A Novel SERS Silent-Region Signal Amplification Strategy for Ultrasensitive Detection of Cu2+
Abstract
1. Introduction
2. Results and Discussion
2.1. Characterization of SERS Probe
2.2. Sensing Mechanism
2.3. Feasibility Demonstration
2.4. Optimization of Experimental Conditions
2.5. Algorithm Based Data Processing
2.6. SERS Detection of Cu2+
2.7. Specificity of SERS Sensing
2.8. Detection in Serum Samples
3. Materials and Methods
3.1. Materials and Instruments
3.2. Preparation of SERS Substrate
3.3. Procedure for SERS Detection
3.4. Detection of Cu2+ in Serum Samples
3.5. Algorithm Processing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zong, C.; Xu, M.; Xu, L.-J.; Wei, T.; Ma, X.; Zheng, X.-S.; Hu, R.; Ren, B. Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges. Chem. Rev. 2018, 118, 4946–4980. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Jiménez, A.I.; Lyu, D.; Lu, Z.; Liu, G.; Ren, B. Surface-enhanced Raman spectroscopy: Benefits, trade-offs and future developments. Chem. Sci. 2020, 11, 4563–4577. [Google Scholar] [CrossRef]
- Samir, K.; Prabhat, K.; Anamika, D.; Chandra Shakher, P. Surface-enhanced Raman scattering: Introduction and applications. In Recent Advances in Nanophotonics; Mojtaba, K., Parsoua, A.S., Eds.; IntechOpen: Rijeka, Croatia, 2020; Chapter 8. [Google Scholar]
- Langer, J.; Jimenez de Aberasturi, D.; Aizpurua, J.; Alvarez-Puebla, R.A.; Auguié, B.; Baumberg, J.J.; Bazan, G.C.; Bell, S.E.J.; Boisen, A.; Brolo, A.G.; et al. Present and future of surface-enhanced Raman scattering. ACS Nano 2020, 14, 28–117. [Google Scholar] [CrossRef]
- Li, N.; Zhang, M.; Zha, Y.; Cao, Y.; Ma, Y. π-π stacking-directed self-assembly of nanoplatelets into diversified three-dimensional superparticles for high surface-enhanced Raman scattering. J. Colloid Interface Sci. 2020, 575, 54–60. [Google Scholar] [CrossRef]
- Zhang, J.; Jiang, H.; Gao, P.; Wu, Y.; Sun, H.; Huang, Y.; Xu, X. Confocal Raman microspectroscopy combined with chemometrics as a discrimination method of clostridia and serotypes of Clostridium botulinum strains. J. Raman Spectrosc. 2021, 52, 1820–1829. [Google Scholar] [CrossRef]
- Grys, D.-B.; Chikkaraddy, R.; Kamp, M.; Scherman, O.A.; Baumberg, J.J.; de Nijs, B. Eliminating irreproducibility in SERS substrates. J. Raman Spectrosc. 2021, 52, 412–419. [Google Scholar] [CrossRef]
- Masson, J.-F. The need for benchmarking surface-enhanced Raman scattering (SERS) sensors. ACS Sensors 2021, 6, 3822–3823. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Xu, H. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. Nanoscale 2013, 5, 10794–10805. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Y.; Lin, M.-H.; Wang, C.-Y.; Chang, Y.-M.; Gwo, S. Large-scale hot spot engineering for quantitative SERS at the single-molecule scale. J. Am. Chem. Soc. 2015, 137, 13698–13705. [Google Scholar] [CrossRef]
