate exceeded 102 s−1, tensile strains increased to 0.4–0.8%, showing strong sensitivity to strain rate, especially under high dynamic loading.
- All HSHDC specimens exposed to wet–dry cyclic corrosion showed strain-rate sensitivity under dynamic loading. The DIF values under dynamic strain rates (112.6–272.0 s−1) were less sensitive to corrosion time, indicating HSHDC’s resilience under dynamic loading. We also propose predictive models for DIF under different corrosion durations, which can help assess HSHDC’s long-term performance in corrosive environments.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hartt, W.H. Service Life Projection for Chloride-Exposed Concrete Reinforced with Black and Corrosion-Resistant Bars. Corrosion 2012, 68, 754–761. [Google Scholar] [CrossRef]
- Xia, M.Y.; Guo, R.; Lin, Q.S.; Yu, Z.X. Prediction model for the bond behaviour of low-corrosion reinforced concrete considering corrosion time variability. Constr. Build. Mater. 2024, 444, 137891. [Google Scholar] [CrossRef]
- Angst, U.M. Steel corrosion in concrete-Achilles’ heel for sustainable concrete? Cem. Concr. Res. 2023, 172, 107239. [Google Scholar] [CrossRef]
- Gao, D.; Liu, F.F.; Lin, M.X.; Zhao, T.X.; Zhang, J.G.; He, G.L. The impact performance of concrete-filled double-skin steel tubes under seawater corrosion: A review. Appl. Ocean Res. 2024, 153, 104248. [Google Scholar] [CrossRef]
- Dong, W.Y.; Fang, C.Q.; Yang, S. Influence of lateral impact on reinforced concrete piers under drying-wetting cycle and chloride ion corrosion environment. Bridge Struct. 2021, 17, 51–64. [Google Scholar] [CrossRef]
- Dai, M.J.; Yang, O.; Xiao, Y.; Li, F.C. Influence of longitudinal bar corrosion on impact behavior of RC beams. Mater. Struct. 2016, 49, 3579–3589. [Google Scholar] [CrossRef]
- Talero, R.; Trusilewicz, L.; Delgado, A.; Pedrajas, C.; Lannegrand, R.; Rahhal, V.; Mejía, R.; Delvasto, S.; Ramírez, F.A. Comparative and semi-quantitative XRD analysis of Friedel’s salt originating from pozzolan and Portland cement. Constr. Build. Mater. 2011, 25, 2370–2380. [Google Scholar] [CrossRef]
- Thomas, M.D.A.; Hooton, R.D.; Scott, A.; Zibara, H. The effect of supplementary cementitious materials on chloride binding in hardened cement paste. Cem. Concr. Res. 2012, 42, 1–7. [Google Scholar] [CrossRef]
- Li, H.; Farzadnia, N.; Shi, C. The role of seawater in interaction of slag and silica fume with cement in low water-to-binder ratio pastes at the early age of hydration. Constr. Build. Mater. 2018, 185, 508–518. [Google Scholar] [CrossRef]
- Xu, S.S.; Li, W.; Wang, X.Z.; Zhang, H.Z.; Liu, J.; Jiang, H.; Wang, X.B.; Ma, H.K.; Shi, J.; Yu, Z.Y.; et al. The Mechanical Properties and Durability of the PE-BFRP Hybrid-Fiber-Engineered Cementitious Composite (ECC). Buildings 2025, 15, 1860. [Google Scholar] [CrossRef]
- Yin, S.P.; Jing, L.; Yin, M.T.; Wang, B. Mechanical properties of textile reinforced concrete under chloride wet-dry and freeze-thaw cycle environments. Cem. Concr. Compos. 2019, 96, 118–127. [Google Scholar] [CrossRef]
- Zhang, W.Z.; Pan, J.; Sanchez, J.C.; Li, X.B.; Xu, M.C. Review on the protective technologies of bridge against vessel collision. Thin-Walled Struct. 2024, 201, 112013. [Google Scholar] [CrossRef]
- Fu, T.; Zhu, Z.; Li, Y.; Sun, Y.; Meng, L. Study on the Time-dependent Reliability of Corroded Reinforced Concrete Bridge Structures due to Ship Impact. Adv. Civ. Eng. 2022, 2022, 8190297. [Google Scholar] [CrossRef]
