SERS and Chiral Properties of Cinnamic Acid Derivative Langmuir-Blodgett Films Complexed with Dyes
Abstract
1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Films
3. Characterization
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kang, W.; Meng, X.; Ren, T.; Guo, J. Tunable Circularly Polarized Luminescence Enabled by Photo-induced Phase Transition in a Blue-phase Liquid Crystal with a Wide Room-temperature Window. Chem.-Asian J. 2025, 20, e20241211. [Google Scholar] [CrossRef] [PubMed]
- Stachelek, P.; Serrano-Buitrago, S.; Maroto, B.L.; Pal, R.; de la Moya, S. Circularly Polarized Luminescence Bioimaging Using Chiral BODIPYs: A Model Scaffold for Advancing Unprecedented CPL Microscopy Using Small Full-Organic Probes. ACS Appl. Mater. Interfaces 2024, 16, 67246–67254. [Google Scholar] [CrossRef] [PubMed]
- Willis, O.G.; Zinna, F.; Di Bari, L. NIR-Circularly Polarized Luminescence from Chiral Complexes of Lanthanides and d-Metals. Angew. Chem. Int. Ed. 2023, 62, e202302358. [Google Scholar] [CrossRef]
- Xu, M.; Xu, Z.; Soto, M.A.; Xu, Y.-T.; Hamad, W.Y.; MacLachlan, M.J. Mechanically Responsive Circularly Polarized Luminescence from Cellulose-Nanocrystal-Based Shape-Memory Polymers. Adv. Mater. 2023, 35, e202301060. [Google Scholar] [CrossRef] [PubMed]
- Günther, M.; Dabare, S.; Fuchs, J.; Gunesch, S.; Hofmann, J.; Decker, M.; Culmsee, C. Flavonoid-Phenolic Acid Hybrids Are Potent Inhibitors of Ferroptosis via Attenuation of Mitochondrial Impairment. Antioxidants 2024, 13, 1. [Google Scholar] [CrossRef]
- He, Y.Y.; Zheng, H.Z.; Zhong, L.Y.; Zhong, N.J.; Wen, G.Q.; Wang, L.S.; Zhang, Y. Identification of Active Ingredients of Huangqi Guizhi Wuwu Decoction for Promoting Nerve Function Recovery After Ischemic Stroke Using HT22 Live-Cell-Based Affinity Chromatography Combined with HPLC-MS/MS. Drug Des. Dev. Ther. 2021, 15, 5165–5178. [Google Scholar] [CrossRef]
- Koczurkiewicz-Adamczyk, P.; Klas, K.; Gunia-Krzyzak, A.; Piska, K.; Andrysiak, K.; Stepniewski, J.; Lasota, S.; Wojcik-Pszczola, K.; Dulak, J.; Madeja, Z.; et al. Cinnamic Acid Derivatives as Cardioprotective Agents against Oxidative and Structural Damage Induced by Doxorubicin. Int. J. Mol. Sci. 2021, 22, 6217. [Google Scholar] [CrossRef]
- Lan, H.W.; Zheng, Q.; Wang, K.; Li, C.H.; Xiong, T.X.S.; Shi, J.W.; Dong, N.G. Cinnamaldehyde Protects Donor Heart from Cold Ischemia-Reperfusion Injury via the PI3K/AKT/mTOR Pathway. Biomed. Pharmacother. 2023, 165, 114867. [Google Scholar] [CrossRef]
- Lin, W.M.; Ni, Y.S.; Liu, D.Y.; Yao, Y.N.; Pang, J. Robust Microfluidic Construction of Konjac Glucomannan-Based Micro-Films for Active Food Packaging. Int. J. Biol. Macromol. 2019, 137, 982–991. [Google Scholar] [CrossRef]
- Singh, N.; Rao, A.S.; Nandal, A.; Kumar, S.; Yadava, S.S.; Ganaie, S.A.; Narasimhan, B. Phytochemical and Pharmacological Review of Cinnamomum verum J. Presl-A Versatile Spice Used in Food and Nutrition. Food Chem. 2021, 338, 127773. [Google Scholar] [CrossRef]
