Substrate Flexibility and Metal Deposition Method Effects on Piezoelectric-Enhanced SERS in Metal–ZnO Nanorod Nanocomposites
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of ZnO Nanorods
2.3. Deposition of Au Nanoparticles (Pulsed-Laser-Induced Photolysis)
2.4. Deposition of Ag Thin Films (Thermal Evaporation)
2.5. Sample Characterization
3. Results and Discussion
3.1. Surface Morphology and Structural Characteristics of ZnO Nanorods Grown on Rigid Substrates
3.2. Structural and Surface Morphology Characteristics of ZnO Nanorods on Flexible Substrates
3.3. Morphological Characteristics of PLIP-Fabricated Au-ZnO Nanocomposites
3.4. Morphological Characteristics of Thermal-Evaporation-Fabricated Ag-ZnO Nanocomposites
3.5. Optical Properties of Metal–ZnO Nanocomposites
3.6. Crystal Characterization of Metal–ZnO Composite Structures
3.7. SERS Performance of R6G Molecules on Rigid Substrates
3.8. SERS Performance of R6G Molecules on Flexible Substrates
3.9. Detection Performance of Metal–ZnO Nanocomposites on Rigid Substrates
3.10. Detection Performance of Metal–ZnO Composite Structures on Flexible Substrates
3.11. Piezoelectric-Enhanced SERS Effect Induced by Bending Flexible Substrates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Le Ru, E.C.; Auguié, B. Enhancement factors: A central concept during 50 years of surface-enhanced Raman spectroscopy. ACS Nano 2024, 18, 9773–9783. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, M.; Hendra, P.; McQuillan, A. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Lin, L.L.; Alvarez-Puebla, R.; Liz-Marzán, L.M.; Trau, M.; Wang, J.; Fabris, L.; Wang, X.; Liu, G.; Xu, S.; Han, X.X.; et al. Surface-enhanced raman spectroscopy for biomedical applications: Recent advances and future challenges. ACS Appl. Mater. Interfaces 2025, 17, 16287–16379. [Google Scholar] [CrossRef]
- Nanda, B.P.; Rani, P.; Paul, P.; Ganti, S.S.; Bhatia, R. Recent trends and impact of localized surface plasmon resonance (LSPR) and surface-enhanced Raman spectroscopy (SERS) in modern analysis. J. Pharm. Anal. 2024, 14, 100959. [Google Scholar] [CrossRef]
- Khonina, S.N.; Kazanskiy, N.L. Trends and advances in wearable plasmonic sensors utilizing surface-enhanced Raman spectroscopy (SERS): A Comprehensive Review. Sensors 2025, 25, 1367. [Google Scholar] [CrossRef]
- Yang, D.; Youden, B.; Carrier, A.; Yu, N.; Oakes, K.; Servos, M.; Zhang, X. Nanomaterials for surface-enhanced Raman spectroscopy-based metal detection: A review. Environ. Chem. Lett. 2024, 22, 2425–2465. [Google Scholar] [CrossRef]
- Stefancu, A.; Aizpurua, J.; Alessandri, I.; Bald, I.; Baumberg, J.J.; Besteiro, L.V.; Christopher, P.; Correa-Duarte, M.; de Nijs, B.; Demetriadou, A.; et al. Impact of surface enhanced Raman spectroscopy in catalysis. ACS Nano 2024, 18, 29337–29379. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, S.; Zheng, S.; Zhang, L.; Lin, J.; Wu, A. Recent advances of metal cluster-based SERS probes for biomedical applications. Nanoscale 2025, 17, 13998–14015. [Google Scholar] [CrossRef]
- Kim, K.; Lee, H.S. Effect of Ag and Au nanoparticles on the SERS of 4-aminobenzenethiol assembled on powdered copper. J. Phys. Chem. B 2005, 109, 18929–18934. [Google Scholar] [CrossRef]