- Tamai, H.; Sonoda, Y.; Bolander, J.E. Impact resistance of RC beams with reinforcement corrosion: Experimental observations. Constr. Build. Mater. 2020, 263, 120638. [Google Scholar] [CrossRef]
- Shumuye, E.D.; Li, W.; Liu, J.; Wang, Z.; Yu, J.; Wu, H. Self-healing recovery and micro-structural properties of slag/fly-ash based engineered cementitious composites under chloride environment and tidal exposure. Cem. Concr. Compos. 2022, 134, 104789. [Google Scholar] [CrossRef]
- Li, H.D.; Qiu, X.Y.; Qiu, Y.F.; Liu, H.Y.; Pan, Y.F. The investigation on mechanical properties of ultra-high toughness cementitious composite using orthogonal experiment. J. Reinf. Plast. Compos. 2025, 44, 204–216. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Q. Self-healing ability of Engineered Cementitious Composites (ECC) under different exposure environments. Constr. Build. Mater. 2017, 156, 142–151. [Google Scholar] [CrossRef]
- Wu, J.H. Impact Performance of RC Beams Reinforced by Engineered Cementitious Composite. Buildings 2023, 13, 1688. [Google Scholar] [CrossRef]
- Zhong, R.; Zhang, F.L.; Poh, L.H.; Wang, S.S.; Le, H.T.N.; Zhang, M.H. Assessing the effectiveness of UHPFRC, FRHSC and ECC against high velocity projectile impact. Cem. Concr. Compos. 2021, 120, 104013. [Google Scholar] [CrossRef]
- Wang, W.R.; Xu, S.L.; Li, Q.H.; Dong, S.L. Long-term performance of fiber reinforced cementitious composites with high ductility under seawater attack with different salinities. Constr. Build. Mater. 2022, 317, 126164. [Google Scholar] [CrossRef]
- Miyazato, S.; Hiraishi, Y. Transport properties and steel corrosion in ductile fibre reinforced cement composites. In Proceedings of the Eleventh International Conference on Fracture (ICF11), Turin, Italy, 20–25 March 2005. [Google Scholar]
- Sahmaran, M.; Li, M.; Li, V.C. Transport properties of engineered cementitious composites under chloride exposure. Aci Mater. J. 2007, 104, 604–611. [Google Scholar]
- Lee, N.K.; Koh, K.T.; Kim, M.O.; Ryu, G.S. Uncovering the role of micro silica in hydration of ultra-high performance concrete (UHPC). Cem. Concr. Res. 2018, 104, 68–79. [Google Scholar] [CrossRef]
- Song, Z.; Li, S.; Cheng, L.; Yu, Q. Investigation of the dynamic mechanical response of corroded ultra-high performance fiber reinforced concrete (UHPFRC) with initial defects. Cem. Concr. Compos. 2024, 154, 105780. [Google Scholar] [CrossRef]
- Kai, M.F.; Xiao, Y.; Shuai, X.L.; Ye, G. Compressive Behavior of Engineered Cementitious Composites under High Strain-Rate Loading. J. Mater. Civ. Eng. 2016, 29, 04016254. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, Y.; Yao, Y. Quasi-static and dynamic compressive mechanical properties of engineered cementitious composite incorporating ground granulated blast furnace slag. Mater. Des. 2013, 44, 500–508. [Google Scholar] [CrossRef]
- Ghalehnoei, M.S.; Javanmardi, A.; Izadifar, M.; Ukrainczyk, N.; Koenders, E. Finite Element Analysis of Shear Reinforcing of Reinforced Concrete Beams with Carbon Fiber Reinforced Polymer Grid-Strengthened Engineering Cementitious Composite. Buildings 2023, 13, 1034. [Google Scholar] [CrossRef]
- Zhang, J.F.; Zhang, X.W.; Wu, J.L.; Wu, F.W. Residual load-carrying performance of ECC-RC composite beam after drop hammer impact. Constr. Build. Mater. 2024, 440, 137368. [Google Scholar] [CrossRef]
