Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (599)

Search Parameters:
Keywords = Ring Opening Polymerization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2012 KB  
Article
Cyclopentadienyl–Silsesquioxane Titanium Complexes in the Polymerizations of Styrene and L-Lactide
by Joan Vinueza-Vaca, Shoaib Anwar, Salvatore Impemba, Ilaria Grimaldi, Gerardo Jiménez, Carmine Capacchione, Vanessa Tabernero and Stefano Milione
Polymers 2025, 17(19), 2715; https://doi.org/10.3390/polym17192715 - 9 Oct 2025
Viewed by 237
Abstract
In this contribution, two silsesquioxane–cyclopentadienyl titanium complexes featuring one or two chloride ancillary ligands, [Ti(η5-C5H4SiMeO2Ph7Si7O10-κO)Cl2] (1) and [Ti(η5-C5H4 [...] Read more.
In this contribution, two silsesquioxane–cyclopentadienyl titanium complexes featuring one or two chloride ancillary ligands, [Ti(η5-C5H4SiMeO2Ph7Si7O10-κO)Cl2] (1) and [Ti(η5-C5H4SiMe2OPh7Si7O11-κ2O2)Cl] (2), were synthesized and evaluated in the Ziegler–Natta polymerization of styrene and the ring-opening polymerization (ROP) of L-lactide, respectively. Complex 1, activated with methylaluminoxane (MAO), catalyzed the syndiotactic polymerization of styrene with turnover frequencies up to 28 h−1, affording polymers with narrow dispersity, low number-average molecular weights (Mn = 5.2–8.2 kDa), and high stereoregularity, as confirmed by 13C NMR. Complex 2, in combination with benzyl alcohol, promoted the ring-opening polymerization of L-lactide in solution at 100 °C, achieving conversions up to 95% with good molecular weight control (Mn close to theoretical, Đ = 1.19–1.32). Under melt conditions at 175 °C, it converted up to 3000 equiv. of monomer within 1 h. Kinetic analysis revealed first-order dependence on monomer concentration. The results highlight the ability of these complexes to produce syndiotactic polystyrene with narrow molecular weight distributions and to catalyze controlled ROP of L-lactide under both solution and melt conditions. Computational studies provided insight into key structural and energetic features influencing reactivity, offering a framework for further catalyst optimization. This work broadens the application scope of silsesquioxane–cyclopentadienyl titanium complexes and supports their potential as sustainable and versatile catalysts for both commodity and biodegradable polymer synthesis. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

20 pages, 3589 KB  
Article
Comparison of Different Aliphatic Polyester-Based Microparticles as Protein Delivery Systems
by Viktor Korzhikov-Vlakh, Ekaterina Sinitsyna, Mariia Stepanova, Evgenia Korzhikova-Vlakh and Tatiana Tennikova
Polymers 2025, 17(19), 2676; https://doi.org/10.3390/polym17192676 - 3 Oct 2025
Viewed by 301
Abstract
The utilization of encapsulated biopharmaceuticals, including peptides and proteins, has grown substantially in recent years. In this study, the influence of aliphatic polyester physicochemical properties, specifically crystallinity and hydrophobicity, on the development of protein-loaded microparticles was investigated. A series of polyesters, namely amorphous [...] Read more.
The utilization of encapsulated biopharmaceuticals, including peptides and proteins, has grown substantially in recent years. In this study, the influence of aliphatic polyester physicochemical properties, specifically crystallinity and hydrophobicity, on the development of protein-loaded microparticles was investigated. A series of polyesters, namely amorphous PDLLA and semicrystalline PLLA, PCL, and PPDL, were synthesized via chemical and enzymatic ring-opening polymerization. Bovine serum albumin (BSA)-loaded microparticles were fabricated using a water-in-oil-in-water (w/o/w) double emulsion solvent evaporation method. The size of microparticles obtained was determined by scanning electron microscopy and dynamic light scattering methods. The enzymatic degradation of the polymer microparticles was assessed through incubation in a lipase-containing buffer solution. BSA and α-chymotrypsin (ACHT) were used as model proteins for the preparation of encapsulated polymer microspheres and comparison of their characteristics and properties. Protein encapsulation efficacy, release rate, and enzyme activity retained after encapsulation were evaluated and compared for selected aliphatic polyesters. The release profiles were processed with the use of various mathematical models to reveal the possible mechanism(s) of protein release. Full article
(This article belongs to the Special Issue Polyester-Based Materials: 3rd Edition)
Show Figures