- Tehami, W.; Nani, A.; Khan, N.A.; Hichami, A. New Insights Into the Anticancer Effects of p-Coumaric Acid: Focus on Colorectal Cancer. Dose-Response 2023, 21, 15. [Google Scholar] [CrossRef]
- Wang, Y.W.; Yin, M.; Gu, L.W.; Yi, W.D.; Lin, J.; Zhang, L.A.; Wang, Q.; Qi, Y.H.; Diao, W.L.; Chi, M.H.; et al. The Therapeutic Role and Mechanism of 4-Methoxycinnamic Acid in Fungal Keratitis. Int. Immunopharmacol. 2023, 116, 109782. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.J.; Xianyu, Y.L. Tailoring the Surface and Composition of Nanozymes for Enhanced Bacterial Binding and Antibacterial Activity. Small 2023, 19, e2302640. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Wu, W.; Zhao, M.; Ding, S.; Yu, L.; Hu, Q. Tuning d-Band Center of FeCu Alloy Aerogel Nanozyme Boosting Biosensing and Wound Therapy. Adv. Funct. Mater. 2025, 35, e2424433. [Google Scholar] [CrossRef]
- Chen, Q.Z.; Liu, W.X.; Liu, H.J.; Huang, X.R.; Shang, Y.Z.; Liu, H.L. Molecular Dynamics Simulations and Density Functional Theory on Unraveling Photoresponsive Behavior of Wormlike Micelles Constructed by 12-2-12.2Br- and trans-ortho-Methoxy Cinnamate. Langmuir 2023, 36, 9499–9509. [Google Scholar] [CrossRef]
- Cionti, C.; Taroni, T.; Sabatini, V.; Meroni, D. Nanostructured Oxide-Based Systems for the pH-Triggered Release of Cinnamaldehyde. Materials 2021, 14, 1536. [Google Scholar] [CrossRef]
- Durand, P.L.; Brège, A.; Chollet, G.; Grau, E.; Cramail, H. Simple and Efficient Approach toward Photosensitive Biobased Aliphatic Polycarbonate Materials. ACS Macro Lett. 2018, 7, 250–254. [Google Scholar] [CrossRef]
- Kaczmarek-Szczepanska, B.; Grabska-Zielinska, S.; Michalska-Sionkowska, M. The Application of Phenolic Acids in The Obtainment of Packaging Materials Based on Polymers-A Review. Foods 2023, 12, 1343. [Google Scholar] [CrossRef]
- Lucas-González, R.; Yilmaz, B.; Khaneghah, A.M.; Hano, C.; Shariati, M.A.; Bangar, S.P.; Goksen, G.; Dhama, K.; Lorenzo, J.M. Cinnamon: An Antimicrobial Ingredient for Active Packaging. Food Packag. Shelf Life 2023, 35, 101026. [Google Scholar] [CrossRef]
- Ma, K.X.; Zhe, T.T.; Li, F.; Zhang, Y.L.; Yu, M.; Li, R.X.; Wang, L. Sustainable Films Containing AIE-Active Berberine-Based Nanoparticles: A Promising Antibacterial Food Packaging. Food Hydrocoll. 2022, 123, 107147. [Google Scholar] [CrossRef]
- Ordonez, R.; Atares, L.; Chiralt, A. Antibacterial Properties of Cinnamic and Ferulic Acids Incorporated to Starch and PLA Monolayer and Multilayer Films. Food Control 2022, 136, 108878. [Google Scholar] [CrossRef]
- Takada, K.; Yasaki, K.; Rawat, S.; Okeyoshi, K.; Kumar, A.; Murata, H.; Kaneko, T. Photoexpansion of Biobased Polyesters: Mechanism Analysis by Time-Resolved Measurements of an Amorphous Polycinnamate Hard Film. ACS Appl. Mater. Interfaces 2021, 13, 14582–14589. [Google Scholar] [CrossRef]
