Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (127)

Search Parameters:
Keywords = SERS sensor substrate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2114 KB  
Review
Recent Advances in Flexible Materials for Wearable Optical Biosensors
by Linyan Xie, Kai Yang, Mengfei Wang, Wenli Hou and Qiongqiong Ren
Biosensors 2025, 15(9), 611; https://doi.org/10.3390/bios15090611 - 16 Sep 2025
Viewed by 1370
Abstract
The integration of flexible materials with optical sensing technologies has advanced wearable optical biosensors, offering significant potential in personalized medicine, health monitoring, and disease prevention. This review summarizes the recent advancements in flexible materials for wearable optical biosensors, with a focus on materials [...] Read more.
The integration of flexible materials with optical sensing technologies has advanced wearable optical biosensors, offering significant potential in personalized medicine, health monitoring, and disease prevention. This review summarizes the recent advancements in flexible materials for wearable optical biosensors, with a focus on materials such as polymer substrates, nanostructured materials, MXenes, hydrogels, and textile-based integrated platforms. These materials enhance the functionality, sensitivity, and adaptability of sensors, particularly in wearable applications. The review also explores various optical sensing mechanisms, including surface plasmon resonance (SPR), optical fiber sensing, fluorescence sensing, chemiluminescence, and surface-enhanced Raman spectroscopy (SERS), emphasizing their role in improving the detection capabilities for biomarkers, physiological parameters, and environmental pollutants. Despite significant advancements, critical challenges remain in the fabrication and practical deployment of flexible optical biosensors, particularly regarding the long-term stability of materials under dynamic environments, maintaining reliable biocompatibility during prolonged skin contact, and minimizing signal interference caused by motion artifacts and environmental fluctuations. Addressing these issues is vital to ensure robustness and accuracy in real-world applications. Looking forward, future research should emphasize the development of multifunctional and miniaturized devices, the integration of wireless communication and intelligent data analytics, and the improvement of environmental resilience. Such innovations are expected to accelerate the transition of flexible optical biosensors from laboratory research to practical clinical and consumer healthcare applications, paving the way for intelligent health management and early disease diagnostics. Overall, flexible optical biosensors hold great promise in personalized health management, early disease diagnosis, and continuous physiological monitoring, with the potential to revolutionize the healthcare sector. Full article
(This article belongs to the Special Issue Flexible Electronics for Biosensing)
Show Figures

Figure 1

24 pages, 3191 KB  
Article
Combining QCM and SERS on a Nanophotonic Chip: A Dual-Functional Sensor for Biomolecular Interaction Analysis and Protein Fingerprinting
by Cosimo Bartolini, Martina Tozzetti, Cristina Gellini, Marilena Ricci, Stefano Menichetti, Piero Procacci and Gabriella Caminati
Nanomaterials 2025, 15(16), 1230; https://doi.org/10.3390/nano15161230 - 12 Aug 2025
Viewed by 565
Abstract
We present a dual biosensing strategy integrating Quartz Crystal Microbalance (QCM) and Surface-Enhanced Raman Spectroscopy (SERS) for the quantitative and molecular-specific detection of FKBP12. Silver nanodendritic arrays were electrodeposited onto QCM sensors, optimized for SERS enhancement using Rhodamine 6G, and functionalized with a [...] Read more.
We present a dual biosensing strategy integrating Quartz Crystal Microbalance (QCM) and Surface-Enhanced Raman Spectroscopy (SERS) for the quantitative and molecular-specific detection of FKBP12. Silver nanodendritic arrays were electrodeposited onto QCM sensors, optimized for SERS enhancement using Rhodamine 6G, and functionalized with a custom-designed receptor to selectively capture FKBP12. QCM measurements revealed a two-step Langmuir adsorption behavior, enabling sensitive mass quantification with a low limit of detection. Concurrently, in situ SERS analysis on the same sensor provided vibrational fingerprints of FKBP12, resolved through comparative studies of the free protein, surface-bound receptor, and surface-bound receptor–protein complex. Ethanol-induced denaturation confirmed protein-specific peaks, while shifts in receptor vibrational modes—linked to FKBP12 binding—demonstrated dynamic molecular interactions. A ratiometric parameter, derived from key peak intensities, served as a robust, concentration-dependent signature of complex formation. This platform bridges quantitative (QCM) and structural (SERS) biosensing, offering real-time mass tracking and conformational insights. The nanodendritic substrate’s dual functionality, combined with the receptor’s selectivity, advances label-free protein detection for applications in drug diagnostics, with potential adaptability to other target analytes. Full article
Show Figures