Figure 1

25 pages, 7630 KB  
Article
Effects of Small Amounts of Metal Nanoparticles on the Glass Transition, Crystallization, Electrical Conductivity, and Molecular Mobility of Polylactides: Mixing vs. In Situ Polymerization Preparation
by Panagiotis A. Klonos, Rafail O. Ioannidis, Kyriaki Lazaridou, Apostolos Kyritsis and Dimitrios N. Bikiaris
Electronics 2025, 14(19), 3826; https://doi.org/10.3390/electronics14193826 - 26 Sep 2025
Viewed by 217
Abstract
The synthesis of two series of poly(lactic acid) (PLA)-based polymer nanocomposites (PNCs) filled with small amounts (0.5 and 1%) of Ag and Cu nanoparticles (NPs) was performed. Moreover, two methods for the PNC synthesis were performed, namely, ‘conventional mixing techniques’ and ‘in situ [...] Read more.
The synthesis of two series of poly(lactic acid) (PLA)-based polymer nanocomposites (PNCs) filled with small amounts (0.5 and 1%) of Ag and Cu nanoparticles (NPs) was performed. Moreover, two methods for the PNC synthesis were performed, namely, ‘conventional mixing techniques’ and ‘in situ ring opening polymerization (ROP)’. The latter method was employed for the first time; moreover, it was found to be more effective in achieving very good NP dispersion in the polymer matrix as well as the formation of interfacial polymer–NP interactions. The in situ ROP for PLA/Cu was not productive due to the oxidation of Cu NPs being faster than the initiation of ROP. The presence of NPs resulted in suppression of the glass transition temperature, Tg (23–60 °C), with the effects being by far stronger in the case of ROP-based PNCs, e.g., exhibiting Tg decrease by tens of K. Due to that surprising result, the ROP-based PLA/Ag PNCs exhibited elevated ionic conductivity phenomena (at room temperature). This can be exploited in specific applications, e.g., mimicking the facilitated small molecules permeation. The effects of NPs on crystallinity (2–39%) were found opposite between the two series. Crystallinity was facilitated/suppressed in the mixing/ROP -based PNCs, respectively. The local and segmental molecular mobility map was constructed for these systems for the first time. Combining the overall data, a concluding scenario was employed, that involved the densification of the polymer close to the NPs’ surface and the free volume increase away from them. Finally, an exceptional effect was observed in PLA + 0.5% Ag (ROP). The crystallization involvement resulted in a severe suppression of Tg (−25 °C). Full article
(This article belongs to the Special Issue Sustainable Printed Electronics: From Materials to Applications)
Show Figures

Figure 1

20 pages, 2569 KB  
Article
Upcycling Orange-Based Waste into Functional CNCs for Greener L-Lactide Ring-Opening Polymerization
by Adrián Leonés, Cayetano Sánchez-Solís, Asier Medel, Maria P. García-Aparicio, Marta E. G. Mosquera and Valentina Sessini
Polymers 2025, 17(19), 2605; https://doi.org/10.3390/polym17192605 - 26 Sep 2025
Viewed by 300
Abstract
This study demonstrates the valorization of orange peel waste as a sustainable feedstock for the production of cellulose nanocrystals (CNCs). Compositional analysis revealed a cellulose content up to 10.0% in the raw material. After performing the alkaline/peroxide treatment, CNCs were isolated via acid [...] Read more.
This study demonstrates the valorization of orange peel waste as a sustainable feedstock for the production of cellulose nanocrystals (CNCs). Compositional analysis revealed a cellulose content up to 10.0% in the raw material. After performing the alkaline/peroxide treatment, CNCs were isolated via acid hydrolysis. Different inorganic acids were compared, namely sulfuric, phosphoric, and hydrochloric acids at low molar concentrations. The resulting CNCs showed distinct morphological and physicochemical properties, with sulfuric acid treatment yielding the highest crystallinity index (TCI) of 0.86 under conditions of 3.0 mol/L, 80 °C, and 225 min. Additionally, the presence of sulfate or phosphate groups significantly influenced the thermal degradation behavior and the inorganic residue content in the obtained CNCs. Finally, the CNCs were successfully tested as co-initiator for lactide ring-opening polymerization. The results show that the molecular weights of the resulting polylactide varied depending on the CNC dispersion. This work supports the use of orange peel waste as a bio-source for CNC production and their potential application as a co-initiator in the synthesis of polyesters. Full article
Show Figures