- Nguyen, P.H.; Hong, B.; Smolyaninov, A.; Fainman, Y. Comparison of Substrate-dependent SERS Chemical-enhancement Effects in Au and Ag for Compositional Analysis of Single-stranded DNA. In Proceedings of the Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, USA, 5–10 May 2019; Optica Publishing Group: Washington, DC, USA, 2019; p. AM4I–6. [Google Scholar]
- Kamimura, R.; Kondo, T.; Motobayashi, K.; Ikeda, K. Surface-enhanced electronic Raman scattering at various metal surfaces. Phys. Status Solidi 2022, 259, 2100589. [Google Scholar] [CrossRef]
- Hu, R.; Fu, S.; Zhou, Y.; Lin, Z.; Fu, F.; Dong, Y. Energy-level rich nanorings hybridizing Ag, Au and AgCl as high-performance SERS substrate for numerous molecules. Talanta 2025, 286, 127517. [Google Scholar] [CrossRef] [PubMed]
- López-Lorente, Á.I. Recent developments on gold nanostructures for surface enhanced Raman spectroscopy: Particle shape, substrates and analytical applications. A review. Anal. Chim. Acta 2021, 1168, 338474. [Google Scholar] [CrossRef] [PubMed]
- Duman, H.; Eker, F.; Akdaşçi, E.; Witkowska, A.M.; Bechelany, M.; Karav, S. Silver nanoparticles: A comprehensive review of synthesis methods and chemical and physical properties. Nanomaterials 2024, 14, 1527. [Google Scholar] [CrossRef] [PubMed]
- Semin, D.J.; Rowlen, K.L. Influence of vapor deposition parameters on SERS active Ag film morphology and optical properties. Anal. Chem. 1994, 66, 4324–4331. [Google Scholar] [CrossRef]
- Hu, Q.; Zhao, G.; Guo, H.; He, J.; Liu, H.; Wu, R.; Zhang, C. Preparation and SERS performance of gold nanoparticles-decorated patterned silicon substrate. Appl. Surf. Sci. 2023, 638, 157966. [Google Scholar] [CrossRef]
- Chou, C.M.; Thanh Thi, L.T.; Quynh Nhu, N.T.; Liao, S.Y.; Fu, Y.Z.; Hung, L.V.T.; Hsiao, V.K. Zinc oxide nanorod surface-enhanced Raman scattering substrates without and with gold nanoparticles fabricated through pulsed-laser-induced photolysis. Appl. Sci. 2020, 10, 5015. [Google Scholar] [CrossRef]
- Chen, L.-H.; Shen, H.-T.; Chang, W.-H.; Khalil, I.; Liao, S.-Y.; Yehye, W.A.; Liu, S.-C.; Chu, C.-C.; Hsiao, V.K.S. Photocatalytic properties of graphene/gold and graphene oxide/gold nanocomposites synthesized by pulsed laser induced photolysis. Nanomaterials 2020, 10, 1985. [Google Scholar] [CrossRef]
- Wang, B.Y.; Huang, S.Y.; Hsiao, Y.S.; Wei, P.C.; Chou, C.M.; Hsiao, V.K. Pulsed-laser induced photolysis of synthesizing magnetic Fe3O4 nanoparticles for visible-light photocatalysis. Catalysts 2022, 12, 1459. [Google Scholar] [CrossRef]
- Wang, B.Y.; Hsiao, Y.S.; Wei, P.C.; Liu, Y.T.; Chu, C.C.; Hsiao, V.K. Visible Light-Induced Photocatalyst with Au/TiO2 Nanocomposites Fabricated through Pulsed Laser-Induced Photolysis. Catalysts 2022, 12, 564. [Google Scholar] [CrossRef]
- Alessandri, I.; Lombardi, J.R. Enhanced Raman Scattering with Dielectrics. Chem. Rev. 2016, 116, 14921–14981. [Google Scholar] [CrossRef]
- Wang, Y.; Ruan, W.; Zhang, J.; Yang, B.; Xu, W.; Zhao, B.; Lombardi, J.R. Direct observation of surface-Enhanced Raman scattering in ZnO nanocrystals. J. Raman Spectrosc. 2009, 40, 1072–1077. [Google Scholar] [CrossRef]
- Wang, X.; Shi, W.; She, G.; Mu, L. Surface-Enhanced Raman Scattering (SERS) on transition metal and semiconductor nanostructures. Phys. Chem. 2012, 14, 5891–5901. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; She, G.; Xu, H.; Mu, L.; Shi, W. The surface-Enhanced Raman scattering from ZnO nanorod arrays and its application for chemosensors. Sens. Actuators B Chem. 2014, 193, 745–751. [Google Scholar] [CrossRef]