Graphical abstract

16 pages, 2858 KB  
Article
Reactive Aerosol Jet Printing of Ag Nanoparticles: A New Tool for SERS Substrate Preparation
by Eugenio Gibertini, Lydia Federica Gervasini, Jody Albertazzi, Lorenzo Maria Facchetti, Matteo Tommasini, Valentina Busini and Luca Magagnin
Coatings 2025, 15(8), 900; https://doi.org/10.3390/coatings15080900 - 1 Aug 2025
Viewed by 571
Abstract
The detection of trace chemicals at low and ultra-low concentrations is critical for applications in environmental monitoring, medical diagnostics, food safety and other fields. Conventional detection techniques often lack the required sensitivity, specificity, or cost-effectiveness, making real-time, in situ analysis challenging. Surface-enhanced Raman [...] Read more.
The detection of trace chemicals at low and ultra-low concentrations is critical for applications in environmental monitoring, medical diagnostics, food safety and other fields. Conventional detection techniques often lack the required sensitivity, specificity, or cost-effectiveness, making real-time, in situ analysis challenging. Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical tool, offering improved sensitivity through the enhancement of Raman scattering by plasmonic nanostructures. While noble metals such as Ag and Au are currently the reference choices for SERS substrates, fabrication methods should balance enhancement efficiency, reproducibility and scalability. In this study, we propose a novel approach for SERS substrate fabrication using reactive Aerosol Jet Printing (r-AJP) as an innovative additive manufacturing technique. The r-AJP process enables in-flight Ag seed reduction and nucleation of Ag nanoparticles (NPs) by mixing silver nitrate and ascorbic acid aerosols before deposition, as suggested by computational fluid dynamics (CFD) simulations. The resulting coatings were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses, revealing the formation of nanoporous crystalline Ag agglomerates partially covered by residual matter. The as-prepared SERS substrates exhibited remarkable SERS activity, demonstrating a high enhancement factor (106) for rhodamine (R6G) detection. Our findings highlight the potential of r-AJP as a scalable and cost-effective fabrication strategy for next-generation SERS sensors, paving the way for the development of a new additive manufacturing tool for noble metal material deposition. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Graphical abstract

12 pages, 2346 KB  
Article
SERS and Chiral Properties of Cinnamic Acid Derivative Langmuir-Blodgett Films Complexed with Dyes
by Xingdi Zhao, Xinyu Li, Pengfei Bian, Qingrui Zhang, Yuqing Qiao, Mingli Wang and Tifeng Jiao
Coatings 2025, 15(8), 890; https://doi.org/10.3390/coatings15080890 - 1 Aug 2025
Viewed by 589
Abstract
Chiral molecules are crucial in the field of optical devices, molecular recognition, and other novel functional materials due to their unique spatially asymmetric configuration and optical activity. In this study, a chiral molecule, Cholest-3-yl (E)-3-(4-carbamoylphenyl)acrylate (CCA), was combined with dyes containing large conjugated [...] Read more.
Chiral molecules are crucial in the field of optical devices, molecular recognition, and other novel functional materials due to their unique spatially asymmetric configuration and optical activity. In this study, a chiral molecule, Cholest-3-yl (E)-3-(4-carbamoylphenyl)acrylate (CCA), was combined with dyes containing large conjugated structures, tetramethylporphyrin tetrasulfonic acid (TPPS), and Nickel(II) phthalocyanine-tetrasulfonic acid tetrasodium salt (TsNiPc), and composite LB films of CCA/TPPS and CCA/TsNiPc were successfully prepared by using Langmuir-Blodgett (LB) technology. The circular dichroism (CD) test proved that the CCA/TPPS composite film had a strong CD signal at 300–400 nm, and the composite film showed chirality. This significant optical activity provides a new idea and option for the application of LB films in chiral sensors. In the Surface Enhanced Raman Spectroscopy (SERS) test, the CCA/TPPS composite film was sensitive to signal sensing, in which the enhancement factor EF = 2.28 × 105, indicating that a large number of effective signal response regions were formed on the surface of the film, and the relative standard deviation (RSD) = 12.08%, which demonstrated that the film had excellent uniformity and reproducibility. The high sensitivity and low signal fluctuation make the CCA/TPPS composite LB film a promising SERS substrate material. Full article
Show Figures