Graphical abstract

20 pages, 5226 KB  
Article
Design and Performance of 3D-Printed Hybrid Polymers Exhibiting Shape Memory and Self-Healing via Acrylate–Epoxy–Thiol–Ene Chemistry
by Ricardo Acosta Ortiz, Alan Isaac Hernández Jiménez, José de Jesús Ku Herrera, Roberto Yañez Macías and Aida Esmeralda García Valdez
Polymers 2025, 17(19), 2594; https://doi.org/10.3390/polym17192594 - 25 Sep 2025
Viewed by 457
Abstract
This study presents a novel strategy for designing photocurable resins tailored for the additive manufacturing of smart thermoset materials. A quaternary formulation was developed by integrating bis(2-methacryloyl)oxyethyl disulfide (DADS) with an epoxy/thiol-ene system (ETES) composed of diglycidyl ether of bisphenol A (EP), pentaerythritol [...] Read more.
This study presents a novel strategy for designing photocurable resins tailored for the additive manufacturing of smart thermoset materials. A quaternary formulation was developed by integrating bis(2-methacryloyl)oxyethyl disulfide (DADS) with an epoxy/thiol-ene system (ETES) composed of diglycidyl ether of bisphenol A (EP), pentaerythritol tetrakis(3-mercaptopropionate) (PTMP), and 4,4′-methylenebis(N,N-diallylaniline) (ACA4). This unique combination enables the simultaneous activation of four polymerization mechanisms: radical photopolymerization, thiol-ene coupling, thiol-Michael addition, and anionic ring-opening, within a single resin matrix. A key innovation lies in the exothermic nature of DADS photopolymerization, which initiates and sustains ETES curing at room temperature, enabling 3D printing without thermal assistance. This represents a significant advancement over conventional systems that require elevated temperatures or post-curing steps. The resulting hybrid poly(acrylate–co-ether–co-thioether) network exhibits enhanced mechanical integrity, shape memory behavior, and intrinsic self-healing capabilities. Dynamic Mechanical Analysis revealed a shape fixity and recovery of 93%, while self-healing tests demonstrated a 94% recovery of viscoelastic properties, as evidenced by near-overlapping storage modulus curves compared to a reference sample. This integrated approach broadens the design space for multifunctional photopolymers and establishes a versatile platform for advanced applications in soft robotics, biomedical devices, and sustainable manufacturing. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Graphical abstract