- Ali, S.H.; Abid, S.R.; Al-Lami, K.; Calabrese, A.S.; Yosri, A.M.; Al-Ghasham, T.S. Experimental and Statistical Analysis of Repeated Impact Records of Hybrid Fiber-Reinforced High-Performance Concrete. Buildings 2023, 13, 678. [Google Scholar] [CrossRef]
- Su, J.-Y.; Chen, G.; Pan, H.-S.; Lin, J.-X.; Zhang, J.; Zhuo, K.-X.; Chen, Z.-B.; Guo, Y.-C. Rubber modified high strength-high ductility concrete: Effect of rubber replacement ratio and fiber length. Constr. Build. Mater. 2023, 404, 133243. [Google Scholar] [CrossRef]
- Yang, J.S.; Deng, M.K.; Wang, Y.T.; Zhang, Y.X. Uniaxial tensile test of high-strength high-ductility concrete (HSHDC): Mechanical response and toughness evaluation. J. Build. Eng. 2024, 89, 109332. [Google Scholar] [CrossRef]
- Ranade, R.; Li, V.C.; Heard, W.F.; Williams, B.A. Impact resistance of high strength-high ductility concrete. Cem. Concr. Res. 2017, 98, 24–35. [Google Scholar] [CrossRef]
- Kim, M.J.; Choi, H.J.; Shin, W.; Oh, T.; Yoo, D.Y. Development of impact resistant high-strength strain-hardening cementitious composites (HS-SHCC) superior to reactive powder concrete (RPC) under flexure. J. Build. Eng. 2021, 44, 102652. [Google Scholar] [CrossRef]
- Liu, J.T.; Wang, W.S.; Dai, X.S.; Yu, X.Y.; Kong, D.Y.; Zhao, X.; Zhou, F. Influence of polyethylene fiber parameters on the mechanical properties of high-strength high-ductility concrete: An experimental study and constitutive model. J. Build. Eng. 2024, 88, 109128. [Google Scholar] [CrossRef]
- Ranade, R.; Li, V.C.; Stults, M.D.; Rushing, T.S.; Roth, J.; Heard, W.F. Micromechanics of High-Strength, High-Ductility Concrete. ACI Mater. J. 2013, 110, 375–384. [Google Scholar]
- Şahmaran, M.; Özbay, E.; Yücel, H.E.; Lachemi, M.; Li, V.C. Effect of Fly Ash and PVA Fiber on Microstructural Damage and Residual Properties of Engineered Cementitious Composites Exposed to High Temperatures. J. Mater. Civ. Eng. 2011, 23, 1735–1745. [Google Scholar] [CrossRef]
- Luo, J.; Cai, Z.; Yu, K.; Zhu, W.; Lu, Z. Temperature impact on the micro-structures and mechanical properties of high-strength engineered cementitious composites. Constr. Build. Mater. 2019, 226, 686–698. [Google Scholar] [CrossRef]
- Lu, Z.-Y.; Jin, W.-L.; Wang, H.-L.; Jin, L.-Y.; Yan, Y.-Y. Similar design on accelerated test of artificial climate simulation. J. Zhejiang Univ. (China) 2009, 43, 1071–1076. [Google Scholar] [CrossRef]
- Lee, H.P.; Awang, A.Z.; Omar, W.; Tiong, P.L.Y. Derivation of Complete Stress-Strain Curve for SSTT-Confined High-Strength Concrete in Compression. J. Test. Eval. 2018, 46, 168–177. [Google Scholar] [CrossRef]
- Ye, H.; He, Q.; Pan, J.; Zhu, B. Dynamic compressive properties and constitutive model of waste crumb rubber (CR) modified ultra-high performance engineered cementitious composites (UHP-ECC). J. Build. Eng. 2024, 98, 111453. [Google Scholar] [CrossRef]
- Kolsky, H. An Investigation of the Mechanical Properties of Materials at very High Rates of Loading. Proc. Phys. Soc. Sect. B 1949, 62, 676–700. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, L.; Jin, X.; Zhao, X.; Kong, D.; Fu, L.; Wang, B. Water saturation effect on the dynamic tensile behavior of high ductility concrete. Compos. Part B Eng. 2025, 296, 112219. [Google Scholar] [CrossRef]
- ASTM C469/C469M-14; Standard test method for static modulus of elasticity and Poisson’s ratio of concrete in compression. ASTM International: West Conshohocken, PA, USA, 2014.