Figure 1

15 pages, 3554 KB  
Article
A Composite Substrate of Ag Nanoparticle-Decorated Inverse Opal Polydimethylsiloxane for Surface Raman Fluorescence Dual Enhancement
by Zilun Tang, Hongping Liang, Zhangyang Chen, Jianpeng Li, Jianyu Wu, Xianfeng Li and Dingshu Xiao
Polymers 2025, 17(14), 1995; https://doi.org/10.3390/polym17141995 - 21 Jul 2025
Viewed by 612
Abstract
It is difficult to simultaneously achieve surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) for noble metals. Herein, a composite substrate is demonstrated based on the rational construction of Ag nanoparticles (Ag NPs) and inverse opal polydimethylsiloxane (PDMS) for surface Raman fluorescence dual [...] Read more.
It is difficult to simultaneously achieve surface-enhanced Raman scattering (SERS) and surface-enhanced fluorescence (SEF) for noble metals. Herein, a composite substrate is demonstrated based on the rational construction of Ag nanoparticles (Ag NPs) and inverse opal polydimethylsiloxane (PDMS) for surface Raman fluorescence dual enhancement. The well-designed Ag nanoparticle (Ag NP)-decorated inverse opal PDMS (AIOP) composite substrate is fabricated using the polystyrene (PS) photonic crystal method and the sensitization reduction technique. The inverse opal PDMS enhances the electromagnetic (EM) field by increasing the loading of Ag NPs and plasmonic coupling of Ag NPs, leading to SERS activity. The thin shell layer of polyvinyl pyrrolidone (PVP) in core–shell Ag NPs isolates the detected molecule from the Ag core to prevent the fluorescence resonance energy transfer and charge transfer to eliminate fluorescence quenching and enable SEF performance. Based on the blockage of the core–shell structure and the enhanced EM field originating from the inverse opal structure, the as-fabricated AIOP composite substrate shows dual enhancement in surface Raman fluorescence. The AIOP composite substrate in this work, which combines improved SERS activity and SEF performance, not only promotes the development of surface-enhanced spectroscopy but also shows promise for applications in flexible sensors. Full article
(This article belongs to the Special Issue Polymer-Based Flexible Materials, 3rd Edition)
Show Figures

Figure 1

29 pages, 7799 KB  
Article
Substrate Flexibility and Metal Deposition Method Effects on Piezoelectric-Enhanced SERS in Metal–ZnO Nanorod Nanocomposites
by Nguyen Thi Quynh Nhu, Le Tran Thanh Thi, Le Vu Tuan Hung and Vincent K. S. Hsiao
Materials 2025, 18(14), 3299; https://doi.org/10.3390/ma18143299 - 13 Jul 2025
Viewed by 683
Abstract
This study investigates the effects of substrate flexibility and metal deposition methods on piezoelectric-enhanced Surface-Enhanced Raman Scattering (SERS) in metal-deposited ZnO nanorod (NR) nanocomposites (NCPs). ZnO NRs were grown on both rigid (ITO–glass) and flexible (ITO-PET) substrates, followed by gold (Au) deposition by [...] Read more.
This study investigates the effects of substrate flexibility and metal deposition methods on piezoelectric-enhanced Surface-Enhanced Raman Scattering (SERS) in metal-deposited ZnO nanorod (NR) nanocomposites (NCPs). ZnO NRs were grown on both rigid (ITO–glass) and flexible (ITO-PET) substrates, followed by gold (Au) deposition by pulsed-laser-induced photolysis (PLIP) or silver (Ag) deposition by thermal evaporation. Structural analysis revealed that ZnO NRs on flexible substrates exhibited smaller diameters (60–80 nm vs. 80–100 nm on glass), a higher density, and diverse orientations that enhanced piezoelectric responsiveness. Optical characterization showed distinct localized surface plasmon resonance (LSPR) peaks at 420 nm for Ag and 525 nm for Au systems. SERS measurements demonstrated that Ag-ZnO NCPs achieved superior detection limits (10−9 M R6G) with enhancement factors of 108–109, while Au-ZnO NCPs reached 10−8 M detection limits. Mechanical bending of flexible substrates induced dramatic signal enhancement (50–100-fold for Au-ZnO/PET and 2–3-fold for Ag-ZnO/PET), directly confirming piezoelectric enhancement mechanisms. This work establishes quantitative structure–property relationships in piezoelectric-enhanced SERS and provides design principles for high-performance flexible sensors. Full article
Show Figures