16 pages, 3311 KB  
Article
Green Synthesis of Zwitterionic–Cyclodextrin Hybrid Polymer for Efficient Extraction of Polypeptides: Combination of Instrumental Analysis and DFT Calculation
by Xiaoyun Lei, Xin Wang, Yuzhe Cao, Bingxing Ren, Yanyan Peng and Hanghang Zhao
Polymers 2025, 17(18), 2524; https://doi.org/10.3390/polym17182524 - 18 Sep 2025
Viewed by 365
Abstract
Adhering to the principles of green analytical chemistry (GAC) is crucial for advancing sample pretreatment. In this work, we developed a green in-tube solid-phase microextraction (IT-SPME) material utilizing non-toxic cyclodextrin and zwitterionic polymers as co-functioning monomers. The hybrid monolithic material was synthesized within [...] Read more.
Adhering to the principles of green analytical chemistry (GAC) is crucial for advancing sample pretreatment. In this work, we developed a green in-tube solid-phase microextraction (IT-SPME) material utilizing non-toxic cyclodextrin and zwitterionic polymers as co-functioning monomers. The hybrid monolithic material was synthesized within 38 min via an efficient epoxy ring-opening reaction and free radical polymerization. Comprehensive characterization confirmed a rigid framework with strong anti-swelling properties, good permeability, and high enrichment efficiency on the polymers. When coupled with HPLC-UV, the optimized IT-SPME method enabled highly sensitive detection of polypeptides (vancomycin and teicoplanin) in aqueous matrices, achieving detection limits as low as 15.0–20.0 μg L−1, a wide linear range (60–800 μg L−1, R2 > 0.99), and good precision (RSDs = 5.9–8.2%). The prepared material demonstrated remarkable performance in real complex water samples, achieving recovery rates of up to 95.4%. Density functional theory (DFT) calculations indicated that the adsorption mechanism primarily involves hydrogen bonding and electrostatic interactions. This study presents an effective approach for the development of green chemical synthesis of extraction materials and offers a sustainable platform for monitoring trace contaminants in environmental waters. Full article
Show Figures

Graphical abstract

21 pages, 4257 KB  
Article
Synthesis and Characterization of Curcumin-Polycaprolactone Block Copolymers for Biomedical Applications
by Qianqian Wei, Adam Junka, Bartlomiej Dudek, Houman Alimoradi, Julia Simińska-Stanny, Lei Nie, Oseweuba Valentine Okoro and Armin Shavandi
Materials 2025, 18(18), 4348; https://doi.org/10.3390/ma18184348 (registering DOI) - 17 Sep 2025
Viewed by 483
Abstract
Polycaprolactone (PCL) is widely utilized in biomedical applications such as tissue engineering and drug delivery; however, its limited bioactivity remains a key challenge. In this study, bioactive curcumin–polycaprolactone block copolymers (MCP) were synthesized via ring-opening polymerization of ε-caprolactone and maleic anhydride modified curcumin. [...] Read more.
Polycaprolactone (PCL) is widely utilized in biomedical applications such as tissue engineering and drug delivery; however, its limited bioactivity remains a key challenge. In this study, bioactive curcumin–polycaprolactone block copolymers (MCP) were synthesized via ring-opening polymerization of ε-caprolactone and maleic anhydride modified curcumin. The resulting MCP was characterized using FTIR, 1H NMR, UV–Vis spectroscopy, and differential scanning calorimetry (DSC). It demonstrated enhanced antioxidant activity, UV-blocking capacity, and electro spinnability compared to PCL. Electrospun MCP films exhibited improved biocompatibility and promoted fibroblast migration. Furthermore, composite films incorporating MCP into a PVA matrix with and without copper or iron were evaluated for in vivo toxicity and antimicrobial activity. These formulations showed no systemic or contact toxicity in the Galleria mellonella model, confirming their biocompatibility. Films containing copper or iron exhibited selective anti-Pseudomonas aeruginosa activity and low but reproducible antioxidant capacity. This study highlights the multifunctionality and biomedical potential of MCP and its composites as tunable platforms for regenerative and antimicrobial applications. Full article
Show Figures

