Surface Wetting and Functionalization of Composite Films and Coatings for Modern Applications

A special issue of Coatings (ISSN 2079-6412). This special issue belongs to the section "Environmental Aspects in Colloid and Interface Science".

Deadline for manuscript submissions: 15 April 2026 | Viewed by 1069

Special Issue Editors

School of Vehicles and Energy, Yanshan University, Qinhuangdao 066004, China
Interests: applied surface science; adsorption; adhesion; functionalization; structural analysis; molecular dynamics simulations

E-Mail Website
Guest Editor
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
Interests: physical chemistry; supramolecular chemistry; surface chemistry
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Coatings with a multifunctional surface presenting hydrophobic and/or oleophobic characteristics have become a hot topic in modern engineering technology and science. This Special Issue is focused on numerous practical application fields, such as microfluidic devices, self-cleaning materials, oil–water separation technology, anti-fouling coatings, biomedical devices, and so on. The above-mentioned fields highly emphasize two aspects. One is the exploration of surface wettability regulation mechanisms to recognize the requirements under harsh working conditions. The other is the development of new superhydrophobic/superhydrophobic coatings with multifunctional capabilities.

The design, preparation, and characterization of high-performance superhydrophobic/superoleophobic coatings can be achieved through various strategies, including constructing micronano composite structures and/or regulating surface chemical composition, providing unprecedented opportunities and broad application prospects for droplet manipulation, anti-fouling, self-cleaning, and efficient oil–water separation in various liquid environments.

Topics of interest of this Special Issue include, but are not limited to, the following research areas:

  • Theoretical and experimental research, new discoveries, and new ideas on the wetting mechanisms of superhydrophobic/superhydrophobic coatings.
  • The latest developments in multifunctional hydrophobic/oleophobic coatings, covering their applications in self-cleaning, anti-fouling, oil–water separation, microfluidic control, and other fields.
  • Hydrophobic/rhydrophobic coatings prepared via different processes, including but not limited to, photolithography, chemical etching, sol–gel methods, template methods, spraying methods, electrochemical deposition, 3D printing, and additive manufacturing.
  • A superhydrophobic/superoleophobic coating that can maintain excellent performance even under high temperature, high humidity, highly corrosive liquids, oily environments, and other extreme conditions.
  • Research that facilitates a deeper understanding of the performance degradation mechanisms of coatings caused by droplet impact, friction, wear, chemical erosion, or long-term exposure to complex environments.

Dr. Bingfan Li
Prof. Dr. Tifeng Jiao
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Coatings is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • surface technology coatings
  • surface material
  • superoleophobic surfaces
  • industrial applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 2908 KB  
Article
High-Surface-Area ZIF-67 Nanoflowers: Synthesis and Application Toward Enhanced CH4/N2 Separation in Mixed Matrix Membranes
by Dongze Li
Coatings 2025, 15(9), 987; https://doi.org/10.3390/coatings15090987 - 23 Aug 2025
Viewed by 180
Abstract
Under elevated loading conditions, the aggregation of fillers emerges as a pivotal factor driving the degradation of separation performance in mixed matrix membranes. The two-dimensional (2D) modification of fillers, aimed at enhancing interfacial contact with polymers, has been recognized as an effective strategy [...] Read more.
Under elevated loading conditions, the aggregation of fillers emerges as a pivotal factor driving the degradation of separation performance in mixed matrix membranes. The two-dimensional (2D) modification of fillers, aimed at enhancing interfacial contact with polymers, has been recognized as an effective strategy to improve interphase compatibility and increase filler loading capacity. However, it is worth noting that the BET surface area of 2D fillers is typically relatively low. In this study, a two-step approach was developed. First, a “diffusion-mediated” process was combined with a solvent optimization strategy based on first-principles (DFT) calculations, achieving a 20-fold suppression in ZIF-67 nucleation-crystallization rate. This enabled the successful synthesis of a 2D amorphous nanoflower structure. Subsequently, the processing parameters were fine-tuned to enhance the specific surface area of ZIF-67 to 403 m2/g while preserving its 2D structural integrity. Ultimately, the as-prepared 2D ZIF-67 was incorporated into a hydrogenated styrene-butadiene block copolymer (SEBS) matrix to fabricate a mixed matrix membrane. Remarkably, at a filler loading of 20 wt%, the CH4 permeability coefficient increased significantly from 11.7 barrer to 35.3 barrer, while the CH4/N2 selectivity was maintained at 3.21, indicating minimal interfacial defects and demonstrating the feasibility and effectiveness of the proposed methodology. Full article
Show Figures