Figure 1

36 pages, 2877 KB  
Article
Dual-Oriented Targeted Nanostructured SERS Label-Free Immunosensor for Detection, Quantification, and Analysis of Breast Cancer Biomarker Concentrations in Blood Serum
by Mohammad E. Khosroshahi, Christine Gaoiran, Vithurshan Umashanker, Hayagreev Veeru and Pranav Panday
Biosensors 2025, 15(7), 447; https://doi.org/10.3390/bios15070447 - 11 Jul 2025
Viewed by 771
Abstract
In clinical applications of surface-enhanced Raman spectroscopy (SERS) immunosensors, accurately determining analyte biomarker concentrations is essential. This study presents a non-invasive approach for quantifying various breast cancer biomarkers—including human epidermal growth factor receptor II (HER-II) (2+, 3+ (I), 3+ (II), 3+ (III), and [...] Read more.
In clinical applications of surface-enhanced Raman spectroscopy (SERS) immunosensors, accurately determining analyte biomarker concentrations is essential. This study presents a non-invasive approach for quantifying various breast cancer biomarkers—including human epidermal growth factor receptor II (HER-II) (2+, 3+ (I), 3+ (II), 3+ (III), and positive IV) and CA 15-3—using a directional, plasmonically active, label-free SERS sensor. Each stage of sensor functionalization, conjugation, and biomarker interaction was verified by UV–Vis spectroscopy. Atomic force microscopy (AFM) characterized the morphology of gold nanourchin (GNU)-immobilized printed circuit board (PCB) substrates. An enhancement factor of ≈ 0.5 × 105 was achieved using Rhodamine 6G as the probe molecule. Calibration curves were initially established using standard HER-II solutions at concentrations ranging from 1 to 100 ng/mL and CA 15-3 at concentrations from 10 to 100 U/mL. The SERS signal intensities in the 620–720 nm region were plotted against concentration, yielding linear sensitivity with R2 values of 0.942 and 0.800 for HER-II and CA15-3, respectively. The same procedure was applied to breast cancer serum (BCS) samples, allowing unknown biomarker concentrations to be determined based on the corresponding calibration curves. SERS data were processed using the filtfilt filter from scipy.signal for smoothing and then baseline-corrected with the Improved Asymmetric Least Squares (IASLS) algorithm from the pybaselines.Whittaker library. Principal Component Analysis (PCA) effectively distinguished the sample groups and revealed spectral differences before and after biomarker interactions. Key Raman peaks were attributed to functional groups including N–H (primary and secondary amines), C–H antisymmetric stretching, C–N (amines), C=O antisymmetric stretching, NH3+ (amines), carbohydrates, glycine, alanine, amides III, C=N stretches, and NH2 in primary amides. Full article
Show Figures