Graphical abstract

30 pages, 4682 KB  
Article
Biodegradable Zwitterionic PLA-Based Nanoparticles: Design and Evaluation for pH-Responsive Tumor-Targeted Drug Delivery
by Evi Christodoulou, Alexandros Tsimpolis, Konstantinos Theodorakis, Styliani Axypolitou, Ioannis Tsamesidis, Eleana Kontonasaki, Eleni Pavlidou and Dimitrios N. Bikiaris
Polymers 2025, 17(18), 2495; https://doi.org/10.3390/polym17182495 - 16 Sep 2025
Viewed by 588
Abstract
Background/Objectives: Biodegradable and pH-responsive nanocarriers using zwitterionic moieties represent a promising avenue for targeted delivery of chemotherapeutics. The present study addresses this by developing zwitterionic nanoparticles based on polylactic acid/poly(ethylene adipate) (PLA/PEAd) copolymers grafted with SBMA, designed to combine acid-triggered drug release with [...] Read more.
Background/Objectives: Biodegradable and pH-responsive nanocarriers using zwitterionic moieties represent a promising avenue for targeted delivery of chemotherapeutics. The present study addresses this by developing zwitterionic nanoparticles based on polylactic acid/poly(ethylene adipate) (PLA/PEAd) copolymers grafted with SBMA, designed to combine acid-triggered drug release with stealth-like biocompatibility. Methods: A series of polylactic acid/poly(ethylene adipate) (PLA/PEAd) copolymers with varying compositions (95/5, 90/10, and 75/25 w/w) were synthesized via ring-opening polymerization, followed by controlled radical grafting of the zwitterionic monomer [2-(Methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA), which was then successfully grafted upon their backbone. The resulting zwittenionic copolymers were thoroughly characterized for their structural and physicochemical properties, displaying tunable molecular weights of 3200–4900 g/mol, enhanced hydrophilicity and controlled degradation, with mass loss ranging from 8% to 83% over 30 days, depending on PEAd content and pH. Paclitaxel-loaded nanoparticles of spherical shape with sizes ranging from 220 to 565 nm were then fabricated. Drug release was pH-dependent with significantly higher release at pH 5.0 (up to ~79% for PLAPEAd7525-SBMA) compared to pH 7.4 (~18–35%). Hemolysis assays demonstrated excellent hemocompatibility, and cytotoxicity studies showed strong anticancer activity (>80% cell death in MDA-MB-231) with lower toxicity toward iMEFs, especially for PEAd-rich formulations. Conclusions: Our findings underline the potential of SBMA-functionalized PLA/PEAd nanoparticles as effective nano-carriers for tumor-targeted chemotherapy. Full article
(This article belongs to the Special Issue Polymers and Their Role in Drug Delivery, 2nd Edition)
Show Figures

Figure 1

23 pages, 3604 KB  
Article
Amphiphilic Thermoresponsive Triblock PLA-PEG-PLA and Diblock mPEG-PLA Copolymers for Controlled Deferoxamine Delivery
by Nikolaos D. Bikiaris, Ermioni Malini, Evi Christodoulou, Panagiotis A. Klonos, Apostolos Kyritsis, Apostolos Galaris and Kostas Pantopoulos
Gels 2025, 11(9), 742; https://doi.org/10.3390/gels11090742 - 15 Sep 2025
Viewed by 467
Abstract
This study focuses on the synthesis and characterization of thermoresponsive hydrogels of poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG), PLA–PEG copolymers, aiming at the targeted and controlled release of deferoxamine (DFO), a clinically applied iron-chelating drug. Triblock (PLA-PEG-PLA) and diblock (mPEG-PLA) copolymers were [...] Read more.
This study focuses on the synthesis and characterization of thermoresponsive hydrogels of poly(lactic acid) (PLA) and poly(ethylene glycol) (PEG), PLA–PEG copolymers, aiming at the targeted and controlled release of deferoxamine (DFO), a clinically applied iron-chelating drug. Triblock (PLA-PEG-PLA) and diblock (mPEG-PLA) copolymers were synthesized using ring-opening polymerization (ROP) with five different PEGs with molecular weights of 1000, 1500, 2000, 4000, and 6000 g/mol and two types of lactide (L-lactide and D-lactide). Emulsions of the polymers in phosphate-buffered saline (PBS) were prepared at concentrations ranging from 10% to 50% w/w to study the sol–gel transition properties of the copolymers. Amongst the synthesized copolymers, only those that demonstrated thermoresponsive sol-to-gel transitions near physiological temperature (37 °C) were selected for further analysis. Structural and molecular confirmation was performed by Nuclear Magnetic Resonance (NMR) and Fourier-transform infrared spectroscopy (FTIR), while the molecular weights were determined via Gel Permeation Chromatography (GPC). The thermal transitions were studied by calorimetry (DSC) and crystallinity via X-ray diffraction (XRD) analysis. DFO-loaded hydrogels were prepared, and their drug release profiles were investigated under simulated physiological conditions (37 °C) for seven days using HPLC analysis. The thermoresponsive characteristics of these systems can offer a promising strategy for injectable drug delivery applications, where micelles serve as drug carriers and undergo in situ gelation, enabling controlled release. This alternative procedure may significantly improve the bioavailability of DFO and enhance patient compliance by addressing key limitations of conventional administration routes. Full article
(This article belongs to the Special Issue Recent Advances in Hydrogels for Tissue Engineering Applications)
Show Figures