- Yang, Q.; Liu, X.; Xu, Z.; Wu, X.; Liang, G.; Lin, M.; Shen, Z.; Sui, K. Tunable Circularly Polarized Luminescence of Hybrid Supramolecular Nanofibers Based on a Cinnamic Acid Gelator and Spiropyran by Photoisomerization. Adv. Compos. Hybrid Mater. 2024, 7, 121. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Guo, R.; Yin, X.; Luo, R.; Guo, D.; Ji, K.; Dai, L.; Liang, H.; Jia, X.; et al. Regulating Phase Homogeneity by Self-Assembled Molecules for Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells. Nat. Photonics 2024, 18, 1269–1275. [Google Scholar] [CrossRef]
- Li, B.; Guo, Z.; Zheng, L.; Du, M.; Han, J.; Yang, C. Effect of Modified EVA-GMX Bionic Nanocomposite Pour Point Depressants on the Rheological Properties of Waxy Crude Oil. Fuel 2026, 403, 136025. [Google Scholar] [CrossRef]
- Li, B.; Qi, B.; Han, J.; Qian, X.; Yang, C.; Cai, S. Separation of Oil–Water Emulsion by Biomimetic Polycaprolactone Tannic Acid Hydrophilic Modified Membranes. Fuel 2025, 386, 134242. [Google Scholar] [CrossRef]
- Li, B.; Qian, X.; Han, J.; Qi, B.; Yang, C.; Jiao, T. A Mussel Bionic-Inspired Membrane Based on Modified Waste Masks for Oily Wastewater Treatment. Colloids Surf. A 2025, 708, 136066. [Google Scholar] [CrossRef]
- Almeida, E.W.A.; Dazon, C.M.C.; Rodriguez, M.D.V.R.; Nobre, T.M.; Pereira, M.C.; Monteiro, D.S. Graphitic Carbon Nitride: Synthesis and Characterization, Monolayer at the Air-Water Interface, Langmuir-Blodgett Films, and Its Photocatalytic Performance. ACS Omega 2025, 10, 17024–17032. [Google Scholar] [CrossRef]
- Bian, P.; Li, N.; Li, G.; Zhang, S.; Liu, X.; Gu, J.; Liu, B.; Jiao, T. Interfacial Aggregation Behavior of Novel Carbazole-Based Composite Langmuir-Blodgett Films for Photoelectric Conversion and Catalytic Performance. Colloids Surf. A 2023, 656, 130460. [Google Scholar] [CrossRef]
- Huang, X.; Du, L.; Li, Z.; Yang, Z.; Xue, J.; Shi, J.; Shen, T.; Zhai, X.; Zhang, J.; Capanoglu, E.; et al. Lactobacillus Bulgaricus-Loaded and Chia Mucilage-Rich Gum Arabic/Pullulan Nanofiber Film: An Effective Antibacterial Film for the Preservation of Fresh Beef. Int. J. Biol. Macromol. 2024, 266, 131000. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, R.T.; Siqueira, J.R., Jr.; Caseli, L. Structural and Viscoelastic Properties of Floating Monolayers of a Pectinolytic Enzyme and Their Influence on the Catalytic Properties. J. Colloid Interface Sci. 2021, 589, 568–577. [Google Scholar] [CrossRef]
- Li, D.; Sun, Y.; Pei, J.; Yu, X.; Tian, Z.; Xu, H. Au-SnO2 Resonator for SERS Detection of Ciprofloxacin. Microchem. J. 2024, 203, 110830. [Google Scholar] [CrossRef]
- Liebel, M.; Calderon, I.; Pazos-Perez, N.; van Hulst, N.F.; Alvarez-Puebla, R.A. Widefield SERS for High-Throughput Nanoparticle Screening. Angew. Chem. Int. Ed. 2022, 61, e202200072. [Google Scholar] [CrossRef] [PubMed]
- Mitra, C.K.; Sharma, M.D.; Ghosh, M.; Pande, S.; Chowdhury, J. Gold Nano-Colloids Impregnated in Langmuir-Blodgett Film of MoS2 Flakes as SERS Active Platform: Fabrication and its Application in Malathion Detection. Curr. Appl. Phys. 2024, 63, 18–31. [Google Scholar] [CrossRef]
- Moldovan, R.; Perez-Estebanez, M.; Heras, A.; Bodoki, E.; Colina, A. Activating the SERS Features of Screen-Printed Electrodes with Thiocyanate for Sensitive and Robust EC-SERS Analysis. Sens. Actuators B Chem. 2024, 407, 135468. [Google Scholar] [CrossRef]