Figure 1

12 pages, 9078 KB  
Article
High-Performance Cu1.8Se Nanosheets for Dual-Sensing: H2O2 Electrochemical Detection and SERS Substrate
by Ying-Chu Chen, Michael Chen and Yu-Kuei Hsu
Nanomaterials 2025, 15(13), 998; https://doi.org/10.3390/nano15130998 - 27 Jun 2025
Viewed by 467
Abstract
A facile fabrication method was developed for the growth of Cu1.8Se nanosheets (NSs) on a Cu foil substrate, enabling dual-functionality as an electrochemical sensor for H2O2 and an active surface-enhanced Raman scattering (SERS) substrate. The process involved the [...] Read more.
A facile fabrication method was developed for the growth of Cu1.8Se nanosheets (NSs) on a Cu foil substrate, enabling dual-functionality as an electrochemical sensor for H2O2 and an active surface-enhanced Raman scattering (SERS) substrate. The process involved the preparation of Cu(OH)2 nanowires (NWs) via electrochemical oxidation, followed by chemical conversion to Cu1.8Se through a selenization process. The morphology, composition, and microstructure of the resulting Cu1.8Se NSs were systematically characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The Cu1.8Se NSs exhibited excellent electrocatalytic activity for H2O2 reduction, achieving a notably low detection limit of 1.25 μM and demonstrating rapid response and high sensitivity with a linear relationship in amperometric detection. Additionally, SERS experiments using Rhodamine B as a probe molecule and the Cu1.8Se NS/Cu foil as a substrate displayed outstanding performance, with a detection limit as low as 1 μM. The flower-like structure of the Cu1.8Se NSs exhibited linear dependence between analyte concentration and detection signals, along with satisfactory reproducibility in dual-sensing applications. These findings underscore the scalability and potential of this fabrication approach for advanced sensor development. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Graphical abstract

13 pages, 1462 KB  
Article
Molecularly Imprinted SERS Plasmonic Sensor for the Detection of Malachite Green
by Hao Zhang, Dani Sun, Yuhao Wen, Mengyuan Wang, Jingying Huang, Ziru Lian and Jinhua Li
Biosensors 2025, 15(5), 329; https://doi.org/10.3390/bios15050329 - 20 May 2025
Viewed by 1111
Abstract
Malachite green (MG) is a highly toxic dye commonly used in industries and aquaculture, leading to significant environmental contamination and health hazards. Therefore, sensitive and selective detection of MG in real samples is urgently needed. This study presents the development of a molecularly [...] Read more.
Malachite green (MG) is a highly toxic dye commonly used in industries and aquaculture, leading to significant environmental contamination and health hazards. Therefore, sensitive and selective detection of MG in real samples is urgently needed. This study presents the development of a molecularly imprinted surface-enhanced Raman spectroscopy (MI-SERS) plasmonic sensor for the rapid and sensitive detection of MG. The sensor consists of a gold nanostar (Au NS) layer as the SERS substrate and an imprinted polydopamine layer containing specific recognition sites for MG. Taking full advantage of the plasmonic effect of SERS and selective recognition capability of imprinted materials, under optimized conditions, the sensor demonstrated high sensitivity, with a detection limit of 3.5 × 10−3 mg/L, excellent selectivity against interference from other organic dyes, and robust performance with recoveries of 90.2–114.2% in real seawater samples. The MI-SERS sensor also exhibited good reproducibility, stability, and reusability. These findings suggest that the MI-SERS sensor is a promising tool for real-time monitoring of MG contamination in complicated samples. Full article
Show Figures

Figure 1

16 pages, 3110 KB  
Article
A Novel SERS Silent-Region Signal Amplification Strategy for Ultrasensitive Detection of Cu2+
by Jiabin Su, Kaixin Chen, Ping Zhou and Nan Li
Molecules 2025, 30(10), 2188; https://doi.org/10.3390/molecules30102188 - 16 May 2025
Viewed by 782
Abstract
Due to its unique molecular fingerprinting capability and multiplex detection advantages, surface-enhanced Raman scattering (SERS) has shown great application potential in the field of biological analysis. However, the weak signal intensity and large background interference significantly limited the application of SERS in biosensing [...] Read more.
Due to its unique molecular fingerprinting capability and multiplex detection advantages, surface-enhanced Raman scattering (SERS) has shown great application potential in the field of biological analysis. However, the weak signal intensity and large background interference significantly limited the application of SERS in biosensing and bioimaging. Loading a large amount of Raman molecules with signal in the silent region on the hotspots of the electromagnetic field of the SERS substrate can effectively avoid severe background noise signals and significantly improve the signal intensity, making the sensitivity and specificity of SERS detection remarkably improved. To achieve this goal, a new SERS signal-amplification strategy is herein reported for background-free detection of Cu2+ by using Raman-silent probes loaded on cabbage-like gold microparticles (AuMPs) with high enhancement capabilities and single-particle detection feasibility. In this work, carboxyl-modified AuMPs were used to enable Cu2+ adsorption via electrostatic interactions, followed by ferricyanide coordination with Cu2+ to introduce cyano groups, therefore generating a stable SERS signal with nearly zero background signals owing to the Raman-silent fingerprint of cyano at 2137 cm−1. Based on the signal intensity of cyano groups correlated with Cu2+ concentration resulting from the specific coordination between Cu2+ and cyanide, a novel SERS method for Cu2+ detection with high sensitivity and selectivity is proposed. It is noted that benefiting from per ferricyanide possessing six cyano groups, the established method with the advantage of signal amplification can significantly enhance the sensing sensitivity beyond conventional approaches. Experimental results demonstrated this SERS sensor possesses significant merits towards the determination of Cu2+ in terms of high selectivity, broad linear range from 1 nM to 1 mM, and low limit of detection (0.1 nM) superior to other reported colorimetric, fluorescence, and electrochemical methods. Moreover, algorithm data processing for optimization of SERS original data was further used to improve the SERS signal reliability. As the proof-of-concept demonstrations, this work paves the way for improving SERS sensing capability through the silent-range fingerprint and signal amplification strategy, and reveals SERS as an effective tool for trace detection in complex biological and environmental matrices. Full article
Show Figures