Graphical abstract

14 pages, 1701 KB  
Article
Synthesis of Linear and Branched Polycarbonate Polyols via Double Metal Cyanide-Catalyzed Ring-Opening (Co)polymerization of Epoxides
by Won Seok Jae, Ha-Kyung Choi, Han Su Lee, Chinh Hoang Tran, Chi Le Hoang Tran, Khoa Anh Trinh and Il Kim
Polymers 2025, 17(18), 2458; https://doi.org/10.3390/polym17182458 - 11 Sep 2025
Viewed by 655
Abstract
A series of polyether and poly(ether carbonate) polyols have been synthesized via Zn(II)-Co(III) double metal cyanide (DMC)-catalyzed ring-opening (co)polymerization of various epoxides, such as propylene oxide, 1,2-epoxybutane, epichlorohydrin, styrene oxide, and glycidol, with and without CO2. The resulting polyether polyols exhibit [...] Read more.
A series of polyether and poly(ether carbonate) polyols have been synthesized via Zn(II)-Co(III) double metal cyanide (DMC)-catalyzed ring-opening (co)polymerization of various epoxides, such as propylene oxide, 1,2-epoxybutane, epichlorohydrin, styrene oxide, and glycidol, with and without CO2. The resulting polyether polyols exhibit linear and branched architectures (degrees of branching, DB = 0.27), high catalytic activities with turnover frequencies up to 461 min−1, narrow dispersities (1.15–1.25), and low levels of unsaturation (0.004 meq g−1). The DMC catalysts also enable the efficient synthesis of poly(propylene carbonate) polyol with carbonate contents up to 40% and yields reaching 63%. Additionally, branched poly(ether carbonate) polyols with tunable DB values (0.14–0.21), yields up to 70%, and carbonate contents up to 33% are synthesized via CO2 fixation to glycidol. The synthesized polyols hold strong potential for industrial applications in polyurethanes and other advanced materials, offering versatile performance for use in coatings, adhesives, sealants, and elastomers. Overall, this study highlights the effectiveness of DMC catalysts in producing high-performance polyols, contributing to the development of sustainable materials with precise architectural control. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

14 pages, 3570 KB  
Article
Synthesis and Properties of Ethylene Imine-Based Porous Polymer Nanocomposites with Metal Oxide Nanoparticles
by Naofumi Naga, Julia Janas, Tomoya Takenouchi and Tamaki Nakano
Molecules 2025, 30(17), 3574; https://doi.org/10.3390/molecules30173574 - 31 Aug 2025
Viewed by 1096
Abstract
Ethylene imine-based porous polymer nanocomposites were prepared by ring-opening polymerization of 2,2-bishydroxymethylbutanol-tris [3-(1-aziridinyl)propionate] (3AZ), a tri-functional aziridine compound, in the presence of commercially available metal oxide nanoparticles, SiO2 or ZrO2, accompanied by polymerization-induced phase separation. The reactions with SiO2 [...] Read more.
Ethylene imine-based porous polymer nanocomposites were prepared by ring-opening polymerization of 2,2-bishydroxymethylbutanol-tris [3-(1-aziridinyl)propionate] (3AZ), a tri-functional aziridine compound, in the presence of commercially available metal oxide nanoparticles, SiO2 or ZrO2, accompanied by polymerization-induced phase separation. The reactions with SiO2 and ZrO2 nanoparticles successfully yielded nanocomposite porous polymers as rigid materials. The nanocomposite porous polymers with SiO2 and ZrO2 nanoparticles showed characteristic surface morphologies composed of gathered particles with diameters less than 1 micrometer. These nanocomposites were effective in increasing Young’s moduli of the porous polymers due to an increase in their bulk densities. The presence of SiO2 and ZrO2 nanoparticles in the porous polymers efficiently retarded thermal decomposition. Full article
(This article belongs to the Special Issue Functional Porous Frameworks: Synthesis, Properties, and Applications)
Show Figures