- Sinha, R.; Das, S.K.; Ghosh, M.; Chowdhury, J. Self-Assembled Gold Nanoparticles on the Serpentine Networks of Calf Thymus-DNA Langmuir-Blodgett Films as Efficient SERS Sensing Platform: Fabrication and its Application in Thiram Detection. Mater. Chem. Phys. 2023, 295, 127140. [Google Scholar] [CrossRef]
- Wang, R.; Yan, X.; Ge, B.; Zhou, J.; Wang, M.; Zhang, L.; Jiao, T. Facile Preparation of Self-Assembled Black Phosphorus-Dye Composite Films for Chemical Gas Sensors and Surface-Enhanced Raman Scattering Performances. ACS Sustain. Chem. Eng. 2020, 8, 4521–4536. [Google Scholar] [CrossRef]
- Fu, K.; Liu, G. Full-Color Circularly Polarized Luminescence of Supramolecular Polymers with Handedness Inversion Regulated by Anion and Temperature. ACS Nano 2024, 18, 2279–2289. [Google Scholar] [CrossRef]
- Fu, K.; Zhao, Y.; Liu, G. Pathway-Directed Recyclable Chirality Inversion of Coordinated Supramolecular Polymers. Nat. Comm. 2024, 15, 9571. [Google Scholar] [CrossRef]
- Li, H.; Gu, J.; Wang, Z.; Wang, J.; He, F.; Li, P.; Tao, Y.; Li, H.; Xie, G.; Huang, W.; et al. Single-Component Color-Tunable Circularly Polarized Organic Afterglow Through Chiral Clusterization. Nat. Comm. 2022, 13, 429. [Google Scholar] [CrossRef]
- Lv, J.; Gao, X.; Han, B.; Zhu, Y.; Hou, K.; Tang, Z. Self-Assembled Inorganic Chiral Superstructures. Nat. Rev. Chem. 2022, 6, 125–145. [Google Scholar] [CrossRef]
- Zhou, Z.; Cai, G.; Zhang, Z.; Li, G.; Lou, D.; Qu, S.; Li, Y.; Huang, M.; Liu, W.; Zheng, Z.; et al. Conformational Chirality of Single-Crystal Covalent Organic Frameworks. J. Am. Chem. Soc. 2024, 146, 34064–34069. [Google Scholar] [CrossRef]
- Yang, L.; Wang, W.; Jiang, H.; Zhang, Q.; Shan, H.; Zhang, M.; Zhu, K.; Lv, J.; He, G.; Sun, Z. Improved SERS Performance of Single-Crystalline TiO2 Nanosheet Arrays with Coexposed {001} and {101} Facets Decorated with Ag Nanoparticles. Sens. Actuators B Chem. 2017, 242, 932–939. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Li, X.; Bian, P.; Zhang, Q.; Qiao, Y.; Wang, M.; Jiao, T. SERS and Chiral Properties of Cinnamic Acid Derivative Langmuir-Blodgett Films Complexed with Dyes. Coatings 2025, 15, 890. https://doi.org/10.3390/coatings15080890
Zhao X, Li X, Bian P, Zhang Q, Qiao Y, Wang M, Jiao T. SERS and Chiral Properties of Cinnamic Acid Derivative Langmuir-Blodgett Films Complexed with Dyes. Coatings. 2025; 15(8):890. https://doi.org/10.3390/coatings15080890
Chicago/Turabian StyleZhao, Xingdi, Xinyu Li, Pengfei Bian, Qingrui Zhang, Yuqing Qiao, Mingli Wang, and Tifeng Jiao. 2025. "SERS and Chiral Properties of Cinnamic Acid Derivative Langmuir-Blodgett Films Complexed with Dyes" Coatings 15, no. 8: 890. https://doi.org/10.3390/coatings15080890
APA StyleZhao, X., Li, X., Bian, P., Zhang, Q., Qiao, Y., Wang, M., & Jiao, T. (2025). SERS and Chiral Properties of Cinnamic Acid Derivative Langmuir-Blodgett Films Complexed with Dyes. Coatings, 15(8), 890. https://doi.org/10.3390/coatings15080890