- Du, Y.; Liu, R.; Liu, B.; Wang, S.; Han, M.-Y.; Zhang, Z. Surface-Enhanced Raman Scattering Chip for Femtomolar Detection of Mercuric Ion (II) by Ligand Exchange. Anal. Chem. 2013, 85, 3160–3165. [Google Scholar] [CrossRef]
- Zheng, P.; Li, M.; Jurevic, R.; Cushing, S.K.; Liu, Y.; Wu, N. A gold nanohole array based surface-enhanced Raman scattering biosensor for detection of silver(i) and mercury(ii) in human saliva. Nanoscale 2015, 7, 11005–11012. [Google Scholar] [CrossRef]
- Esmaielzadeh Kandjani, A.; Sabri, Y.M.; Mohammad-Taheri, M.; Bansal, V.; Bhargava, S.K. Detect, Remove and Reuse: A New Paradigm in Sensing and Removal of Hg (II) from Wastewater via SERS-Active ZnO/Ag Nanoarrays. Environ. Sci. Technol. 2015, 49, 1578–1584. [Google Scholar] [CrossRef]
- Cho, W.J.; Kim, Y.; Kim, J.K. Ultrahigh-Density Array of Silver Nanoclusters for SERS Substrate with High Sensitivity and Excellent Reproducibility. ACS Nano 2012, 6, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.-J.; Jeong, K.-H. Glass nanopillar arrays with nanogap-rich silver nanoislands for highly intense surface enhanced Raman scattering. Adv. Mater. 2012, 24, 2234–2237. [Google Scholar] [CrossRef]
- Lin, L.; Tian, X.; Hong, S.; Dai, P.; You, Q.; Wang, R.; Feng, L.; Xie, C.; Tian, Z.-Q.; Chen, X. A Bioorthogonal Raman Reporter Strategy for SERS Detection of Glycans on Live Cells. Angew. Chem. Int. Ed. 2013, 52, 7266–7271. [Google Scholar] [CrossRef] [PubMed]
- Hanif, S.; Liu, H.-L.; Ahmed, S.A.; Yang, J.-M.; Zhou, Y.; Pang, J.; Ji, L.-N.; Xia, X.-H.; Wang, K. Nanopipette-Based SERS Aptasensor for Subcellular Localization of Cancer Biomarker in Single Cells. Anal. Chem. 2017, 89, 9911–9917. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Wang, Y.; Wang, L.; Lu, Y.; Li, J.; Lu, D.; Zhou, T.; Huang, Z.; Huang, J.; Huang, H.; et al. Interference-free and high precision biosensor based on surface enhanced Raman spectroscopy integrated with surface molecularly imprinted polymer technology for tumor biomarker detection in human blood. Biosens. Bioelectron. 2019, 143, 111599. [Google Scholar] [CrossRef]
- Zhu, W.; Gao, M.-Y.; Zhu, Q.; Chi, B.; Zeng, L.-W.; Hu, J.-M.; Shen, A.-G. Monodispersed plasmonic Prussian blue nanoparticles for zero-background SERS/MRI-guided phototherapy. Nanoscale 2020, 12, 3292–3301. [Google Scholar] [CrossRef]
- Hong, S.; Chen, T.; Zhu, Y.; Li, A.; Huang, Y.; Chen, X. Live-Cell Stimulated Raman Scattering Imaging of Alkyne-Tagged Biomolecules. Angew. Chem. Int. Ed. 2014, 53, 5827–5831. [Google Scholar] [CrossRef]
- Li, N.; Chen, H.; Zhang, M.; Zha, Y.; Mu, Z.; Ma, Y.; Chen, P. A universal ultrasensitive platform for enzyme-linked immunoassay based on responsive surface-enhanced Raman scattering. Sens. Actuators B Chem. 2020, 315, 128135. [Google Scholar] [CrossRef]
- Liu, X.; Liu, X.; Rong, P.; Liu, D. Recent advances in background-free Raman scattering for bioanalysis. TrAC Trends Anal. Chem. 2020, 123, 115765. [Google Scholar] [CrossRef]