Figure 1

23 pages, 2993 KB  
Article
Ultra-Trace Monitoring of Methylene Blue Degradation via AgNW-Based SERS: Toward Sustainable Advanced Oxidation Water Treatment
by Isabela Horta, Nilton Francelosi Azevedo Neto, Letícia Terumi Kito, Felipe Miranda, Gilmar Thim, André Luis de Jesus Pereira and Rodrigo Pessoa
Sustainability 2025, 17(10), 4448; https://doi.org/10.3390/su17104448 - 14 May 2025
Cited by 3 | Viewed by 1195
Abstract
Methylene blue (MB), a widely used industrial dye, is a persistent pollutant with documented toxicity to aquatic organisms and potential health risks to humans, even at ultra-trace levels. Conventional monitoring techniques such as UV–Vis spectroscopy and fluorescence emission suffer from limited sensitivity, typically [...] Read more.
Methylene blue (MB), a widely used industrial dye, is a persistent pollutant with documented toxicity to aquatic organisms and potential health risks to humans, even at ultra-trace levels. Conventional monitoring techniques such as UV–Vis spectroscopy and fluorescence emission suffer from limited sensitivity, typically failing to detect MB below ~10−7 M. In this study, we introduce a surface-enhanced Raman spectroscopy (SERS) platform based on silver nanowire (AgNW) substrates that enables MB detection over an unprecedented dynamic range—from 1.5 × 10−4 M down to 1.5 × 10−16 M. Raman mapping confirmed the presence of individual signal hot spots at the lowest concentration, consistent with the theoretical number of analyte molecules in the probed area, thereby demonstrating near-single-molecule detection capability. The calculated enhancement factors reached up to 1.90 × 1012, among the highest reported for SERS-based detection platforms. A semi-quantitative calibration curve was established spanning twelve orders of magnitude, and this platform was successfully applied to monitor MB degradation during two advanced oxidation processes (AOPs): TiO2 nanotube-mediated photocatalysis under UV irradiation and atmospheric-pressure dielectric barrier discharge (DBD) plasma treatment. While UV–Vis and fluorescence techniques rapidly lost sensitivity during the degradation process, the SERS platform continued to detect the characteristic MB Raman peak at ~1626 cm−1 throughout the entire treatment duration. These persistent SERS signals revealed the presence of residual MB or partially degraded aromatic intermediates that remained undetectable by conventional optical methods. The results underscore the ability of AgNW-based SERS to provide ultra-sensitive, molecular-level insights into pollutant transformation pathways, enabling time-resolved tracking of degradation kinetics and validating treatment efficiency. This work highlights the importance of integrating SERS with AOPs as a powerful complementary strategy for advanced environmental monitoring and water purification technologies. By delivering an ultra-sensitive, low-cost sensor (<USD 0.16 per test) and promoting reagent-free treatment methods, this study directly advances SDG 6 (Clean Water and Sanitation) and SDG 12 (Responsible Consumption and Production). Full article
(This article belongs to the Section Sustainable Materials)
Show Figures