- Ding, Y.; Yu, K.Q.; Li, M. A review on high-strength engineered cementitious composites (HS-ECC): Design, mechanical property and structural application. Structures 2022, 35, 903–921. [Google Scholar] [CrossRef]
- Fan, H.T.; Yu, H.F.; Ma, H.Y. Dynamic increase factor(DIF) of concrete with SHPB tests: Review and systematic analysis. J. Build. Eng. 2023, 79, 107666. [Google Scholar] [CrossRef]
- Wang, S.Y.; Lin, C.L.; Tai, C.W.; Lu, Y.Y. Experimental study on dynamic compressive properties of early strength seawater and sea-sand ECC. J. Build. Eng. 2025, 108, 112817. [Google Scholar] [CrossRef]
Loss on Ignition (%) | SO3 (%) | MgO (%) | Chloride Ion Content (%) | Standard Consistency (%) | Specific Surface Area (m2/kg) | 28-Day Flexural Strength (MPa) | 28-Day Compressive Strength (MPa) |
---|---|---|---|---|---|---|---|
2.67 | 1.33 | 1.55 | 0.024 | 28.2 | 358 | 8.4 | 54.0 |
Length (mm) | Diameter (μm) | Tensile Strength (MPa) | Elongation (%) | Young’s Modulus (GPa) | Density (g/cm3) | Fusion Limit (°C) |
---|---|---|---|---|---|---|
12 | 40 | 1600 | 6 | 40 | 1.3 | 144–152 |
Corrosion Days (d) | Air Pressure (MPa) | Average Strain Rates (s−1) | Stress (MPa) | Strain (%) |
---|---|---|---|---|
0 | 0.55 | 116.1(25.7) | 144.5(7.5) | 0.51(0.03) |
0 | 0.7 | 178.1(4.7) | 184.2(3.8) | 0.53(0.03) |
0 | 0.85 | 253.5(7.7) | 202.2(7.0) | 1.00(0.03) |
60 | 0.55 | 116.1(7.4) | 150.4(5.9) | 0.51(0.02) |
60 | 0.7 | 176.3(11.3) | 176.1(6.2) | 0.61(0.07) |
60 | 0.85 | 264.0(7.7) | 220.0(8.0) | 0.83(0.04) |
120 | 0.55 | 112.1(7.1) | 162.1(7.1) | 0.50(0.04) |
120 | 0.7 | 177.5(14.2) | 199.6(14.6) | 0.77(0.03) |
120 | 0.85 | 262.2(10.7) | 223.74(8.9) | 0.71(0.03) |
180 | 0.55 | 115.0(5.8) | 160.3(8.8) | 0.46(0.03) |
180 | 0.7 | 174.4(8.8) | 181.0(6.1) | 0.52(0.03) |
180 | 0.85 | 270.5(9.6) | 214.1(3.9) | 0.75(0.10) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Han, S.; Cao, Q.; Zhao, X.; Yu, X.; Liu, J. The Dynamic Mechanical Properties of High Strength and High Ductility Concrete Under a Corrosion Environment. Buildings 2025, 15, 2983. https://doi.org/10.3390/buildings15172983
Yang J, Han S, Cao Q, Zhao X, Yu X, Liu J. The Dynamic Mechanical Properties of High Strength and High Ductility Concrete Under a Corrosion Environment. Buildings. 2025; 15(17):2983. https://doi.org/10.3390/buildings15172983
Chicago/Turabian StyleYang, Jie, Sijie Han, Qixin Cao, Xin Zhao, Xinyang Yu, and Jintao Liu. 2025. "The Dynamic Mechanical Properties of High Strength and High Ductility Concrete Under a Corrosion Environment" Buildings 15, no. 17: 2983. https://doi.org/10.3390/buildings15172983
APA StyleYang, J., Han, S., Cao, Q., Zhao, X., Yu, X., & Liu, J. (2025). The Dynamic Mechanical Properties of High Strength and High Ductility Concrete Under a Corrosion Environment. Buildings, 15(17), 2983. https://doi.org/10.3390/buildings15172983