- Chen, K.; Chen, H.; Liang, S.; Wu, J.; Zhou, P.; Li, N. A background-free SERS strategy for sensitive detection of hydrogen peroxide. Molecules 2022, 27, 7918. [Google Scholar] [CrossRef]
- Yin, Y.; Li, Q.; Ma, S.; Liu, H.; Dong, B.; Yang, J.; Liu, D. Prussian blue as a highly sensitive and background-free resonant Raman reporter. Anal. Chem. 2017, 89, 1551–1557. [Google Scholar] [CrossRef]
- Jin, Q.; Fan, X.; Chen, C.; Huang, L.; Wang, J.; Tang, X. Multicolor Raman Beads for Multiplexed Tumor Cell and Tissue Imaging and in Vivo Tumor Spectral Detection. Anal. Chem. 2019, 91, 3784–3789. [Google Scholar] [CrossRef]
- Tian, S.; Li, H.; Li, Z.; Tang, H.; Yin, M.; Chen, Y.; Wang, S.; Gao, Y.; Yang, X.; Meng, F.; et al. Polydiacetylene-based ultrastrong bioorthogonal Raman probes for targeted live-cell Raman imaging. Nat. Commun. 2020, 11, 81. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, D.C.; Hoop, K.A.; Tay, L.-L.; Pezacki, J.P. Development of nanoparticle probes for multiplex SERS imaging of cell surface proteins. Nanoscale 2010, 2, 1413–1416. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, R.; Gao, M.; Zhang, X. Facile synthesis of thiol and alkynyl contained SERS reporter molecular and its usage in assembly of polydopamine protected bioorthogonal SERS tag for live cell imaging. Talanta 2016, 158, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Chen, K.; Pan, J.; Li, D.; Ma, Y.; Li, N. Ultrasensitive SERS profiling of intracellular hydrogen peroxide release based on enzymatic amplification and silent-region Raman reporter. Anal. Chem. 2024, 96, 19981–19987. [Google Scholar] [CrossRef]
- Li, N.; Ye, J.; Ma, Y. Stimuli-responsive SERS nanoprobes for multiplexing detection. Sens. Actuators B Chem. 2019, 281, 977–982. [Google Scholar] [CrossRef]
- Liang, B.; Chen, K.; Chen, H.; Liu, W.; An, X.; Quan, J.; Mou, Z.; Ma, Y.; Zhou, P.; Li, N.; et al. A single-particle SERS biosensor using aptamer-functionalized hierarchical gold microparticles for highly sensitive and broad-range detection of Staphylococcus aureus. Appl. Surf. Sci. 2023, 639, 158163. [Google Scholar] [CrossRef]
- Ma, Y.; Promthaveepong, K.; Li, N. Chemical Sensing on a Single SERS Particle. ACS Sens. 2017, 2, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Ge, E.J.; Bush, A.I.; Casini, A.; Cobine, P.A.; Cross, J.R.; DeNicola, G.M.; Dou, Q.P.; Franz, K.J.; Gohil, V.M.; Gupta, S.; et al. Connecting copper and cancer: From transition metal signalling to metalloplasia. Nat. Rev. Cancer 2022, 22, 102–113. [Google Scholar] [CrossRef]
- Feng, H.; Fu, Q.; Du, W.; Zhu, R.; Ge, X.; Wang, C.; Li, Q.; Su, L.; Yang, H.; Song, J. Quantitative Assessment of Copper(II) in Wilson’s Disease Based on Photoacoustic Imaging and Ratiometric Surface-Enhanced Raman Scattering. ACS Nano 2021, 15, 3402–3414. [Google Scholar] [CrossRef] [PubMed]
- Mhaske, A.; Sharma, S.; Shukla, R. Nanotheranostic: The futuristic therapy for copper mediated neurological sequelae. J. Drug Deliv. Sci. Technol. 2023, 80, 104193. [Google Scholar] [CrossRef]