- Bandarenka, H.; Burko, A.; Laputsko, D.; Dronina, L.; Kovalchuk, N.; Podelinska, A.; Shapel, U.; Popov, A.I.; Bocharov, D. Ultraviolet exposure improves SERS activity of graphene-coated Ag/ZrO2 substrates. Crystals 2023, 13, 1570. [Google Scholar] [CrossRef]
- Colniță, A.; Toma, V.A.; Brezeștean, I.A.; Tahir, M.A.; Dina, N.E. A review on integrated ZnO-based SERS biosensors and their potential in detecting biomarkers of neurodegenerative diseases. Biosensors 2023, 13, 499. [Google Scholar] [CrossRef]
- Hardy, M.; Oppenheimer, P.G. ‘When is a hotspot a good nanospot’–review of analytical and hotspot-dominated surface enhanced Raman spectroscopy nanoplatforms. Nanoscale 2024, 16, 3293–3323. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, C.; Yang, J.; Zhao, B.; Lombardi, J.R. Nanoparticle Metal−Semiconductor Charge Transfer in ZnO/PATP/Ag Assemblies by Surface-Enhanced Raman Spectroscopy. J. Phys. Chem. C 2008, 112, 6093–6098. [Google Scholar] [CrossRef]
- Cheng, C.; Yan, B.; Wong, S.M.; Li, X.; Zhou, W.; Yu, T.; Shen, Z.; Yu, H.; Fan, H.J. Fabrication and SERS Performance of Silver-Nanoparticle-Decorated Si/ZnO Nanotrees in Ordered Arrays. ACS Appl. Mater. Interfaces 2010, 2, 1824–1828. [Google Scholar] [CrossRef]
- Tang, H.; Meng, G.; Huang, Q.; Zhang, Z.; Huang, Z.; Zhu, C. Arrays of Cone-Shaped ZnO Nanorods Decorated with Ag Nanoparticles as 3D Surface-Enhanced Raman Scattering Substrates for Rapid Detection of Trace Polychlorinated Biphenyls. Adv. Funct. Mater. 2011, 22, 218–224. [Google Scholar] [CrossRef]
- Liu, K.; Li, D.; Li, R.; Wang, Q.; Pan, S.; Peng, W.; Chen, M. Silver-Decorated ZnO hexagonal nanoplate arrays as SERS-Active substrates: An experimental and simulation study. J. Mater. Res. 2013, 28, 3374–3383. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, S.; Mao, Z.; Li, P.; Zhao, C.; Cohick, Z.; Huang, P.-H.; Huang, T.J. In Situ Fabrication of 3D Ag@ZnO Nanostructures for Microfluidic Surface-Enhanced Raman Scattering Systems. ACS Nano 2014, 8, 12175–12184. [Google Scholar] [CrossRef] [PubMed]
- Kandjani, A.E.; Mohammadtaheri, M.; Thakkar, A.; Bhargava, S.K.; Bansal, V. Zinc oxide/silver nanoarrays as reusable SERS substrates with controllable ‘Hot-Spots’ for highly reproducible molecular sensing. J. Colloid Interface Sci. 2014, 436, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Tao, Q.; Li, S.; Ma, C.; Liu, K.; Zhang, Q.-Y. A highly sensitive and recyclable SERS substrate based on Ag-nanoparticle-Decorated ZnO nanoflowers in ordered arrays. Dalton Trans. 2015, 44, 3447–3453. [Google Scholar] [CrossRef]
- Huang, C.; Xu, C.; Lu, J.; Li, Z.; Xu, C. 3D Ag/ZnO hybrids for sensitive surface-Enhanced Raman scattering detection. Appl. Surf. Sci. 2016, 365, 291–295. [Google Scholar] [CrossRef]
- Tang, F.; Zhang, M.; Li, Z.; Du, Z.; Chen, B.; He, X.; Zhao, S. Hexagonally arranged arrays of urchin-Like Ag-Nanoparticle decorated ZnO-Nanorods grafted on PAN-Nanopillars as surface-Enhanced Raman scattering substrates. CrystEngComm 2018, 20, 3550–3558. [Google Scholar] [CrossRef]
- Lin, R.; Hu, L.; Wang, J.; Zhang, W.; Ruan, S.; Zeng, Y.-J. Raman scattering enhancement of a single ZnO nanorod decorated with Ag nanoparticles: Synergies of defects and plasmons. Opt. Lett. 2018, 43, 2244–2247. [Google Scholar] [CrossRef]