Figure 1

17 pages, 1416 KB  
Article
Synthesis of Morpholinoamido- and Ester-Disubstituted ε-Caprolactones and Their Ring-Opening (Co)Polymerization
by Maria Orehova, Ema Žagar and David Pahovnik
Materials 2025, 18(17), 4067; https://doi.org/10.3390/ma18174067 - 30 Aug 2025
Viewed by 616
Abstract
The development of hydrophilic biodegradable polymers is crucial for a range of biomedical applications, including targeted drug delivery and prosthetics. Ring-opening polymerization of substituted ε-caprolactone monomers provides an efficient method for the synthesis of polyesters with tailored properties. In this work, a synthetic [...] Read more.
The development of hydrophilic biodegradable polymers is crucial for a range of biomedical applications, including targeted drug delivery and prosthetics. Ring-opening polymerization of substituted ε-caprolactone monomers provides an efficient method for the synthesis of polyesters with tailored properties. In this work, a synthetic approach for the preparation of ester- and morpholinoamido-disubstituted ε-caprolactone monomers was developed. Poorly defined polymers were obtained from the monomers, bearing two ester groups due to the competitive transesterification of the pendant substituents. On the other hand, the disubstituted morpholinoamido-ε-caprolactone was polymerized in a controlled manner by ring-opening polymerization, and amorphous homopolymers with a high glass transition temperature (112 °C) and good solubility in water were obtained. Statistical and block copolymers with the unsubstituted ε-caprolactone were also prepared, and DLS analysis of the amphiphilic block copolymers in water shows the presence of self-assembled particles. These results demonstrate the potential of morpholinoamido-functionalized ε-caprolactone derivatives as building blocks for the development of biodegradable polymeric materials for biomedical applications. Full article
(This article belongs to the Section Polymeric Materials)
Show Figures

Graphical abstract

21 pages, 2709 KB  
Article
New Generation Antibiotics Derived from DABCO-Based Cationic Polymers
by Betul Zehra Temur, Ilay Ceren Cetinkaya, Merve Acikel Elmas, Nihan Unubol, Serap Arbak, Tanil Kocagoz, Tarik Eren and Ozge Can
Antibiotics 2025, 14(9), 856; https://doi.org/10.3390/antibiotics14090856 - 25 Aug 2025
Viewed by 789
Abstract
Background/Objectives: The growing threat of antibiotic resistance necessitates the development of novel antimicrobial agents that effectively target pathogenic microorganisms while minimizing toxicity. Methods: Two series DABCO-based cationic homopolymers (D-subs 1kDa, D-subs 5kDa, D-subs 15kDa) and DABCO–pyridinium-based copolymers (PyH-subs 5kDa_Dsubs 5kDa, PyH-subs [...] Read more.
Background/Objectives: The growing threat of antibiotic resistance necessitates the development of novel antimicrobial agents that effectively target pathogenic microorganisms while minimizing toxicity. Methods: Two series DABCO-based cationic homopolymers (D-subs 1kDa, D-subs 5kDa, D-subs 15kDa) and DABCO–pyridinium-based copolymers (PyH-subs 5kDa_Dsubs 5kDa, PyH-subs 7kDa_Dsubs 3kDa, PyH-subs 3kDa_Dsubs 7kDa) were synthesized to mimic to host-defense cationic peptides via ring-opening metathesis polymerization (ROMP). The antimicrobial activities of these polymers were determined by their minimum inhibitory concentrations (MICs) against E. coli (Gram-negative bacteria), P. aeruginosa (Gram-negative bacteria), S. aureus (Gram-positive bacteria), and C. albicans (fungus). In vitro cytotoxicity assays revealed selective toxicity towards bacterial cells, with high selectivity indices for several copolymers. To gain insight into the mechanism of action, morphological changes in S. aureus upon exposure to D-subs 1kDa were examined using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results: The D-subs 15kDa homopolymer demonstrated the highest overall antimicrobial activity, particularly against S. aureus (MIC: 8 µg/mL), with all polymers exhibiting minimal hemolytic activity (HC50 ≥ 1024 µg/mL). SEM and TEM results revealed membrane disruption indicative of polymer–bacteria interactions. Additionally, stability studies confirmed polymer integrity under physiological conditions for at least 28 days. Conclusions: These results support the potential of DABCO-based cationic polymers as a promising platform for next-generation antimicrobial therapeutics. Full article
(This article belongs to the Section Novel Antimicrobial Agents)
Show Figures