- Gerdan, Z.; Saylan, Y.; Denizli, A. Recent Advances of Optical Sensors for Copper Ion Detection. Micromachines 2022, 13, 1298. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Liu, P.; Liu, Q. Nano-scale minerals in-situ supporting CeO2 nanoparticles for off-on colorimetric detection of L–penicillamine and Cu2+ ion. J. Hazard. Mater. 2022, 433, 128766. [Google Scholar] [CrossRef]
- Saari, J.T.; Reeves, P.G.; Noordewier, B.; Hall, C.B.; Lukaski, H.C. Cardiovascular but not renal effects of copper deficiency are inhibited by dimethyl sulfoxide. Nutr. Res. 1990, 10, 467–477. [Google Scholar] [CrossRef]
- Yu, L.; Liou, I.W.; Biggins, S.W.; Yeh, M.; Jalikis, F.; Chan, L.-N.; Burkhead, J. Copper deficiency in liver diseases: A case series and pathophysiological considerations. Hepatol. Commun. 2019, 3, 1159–1165. [Google Scholar] [CrossRef]
- Mathys, Z.K.; White, A.R. Copper and Alzheimer’s disease. In Neurotoxicity of Metals; Aschner, M., Costa, L.G., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 199–216. [Google Scholar] [CrossRef]
- Hazarika, S.I.; Atta, A.K. Carbohydrate-based fluorometric and colorimetric sensors for Cu2+ ion recognition. Comptes Rendus Chim. 2019, 22, 599–613. [Google Scholar] [CrossRef]
- Sriram, G.; Bhat, M.P.; Patil, P.; Uthappa, U.T.; Jung, H.-Y.; Altalhi, T.; Kumeria, T.; Aminabhavi, T.M.; Pai, R.K.; Madhuprasad, K.; et al. Paper-based microfluidic analytical devices for colorimetric detection of toxic ions: A review. TrAC Trends Anal. Chem. 2017, 93, 212–227. [Google Scholar] [CrossRef]
- Yin, C.; Li, J.; Huo, F. Cu2+ biological imaging probes based on different sensing mechanisms. Curr. Med. Chem. 2019, 26, 3958–4002. [Google Scholar] [CrossRef] [PubMed]
- Pandey, R.; Kumar, A.; Xu, Q.; Pandey, D.S. Zinc(ii), copper(ii) and cadmium(ii) complexes as fluorescent chemosensors for cations. Dalton Trans. 2020, 49, 542–568. [Google Scholar] [CrossRef]
- Saidur, M.R.; Aziz, A.R.A.; Basirun, W.J. Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: A review. Biosens. Bioelectron. 2017, 90, 125–139. [Google Scholar] [CrossRef]
- Mohd Daniyal, W.; Saleviter, S.; Fen, Y.W. Development of surface plasmon resonance spectroscopy for metal ion detection. Sens. Mater. 2018, 30, 2023. [Google Scholar] [CrossRef]
- Ma, Y.; Yung, L.Y.L. Gold nanoplate-based 3D hierarchical microparticles: A single particle with high surface-enhanced Raman scattering enhancement. Langmuir 2016, 32, 7854–7859. [Google Scholar] [CrossRef]
- Li, W.; Wu, H.; Wu, C.; Jiao, P.; Xu, L.; Song, H. Immobilization of 4-MBA & Cu2+ on Au nanoparticles modified screen-printed electrode for glyphosate detection. Talanta 2025, 286, 127530. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Tang, X.; Dong, J.-Y.; Deng, Y.; Saito, M.; Gao, Z.; Pancorbo, P.M.; Marumi, M.; Peterson, W.; Zhang, H.; et al. Defect-engineered coordination compound nanoparticles based on prussian blue analogues for surface-enhanced Raman spectroscopy. ACS Nano 2024, 18, 30987–31001. [Google Scholar] [CrossRef] [PubMed]