Figure 1

15 pages, 3804 KB  
Review
Current Trends in In Vitro Diagnostics Using Surface-Enhanced Raman Scattering in Translational Biomedical Research
by Sitansu Sekhar Nanda, Dae-Gyeom Park and Dong Kee Yi
Biosensors 2025, 15(5), 265; https://doi.org/10.3390/bios15050265 - 22 Apr 2025
Cited by 1 | Viewed by 1629
Abstract
Immunoassays using surface-enhanced Raman scattering (SERS) are prosperous in disease diagnosis due to their excellent multiplexing ability, high sensitivity, and large dynamic range. Given the recent advancements in SERS immunoassays, this work provides a comprehensive overview, from fundamental principles to practical applications. An [...] Read more.
Immunoassays using surface-enhanced Raman scattering (SERS) are prosperous in disease diagnosis due to their excellent multiplexing ability, high sensitivity, and large dynamic range. Given the recent advancements in SERS immunoassays, this work provides a comprehensive overview, from fundamental principles to practical applications. An mRNA sensor utilizing Raman spectroscopy is a detection method that leverages the unique vibrational characteristics of mRNA molecules to identify and quantify their presence in a sample, often achieved through a technique called SERS, where specially designed nanoparticles amplify the Raman signal, allowing for the highly sensitive detection of even small amounts of mRNA. This review analyzes SERS assays used to detect RNA biomarkers, which show promise in cancer diagnostics and are being actively studied clinically. To selectively detect a specific mRNA sequence, a probe molecule (e.g., a DNA oligonucleotide complementary to the target mRNA) is attached to the SERS substrate, allowing the target mRNA to hybridize and generate a detectable Raman signal upon binding. Thus, the discussion includes proposals to enhance SERS immunoassay performance, along with future challenges and perspectives, offering concise, valid guidelines for platform selection based on application. Full article
(This article belongs to the Special Issue Surface-Enhanced Raman Scattering in Biosensing Applications)
Show Figures

Figure 1

17 pages, 5277 KB  
Article
A New Chitosan-Modified Paper-Based SERS Glucose Sensor with Enhanced Reproducibility, Stability, and Sensitivity for Non-Enzymatic Label-Free Detection
by Rashida Akter, Toeun Kim, Jong Seob Choi and Hongki Kim
Biosensors 2025, 15(3), 153; https://doi.org/10.3390/bios15030153 - 1 Mar 2025
Cited by 6 | Viewed by 1718
Abstract
We have fabricated a new highly reproducible, stable, and sensitive cellulose paper-based Surfaced-enhanced Raman scattering (SERS) sensor substrate for non-enzymatic label-free glucose detection. To enhance reproducibility, stability, and sensitivity, the cellulose paper (CP) substrate has been modified with a naturally derived biocompatible polymer, [...] Read more.
We have fabricated a new highly reproducible, stable, and sensitive cellulose paper-based Surfaced-enhanced Raman scattering (SERS) sensor substrate for non-enzymatic label-free glucose detection. To enhance reproducibility, stability, and sensitivity, the cellulose paper (CP) substrate has been modified with a naturally derived biocompatible polymer, chitosan (CS), followed by depositing enormous amount of plasmonic silver nanoparticles (AgNPs) on CP/CS and finally forming a self-assembling monolayer of 4-mercaptophenyl boronic acid (MPBA) on CP/CS/AgNPs (CP/CS/AgNPs/MPBA). The SERS sensor substrate is characterized by scanning electron microscopy (SEM), energy dispersive X-ray (EDX), Fourier transform infrared (FT-IR), and X-ray diffraction (XRD) spectroscopy techniques. The glucose sensing is achieved by monitoring the SERS intensity of C-S and B-O stretching vibrations at 1072 cm−1 in MPBA, which is gradually increased with increasing concentration of glucose due to the increasing orientation change of MPBA on AgNPs. The results show that the proposed glucose paper-based SERS sensor exhibits a high analytical enhancement factor (AEF) (3.4 × 107), enhanced reproducibility (<7%), improved stability (>5 weeks), excellent selectivity towards other metabolic compounds, and high sensitivity with a limit of detection (LOD) of 0.74 mM and a linear dynamic range between 1.0 and 7.0 mM. The practical application of this SERS sensor is examined in real spiked and non-spiked human blood serum samples for the detection of glucose, and satisfactory recovery results have been obtained, demonstrating the potentiality of the present paper-based SERS sensor for non-enzymatic label-free glucose detection in real biological samples. Full article
Show Figures