- Lei, S.; Tao, C.; Li, J.; Zhao, X.; Wang, W. Visible light-induced charge transfer to improve sensitive surface-Enhanced Raman scattering of ZnO/Ag nanorod arrays. Appl. Surf. Sci. 2018, 452, 148–154. [Google Scholar] [CrossRef]
- Sedira, S.; Mounir, S. Surface enhanced Raman scattering (SERS) investigation and sensitive detection of zinc oxide nanorods (ZnO Nrds) deposited on silver nanoparticles (Ag NPs) substrate. Mater. Lett. 2019, 254, 112–115. [Google Scholar]
- Vemuri, S.K.; Khanna, S.; Paneliya, S.; Takhar, V.; Banerjee, R.; Mukhopadhyay, I. Fabrication of silver nanodome embedded zinc oxide nanorods for enhanced Raman spectroscopy. Colloids Surf. A Physicochem. Eng. Asp. 2022, 639, 128336. [Google Scholar] [CrossRef]
- Ren, X.; Song, X.; Wang, L.; Ma, W.; Li, X. Surface-enhanced Raman scattering using flower-like Ag/ZnO as active substrates for the label-free and sensitive detection of rhodamine 6G and melamine. Anal. Methods 2024, 16, 411–419. [Google Scholar] [CrossRef]
- Samriti Kumar, P.; Kuznetsov, A.Y.; Swart, H.C.; Prakash, J. Sensitive, stable, and recyclable ZnO/Ag nanohybrid substrates for surface-enhanced Raman scattering metrology. ACS Mater. Au 2024, 4, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Tran, N.H.T.; Van, T.T.; Van Le, H.; Ta, H.K.T.; Van Hoang, D. Study of Ag NPs decorated-ZnO nanoflowers for the SERS-Based detection of pesticides: An experimental approach. Mater. Chem. Phys. 2025, 337, 130612. [Google Scholar] [CrossRef]
- Almohammed, S.; Fularz, A.; Zhang, F.; Alvarez-Ruiz, D.; Bello, F.; O’Regan, D.D.; Rodriguez, B.J.; Rice, J.H. Flexing piezoelectric Diphenylalanine–plasmonic metal nanocomposites to increase SERS signal strength. ACS Appl. Mater. Interfaces 2020, 12, 48874–48881. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Li, Y.; Guo, G.; Zhao, X.; Yu, J.; Li, Z.; Xu, S.; Man, B.; Wei, D.; Zhang, C. Synergizing piezoelectric and plasmonic modulation of PVDF/MoS2 cavity/Au for enhanced photocatalysis. Appl. Surf. Sci. 2022, 577, 151811. [Google Scholar] [CrossRef]
- Xu, J.; Lv, E.; Zhao, X.; Yu, J.; Xu, S.; Li, J.; Li, Z.; Xue, M.; Zhang, C.; Pan, J. Enhanced SERS and catalytic performance via piezoelectric and plasmonic coupling effects for organic pollutant molecule degradation. J. Alloys Compd. 2022, 918, 165813. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Z.; Liao, Y.; Wang, J.; Zhang, T.; Liu, X.; Zhang, Y. Unveiling the dual-enhancing mechanisms of kinetically controlled silver nanoparticles on piezoelectric PVDF nanofibers for optimized SERS performance. ACS Sens. 2024, 9, 849–859. [Google Scholar] [CrossRef]
- Deng, W.; Yuan, L.; Wan, P.; Sun, J.; Kan, C.; Shi, D.; Xu, C.; Lu, J. Piezoelectric-enhanced ultrasensitive ZnO/Ag microcavity SERS substrate for dopamine detection. Nano Energy 2025, 133, 110449. [Google Scholar] [CrossRef]
- Song, J.; Zhou, J.; Wang, Z.L. Piezoelectric and semiconducting coupled power generating process of a single ZnO belt/wire. A technology for harvesting electricity from the environment. Nano Lett. 2006, 6, 1656–1662. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Y.; Xu, C.; Lin, L.; Snyder, R.L.; Wang, Z.L. Self-powered system with wireless data transmission. Nano Lett. 2011, 11, 2572–2577. [Google Scholar] [CrossRef]
- Ohyama, M.; Kouzuka, H.; Yoko, T. Sol-Gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution. Thin Solid Film. 1997, 306, 78–85. [Google Scholar] [CrossRef]