- Luan, L.; Zhang, X.; Li, P.; Xu, W. SERS substrate based on large-scale self-assembled Au nanobipyramid@Ag nanorod multifunctional paper-based materials for practical and reliable quantitative SERS detection. Anal. Bioanal. Chem. 2025, 417, 2903–2913. [Google Scholar] [CrossRef]
- Xu, S.; Chen, P.; Lin, X.; Khan, I.M.; Ma, X.; Wang, Z. Controllable synthesis of flower-like AuNFs@ZIF-67 core-shell nanocomposites for ultrasensitive SERS detection of histamine in fish. Anal. Chim. Acta 2023, 1240, 340776. [Google Scholar] [CrossRef]
- Chen, Y.; Hao, J.; Yin, Z.; Wang, Q.; Zhou, Y.; Jia, L.; Li, H.; Liao, W.; Liu, K. An accuracy improved ratiometric SERS sensor for rhodamine 6G in chili powder using a metal–organic framework support. RSC Adv. 2023, 13, 10135–10143. [Google Scholar] [CrossRef]
- Zhang, Z.-M.; Chen, S.; Liang, Y.-Z. Baseline correction using adaptive iteratively reweighted penalized least squares. Analyst 2010, 135, 1138–1146. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Liu, Q.; Asiri, A.M.; Al-Youbi, A.O.; Sun, X. Ultrathin graphitic carbon nitride nanosheet: A highly efficient fluorosensor for rapid, ultrasensitive detection of Cu2+. Anal. Chem. 2013, 85, 5595–5599. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, J.; Lai, Y.; Wu, C.; Sun, S.; He, Y.; Ma, H. Ultrasensitive and selective detection of copper (II) and mercury (II) ions by dye-coded silver nanoparticle-based SERS probes. Biosens. Bioelectron. 2013, 39, 82–87. [Google Scholar] [CrossRef]
- Lutfullah; Sharma, S.; Rahman, N.; Azmi, S.N.H.; Iqbal, B.; Amburk, M.I.B.B.; Al Barwani, Z.M.H. UV Spectrophotometric Determination of Cu(II) in Synthetic Mixture and Water Samples. J. Chin. Chem. Soc. 2010, 57, 622–631. [Google Scholar] [CrossRef]
- Okano, G.; Igarashi, S.; Yamamoto, Y.; Saito, S.; Takagai, Y.; Ohtomo, T.; Kimura, S.; Ohno, O.; Oka, Y. HPLC-spectrophotometric detection of trace heavy metals via ‘cascade’ separation and concentration. Int. J. Environ. Anal. Chem. 2015, 95, 135–144. [Google Scholar] [CrossRef]
- Mori, M.; Misawa, K.; Itabashi, H. Highly selective detection of trace copper(II) using bathocuproinesulfonate by flow-injection electrospray ionization mass spectrometry. Anal. Sci. 2014, 30, 1173–1176. [Google Scholar] [CrossRef]
- Atapour, M.; Amoabediny, G.; Ahmadzadeh-Raji, M. Integrated optical and electrochemical detection of Cu2+ ions in water using a sandwich amino acid–gold nanoparticle-based nano-biosensor consisting of a transparent-conductive platform. RSC Adv. 2019, 9, 8882–8893. [Google Scholar] [CrossRef]
- Wang, Y.; Su, Z.; Wang, L.; Dong, J.; Xue, J.; Yu, J.; Wang, Y.; Hua, X.; Wang, M.; Zhang, C.; et al. SERS assay for copper(II) ions based on dual hot-spot model coupling with MarR protein: New Cu2+-specific biorecognition element. Anal. Chem. 2017, 89, 6392–6398. [Google Scholar] [CrossRef]