Figure 1

18 pages, 4309 KB  
Article
Fabrication of Biomimetical TiO2@PVDF Composite Membrane with Omniphobicity via In-Situ Growth and Its Anti-Fouling Performance
by Wei Zhang, Xuran Zhu, Baoan Li, Boyang Hu, Leyu Shen, Yanzong Meng and Haifeng Gao
Coatings 2025, 15(8), 965; https://doi.org/10.3390/coatings15080965 - 19 Aug 2025
Viewed by 334
Abstract
Commercial hydrophobic membranes encounter severe problems such as membrane wetting and membrane fouling under extreme conditions, which affect membrane separation performance. To enhance the anti-fouling abilities of hydrophobic membranes, a composite membrane with omniphobic characteristics was fabricated successfully in this paper. Titanium dioxide [...] Read more.
Commercial hydrophobic membranes encounter severe problems such as membrane wetting and membrane fouling under extreme conditions, which affect membrane separation performance. To enhance the anti-fouling abilities of hydrophobic membranes, a composite membrane with omniphobic characteristics was fabricated successfully in this paper. Titanium dioxide (TiO2) nanoparticles were in-situ grown via the hydrothermal synthesis method, and then fluorosilane with low surface energy was grafted on polyvinylidene fluoride (PVDF) membranes. Subsequently, the morphologies, chemical compositions, wetting properties and structural parameters of composite membranes were characterized systematically. Various contaminants were added to the feed to investigate the anti-fouling and anti-wetting performances of the composite membrane in membrane distillation tests. The results showed that butyl titanate was first hydrolyzed to form titanium hydroxide (Ti(OH)4) and then it was dehydrated to form TiO2 in the hydrothermal environment. TiO2 crystals continued to grow and formed rough morphology with micro-nano synergistic distribution, which is similar to a “sunflower” disk composed of cubic clusters and nanopillars. Meanwhile, fluorosilane successfully was grafted onto TiO2. The contact angles of deionized water, 0.4 mM sodium dodecyl sulfate (SDS) solution and 0.2% v/v mineral oil emulsion on the composite membrane surface were 167.3°, 162.0° and 158.5°, respectively, endowing the composite membrane with excellent omniphobic features. In direct contact membrane distillation (DCMD) tests, the composite membrane exhibited a relatively stable membrane permeate flux, and the salt rejection rate almost reached 100%. The mixture, consisting of inorganic salts, organic substances, surfactants and oil emulsions, was used as feed. In contrast, the commercial PVDF membrane flux decreased drastically and even dropped to 0 due to the membrane fouling and wetting. As for the pristine PVDF membrane, the membrane surface was covered with pollutants and membrane pores were blocked. Therefore, it was proved that the omniphobic composite membrane possesses outstanding anti-fouling and anti-wetting performance. Full article
Show Figures

Graphical abstract

12 pages, 2346 KB  
Article
SERS and Chiral Properties of Cinnamic Acid Derivative Langmuir-Blodgett Films Complexed with Dyes
by Xingdi Zhao, Xinyu Li, Pengfei Bian, Qingrui Zhang, Yuqing Qiao, Mingli Wang and Tifeng Jiao
Coatings 2025, 15(8), 890; https://doi.org/10.3390/coatings15080890 - 1 Aug 2025
Viewed by 320
Abstract
Chiral molecules are crucial in the field of optical devices, molecular recognition, and other novel functional materials due to their unique spatially asymmetric configuration and optical activity. In this study, a chiral molecule, Cholest-3-yl (E)-3-(4-carbamoylphenyl)acrylate (CCA), was combined with dyes containing large conjugated [...] Read more.
Chiral molecules are crucial in the field of optical devices, molecular recognition, and other novel functional materials due to their unique spatially asymmetric configuration and optical activity. In this study, a chiral molecule, Cholest-3-yl (E)-3-(4-carbamoylphenyl)acrylate (CCA), was combined with dyes containing large conjugated structures, tetramethylporphyrin tetrasulfonic acid (TPPS), and Nickel(II) phthalocyanine-tetrasulfonic acid tetrasodium salt (TsNiPc), and composite LB films of CCA/TPPS and CCA/TsNiPc were successfully prepared by using Langmuir-Blodgett (LB) technology. The circular dichroism (CD) test proved that the CCA/TPPS composite film had a strong CD signal at 300–400 nm, and the composite film showed chirality. This significant optical activity provides a new idea and option for the application of LB films in chiral sensors. In the Surface Enhanced Raman Spectroscopy (SERS) test, the CCA/TPPS composite film was sensitive to signal sensing, in which the enhancement factor EF = 2.28 × 105, indicating that a large number of effective signal response regions were formed on the surface of the film, and the relative standard deviation (RSD) = 12.08%, which demonstrated that the film had excellent uniformity and reproducibility. The high sensitivity and low signal fluctuation make the CCA/TPPS composite LB film a promising SERS substrate material. Full article
Show Figures

Figure 1

Back to TopTop