Figure 1

18 pages, 1160 KB  
Review
Machine Learning for the Optimization of the Bioplastics Design
by Neelesh Ashok, Pilar Garcia-Diaz, Marta E. G. Mosquera and Valentina Sessini
Macromol 2025, 5(3), 38; https://doi.org/10.3390/macromol5030038 - 14 Aug 2025
Viewed by 776
Abstract
Biodegradable polyesters have gained attention due to their sustainability benefits, considering the escalating environmental challenges posed by synthetic polymers. Advances in artificial intelligence (AI), including machine learning (ML) and deep learning (DL), are expected to significantly accelerate research in polymer science. This review [...] Read more.
Biodegradable polyesters have gained attention due to their sustainability benefits, considering the escalating environmental challenges posed by synthetic polymers. Advances in artificial intelligence (AI), including machine learning (ML) and deep learning (DL), are expected to significantly accelerate research in polymer science. This review article explores “bio” polymer informatics by harnessing insights from the AI techniques used to predict structure–property relationships and to optimize the synthesis of bioplastics. This review also discusses PolyID, a machine learning-based tool that employs message-passing graph neural networks to provide a framework capable of accelerating the discovery of bioplastics. An extensive literature review is conducted on explainable AI (XAI) and generative AI techniques, as well as on benchmarking data repositories in polymer science. The current state-of-the art in ML methods for ring-opening polymerizations and the synthesizability of biodegradable polyesters is also presented. This review offers an in-depth insight and comprehensive knowledge of current AI-based models for polymerizations, molecular descriptors, structure–property relationships, predictive modeling, and open-source benchmarked datasets for sustainable polymers. This study serves as a reference and provides critical insights into the capabilities of AI for the accelerated design and discovery of green polymers aimed at achieving a sustainable future. Full article
Show Figures

Figure 1

16 pages, 1084 KB  
Article
Zinc Complexes of Guanidine– and Amidine–Phenolate Ligands for the Ring-Opening Polymerization of Lactide
by Víctor Flores-Romero, Jesse LeBlanc and Gino G. Lavoie
Inorganics 2025, 13(8), 265; https://doi.org/10.3390/inorganics13080265 - 13 Aug 2025
Viewed by 577
Abstract
A series of Zn complexes containing guanidine– and amidine–phenolate ligands were synthesized and evaluated as catalysts for the polymerization of rac-lactide at 130 °C, under solvent-free conditions, giving rate constants in the range of 0.71–4.37 × 10–4 s–1. Polymerization [...] Read more.
A series of Zn complexes containing guanidine– and amidine–phenolate ligands were synthesized and evaluated as catalysts for the polymerization of rac-lactide at 130 °C, under solvent-free conditions, giving rate constants in the range of 0.71–4.37 × 10–4 s–1. Polymerization under identical conditions with the guanidine– and amidine–phenol proligands themselves used as catalysts gave values in the range of 0.30–2.45 × 10–4 s–1. The stereoselective production of polylactic acid from either the Zn complexes or the proligands was limited (Pr = 0.47–0.62). The molecular weight of the polymers was lower than expected for living polymerizations due to chain transfer and/or transesterification but were comparable to those obtained in control experiments with Sn(Oct)2. Full article
(This article belongs to the Section Organometallic Chemistry)
Show Figures

Graphical abstract

Back to TopTop