Figure 1

36 pages, 9322 KB  
Review
Trends and Advances in Wearable Plasmonic Sensors Utilizing Surface-Enhanced Raman Spectroscopy (SERS): A Comprehensive Review
by Svetlana N. Khonina and Nikolay L. Kazanskiy
Sensors 2025, 25(5), 1367; https://doi.org/10.3390/s25051367 - 23 Feb 2025
Cited by 17 | Viewed by 4792
Abstract
Wearable sensors have appeared as a promising solution for real-time, non-invasive monitoring in diverse fields, including healthcare, environmental sensing, and wearable electronics. Surface-enhanced Raman spectroscopy (SERS)-based sensors leverage the unique properties of SERS, such as plasmonic signal enhancement, high molecular specificity, and the [...] Read more.
Wearable sensors have appeared as a promising solution for real-time, non-invasive monitoring in diverse fields, including healthcare, environmental sensing, and wearable electronics. Surface-enhanced Raman spectroscopy (SERS)-based sensors leverage the unique properties of SERS, such as plasmonic signal enhancement, high molecular specificity, and the potential for single-molecule detection, to detect and identify a wide range of analytes with ultra-high sensitivity and molecular selectivity. However, it is important to note that wearable sensors utilize various sensing mechanisms, and not all rely on SERS technology, as their design depends on the specific application. This comprehensive review highlights the recent trends and advancements in wearable plasmonic sensing technologies, focusing on their design, fabrication, and integration into practical wearable devices. Key innovations in material selection, such as the use of nanomaterials and flexible substrates, have significantly enhanced sensor performance and wearability. Moreover, we discuss challenges such as miniaturization, power consumption, and long-term stability, along with potential solutions to address these issues. Finally, the outlook for wearable plasmonic sensing technologies is presented, emphasizing the need for interdisciplinary research to drive the next generation of smart wearables capable of real-time health diagnostics, environmental monitoring, and beyond. Full article
(This article belongs to the Special Issue New Trends and Progress in Plasmonic Sensors and Sensing Technology)
Show Figures

Figure 1

13 pages, 3082 KB  
Article
Tungsten Diselenide Nanoparticles Produced via Femtosecond Ablation for SERS and Theranostics Applications
by Andrei Ushkov, Dmitriy Dyubo, Nadezhda Belozerova, Ivan Kazantsev, Dmitry Yakubovsky, Alexander Syuy, Gleb V. Tikhonowski, Daniil Tselikov, Ilya Martynov, Georgy Ermolaev, Dmitriy Grudinin, Alexander Melentev, Anton A. Popov, Alexander Chernov, Alexey D. Bolshakov, Andrey A. Vyshnevyy, Aleksey Arsenin, Andrei V. Kabashin, Gleb I. Tselikov and Valentyn Volkov
Nanomaterials 2025, 15(1), 4; https://doi.org/10.3390/nano15010004 - 24 Dec 2024
Cited by 4 | Viewed by 1609
Abstract
Due to their high refractive index, record optical anisotropy and a set of excitonic transitions in visible range at a room temperature, transition metal dichalcogenides have gained much attention. Here, we adapted a femtosecond laser ablation for the synthesis of WSe2 nanoparticles [...] Read more.
Due to their high refractive index, record optical anisotropy and a set of excitonic transitions in visible range at a room temperature, transition metal dichalcogenides have gained much attention. Here, we adapted a femtosecond laser ablation for the synthesis of WSe2 nanoparticles (NPs) with diameters from 5 to 150 nm, which conserve the crystalline structure of the original bulk crystal. This method was chosen due to its inherently substrate-additive-free nature and a high output level. The obtained nanoparticles absorb light stronger than the bulk crystal thanks to the local field enhancement, and they have a much higher photothermal conversion than conventional Si nanospheres. The highly mobile colloidal state of produced NPs makes them flexible for further application-dependent manipulations, which we demonstrated by creating substrates for SERS sensors. Full article
Show Figures

Figure 1

Back to TopTop