- Seydioglu, T.; Kurnaz, S.; Tokeşer, E.A.; Yildirim, G.; Ozturk, O. Effect of foreign impurity and growth temperatures on hexagonal structure and fundamental properties of ZnO nanorods. Microsc. Res. Tech. 2024, 87, 2687–2700. [Google Scholar] [CrossRef] [PubMed]
- Abdulrahman, A.F.; Mostafa, S.H.; Ahmed, S.M.; Abdulqodus, A.N.; Kareem, A.A.; Aziz, S.B.; Almessiere, M.A.; Hamad, S.M.; Shaikhah, D. Influence of annealing temperature of seed layer on the structural and optical properties of ZnO nanorods synthesized by SILAR and CBD techniques. Mater. Technol. 2025, 40, 2443205. [Google Scholar] [CrossRef]
- Vayssieres, L. Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions. Adv. Mater. 2003, 15, 464–466. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, Z.; Han, M.; Hao, X.-T.; Zhu, F. A General Low-Temperature Route for Large-Scale Fabrication of Highly Oriented ZnO Nanorod/Nanotube Arrays. J. Am. Chem. Soc. 2005, 127, 2378–2379. [Google Scholar] [CrossRef]
- Nikam, S.M.; Patil, T.S.; Nimbalkar, N.A.; Kothavale, V.P.; Kamble, R.S.; Gaikwad, G.A.; Mane, S.M.; Lee, J.; Mane, R.D. Nickel ion-doped vertical nanorod array network of ZnO engineered by chemical bath deposition for versatile NO2 gas sensor. J. Korean Ceram. Soc. 2025, 62, 330–349. [Google Scholar] [CrossRef]
- Ali, S.B.; Fakhri, M.A.; Gopinath, S.C. Effect of annealing process on the physical properties of ZnO nanorods and their performances as photodetectors. J. Opt. 2024, 53, 2853–2862. [Google Scholar] [CrossRef]
- Sekar, K.; Doineau, R.; Mayarambakam, S.; Schmaltz, B.; Poulin-Vittrant, G. Control of ZnO nanowires growth in flexible perovskite solar cells: A mini-review. Heliyon 2024, 10, e24706. [Google Scholar] [CrossRef]
Substrate Type | Flat State EF | Bent State EF | Enhancement Factor * | Detection Quality |
---|---|---|---|---|
Rigid Substrates (ITO–glass) | ||||
ZnO NRs | ~102 | N/A | N/A | Weak signal |
Au-ZnO NCPs | ~104 | N/A | N/A | Clear peaks |
Ag-ZnO NCPs | ~105 | N/A | N/A | Strong signal |
Flexible Substrates (ITO-PET) | ||||
ZnO NRs | ~103 | ~104 | ~10× | Improved signal |
Au-ZnO NCPs | ~104 | ~106 | 50–100× | Dramatic increase |
Ag-ZnO NCPs | ~106 | ~106.5 | 2–3× | Further enhanced |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Quynh Nhu, N.T.; Thi, L.T.T.; Hung, L.V.T.; Hsiao, V.K.S. Substrate Flexibility and Metal Deposition Method Effects on Piezoelectric-Enhanced SERS in Metal–ZnO Nanorod Nanocomposites. Materials 2025, 18, 3299. https://doi.org/10.3390/ma18143299
Quynh Nhu NT, Thi LTT, Hung LVT, Hsiao VKS. Substrate Flexibility and Metal Deposition Method Effects on Piezoelectric-Enhanced SERS in Metal–ZnO Nanorod Nanocomposites. Materials. 2025; 18(14):3299. https://doi.org/10.3390/ma18143299
Chicago/Turabian StyleQuynh Nhu, Nguyen Thi, Le Tran Thanh Thi, Le Vu Tuan Hung, and Vincent K. S. Hsiao. 2025. "Substrate Flexibility and Metal Deposition Method Effects on Piezoelectric-Enhanced SERS in Metal–ZnO Nanorod Nanocomposites" Materials 18, no. 14: 3299. https://doi.org/10.3390/ma18143299
APA StyleQuynh Nhu, N. T., Thi, L. T. T., Hung, L. V. T., & Hsiao, V. K. S. (2025). Substrate Flexibility and Metal Deposition Method Effects on Piezoelectric-Enhanced SERS in Metal–ZnO Nanorod Nanocomposites. Materials, 18(14), 3299. https://doi.org/10.3390/ma18143299