- Dugandžić, V.; Kupfer, S.; Jahn, M.; Henkel, T.; Weber, K.; Cialla-May, D.; Popp, J. A SERS-based molecular sensor for selective detection and quantification of copper(II) ions. Sens. Actuators B Chem. 2019, 279, 230–237. [Google Scholar] [CrossRef]
- Li, C.; Ouyang, H.; Tang, X.; Wen, G.; Liang, A.; Jiang, Z. A surface enhanced Raman scattering quantitative analytical platform for detection of trace Cu coupled the catalytic reaction and gold nanoparticle aggregation with label-free Victoria blue B molecular probe. Biosens. Bioelectron. 2017, 87, 888–893. [Google Scholar] [CrossRef]
- Weng, Z.; Wang, H.; Vongsvivut, J.; Li, R.; Glushenkov, A.M.; He, J.; Chen, Y.; Barrow, C.J.; Yang, W. Self-assembly of core-satellite gold nanoparticles for colorimetric detection of copper ions. Anal. Chim. Acta 2013, 803, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Storm, T.; Wulf, K.; Teske, M.; Löbler, M.; Kundt, G.; Luderer, F.; Schmitz, K.-P.; Sternberg, K.; Hovakimyan, M. Chemical activation and changes in surface morphology of poly(ε-caprolactone) modulate VEGF responsiveness of human endothelial cells. J. Mater. Sci. Mater. Med. 2014, 25, 2003–2015. [Google Scholar] [CrossRef] [PubMed]
Method | Linear Range (M) | LOD (M) | Ref |
---|---|---|---|
Fluorescence | 0–1.0 × 10−5 | 5.0 × 10−10 | [54] |
Colorimetric | 5.0 × 10−7–1.0 × 10−5 | 2.5 × 10−7 | [55] |
Colorimetric | 1.6 × 10−8–1.3 × 10−7 | 5.0 × 10−10 | [56] |
HPLC | 1.0 × 10−8–5.0 × 10−7 | 1.9 × 10−9 | [57] |
MS | 1.0 × 10−8–1.0 × 10−5 | 3.5 × 10−9 | [58] |
Electrochemistry | 1.0 × 10−8–1.0 × 10−4 | 5.0 × 10−9 | [59] |
SERS | 5 × 10−10–1.0 × 10−6 | 1.8 × 10−10 | [60] |
SERS | 5.0 × 10−8–5 × 10−4 | 3.5 × 10−8 | [61] |
SERS | 2.5 × 10−7–2.5 × 10−4 | 8.0 × 10−9 | [62] |
SERS | 3.0 × 10−5–9 × 10−5 | 2.2 × 10−6 | [63] |
SERS | 1.0 × 10−10–1.0 × 10−1 | 1.0 × 10−10 | This work |
Sample | Predicted Conc. (μmol/L) | Detected Conc. (μmol/L) | Recovery (%) | RSD (%) |
---|---|---|---|---|
1 | 10.00 | 9.76 ± 0.89 | 97.63 | 8.90 |
2 | 1.00 | 1.01 ± 0.08 | 101.34 | 7.54 |
3 | 0.10 | 0.10 ± 0.00 | 104.41 | 8.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, J.; Chen, K.; Zhou, P.; Li, N. A Novel SERS Silent-Region Signal Amplification Strategy for Ultrasensitive Detection of Cu2+. Molecules 2025, 30, 2188. https://doi.org/10.3390/molecules30102188
Su J, Chen K, Zhou P, Li N. A Novel SERS Silent-Region Signal Amplification Strategy for Ultrasensitive Detection of Cu2+. Molecules. 2025; 30(10):2188. https://doi.org/10.3390/molecules30102188
Chicago/Turabian StyleSu, Jiabin, Kaixin Chen, Ping Zhou, and Nan Li. 2025. "A Novel SERS Silent-Region Signal Amplification Strategy for Ultrasensitive Detection of Cu2+" Molecules 30, no. 10: 2188. https://doi.org/10.3390/molecules30102188
APA StyleSu, J., Chen, K., Zhou, P., & Li, N. (2025). A Novel SERS Silent-Region Signal Amplification Strategy for Ultrasensitive Detection of Cu2+. Molecules, 30(10), 2188. https://doi.org/10.3390/molecules30102188