Synthesis of Linear and Branched Polycarbonate Polyols via Double Metal Cyanide-Catalyzed Ring-Opening (Co)polymerization of Epoxides
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of DMC Catalyst
2.3. Semi-Batch ROP of PO
2.4. Batch ROP of Epoxides
2.5. Copolymerization of CO2 and Epoxides
2.6. Characterization
3. Results and Discussion
3.1. Characterization of DMC Catalysts
3.2. Synthesis of Polyether Polyols
3.3. Synthesis of Poly(ether carbonate) Polyols
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sawyer, J.S. Man-made Carbon Dioxide and the “Greenhouse” Effect. Nature 1972, 239, 3–26. [Google Scholar] [CrossRef]
- Omae, I. Aspects of carbon dioxide utilization. Catal. Today 2006, 115, 33–52. [Google Scholar] [CrossRef]
- Yuan, Q.; Cai, X.; Ding, W.; Zhu, Y. Recent advances in N-formylation reaction for the chemical recycling of carbon dioxide. Green Chem. 2024, 26, 11106–11124. [Google Scholar] [CrossRef]
- Ye, R.P.; Ding, J.; Gong, W.; Argyle, M.D.; Zhong, Q.; Wang, Y.; Russell, C.K.; Xu, Z.; Russell, A.G.; Li, Q.; et al. CO(2) hydrogenation to high-value products via heterogeneous catalysis. Nat. Commun. 2019, 10, 5698. [Google Scholar] [CrossRef]
- Zhu, S.; Li, N.; Zhang, D.; Yan, T. Metal/oxide heterostructures derived from Prussian blue analogues for efficient photocatalytic CO2 hydrogenation to hydrocarbons. J. CO2 Util. 2022, 64, 102177. [Google Scholar] [CrossRef]
- Inoue, S.; Koinuma, H.; Tsuruta, T. Copolymerization of carbon dioxide and epoxide with organometallic compounds. Die Makromol. Chem. 1969, 130, 210–220. [Google Scholar] [CrossRef]
- Yan, T.; Liu, H.; Zeng, Z.X.; Pan, W.G. Recent progress of catalysts for synthesis of cyclic carbonates from CO2 and epoxides. J. CO2 Util. 2023, 68, 102355. [Google Scholar] [CrossRef]
- Tran, C.H.; Choi, H.-K.; Lee, E.-G.; Moon, B.-R.; Song, W.; Kim, I. Prussian blue analogs as catalysts for the fixation of CO2 to glycidol to produce glycerol carbonate and multibranched polycarbonate polyols. J. CO2 Util. 2023, 74, 102530. [Google Scholar] [CrossRef]
- Zou, C.; Zhou, Q.; Wang, X.; Zhang, H.; Wang, F. Cationic polyurethane from CO2-polyol as an effective barrier binder for polyaniline-based metal anti-corrosion materials. Polym. Chem. 2021, 12, 1950–1956. [Google Scholar] [CrossRef]
- Inoue, S.; Koinuma, H.; Tsuruta, T. Copolymerization of carbon dioxide and epoxide. J. Polym. Sci. Part B Polym. Lett. 1969, 7, 287–292. [Google Scholar] [CrossRef]
- Comin, E.; de Souza, R.F.; Bernardo-Gusmão, K. Effect of imidazolium ionic liquids anions on copolymerization of CO2 with cyclohexene oxide by CrIII(Salen)Cl. Catal. Today 2017, 289, 115–120. [Google Scholar] [CrossRef]
- Seo, Y.H.; Hyun, Y.B.; Lee, H.J.; Lee, H.C.; Lee, J.H.; Jeong, S.M.; Lee, B.Y. CO2/Propylene Oxide Copolymerization with a Bifunctional Catalytic System Composed of Multiple Ammonium Salts and a Salen Cobalt Complex Containing Sulfonate Anions. Macromol. Res. 2021, 29, 855–863. [Google Scholar] [CrossRef]
- Yang, Y.; Lee, J.D.; Seo, Y.H.; Chae, J.-H.; Bang, S.; Cheong, Y.-J.; Lee, B.Y.; Lee, I.-H.; Son, S.U.; Jang, H.-Y. Surface activated zinc-glutarate for the copolymerization of CO2 and epoxides. Dalton Trans. 2022, 51, 16620–16627. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, W.; Ding, H.; Wen, Y.; Guo, K.; Duan, Z.; Liu, B. Construction of Polycarbonates with Pendant Multifunctional Groups via a One-Step CO2/ Diepoxide Copolymerization Approach. Biomacromolecules 2024, 25, 2925–2933. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Sung, K.; Lee, J.D.; Ha, J.; Kim, H.; Baek, J.; Seo, J.H.; Kim, S.-J.; Lee, B.Y.; Son, S.U.; et al. Ultrathin Zn-Gallate Catalyst: A Remarkable Performer in CO2 and Propylene Oxide Polymerization. ACS Sustain. Chem. Eng. 2024, 12, 3933–3940. [Google Scholar] [CrossRef]
- Li, G.; Dong, S.; Fu, P.; Yue, Q.; Zhou, Y.; Wang, J. Synthesis of porous poly(ionic liquid)s for chemical CO2 fixation with epoxides. Green Chem. 2022, 24, 3433–3460. [Google Scholar] [CrossRef]
- Beyzavi, H.; Klet, R.C.; Tussupbayev, S.; Borycz, J.; Vermeulen, N.A.; Cramer, C.J.; Stoddart, J.F.; Hupp, J.T.; Farha, O.K. A hafnium-based metal-organic framework as an efficient and multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activation. J. Am. Chem. Soc. 2014, 136, 15861–15864. [Google Scholar] [CrossRef]
- Liu, X.-F.; Song, Q.-W.; Zhang, S.; He, L.-N. Hydrogen bonding-inspired organocatalysts for CO2 fixation with epoxides to cyclic carbonates. Catal. Today 2016, 263, 69–74. [Google Scholar] [CrossRef]
- Della Monica, F.; Buonerba, A.; Capacchione, C. Homogeneous Iron Catalysts in the Reaction of Epoxides with Carbon Dioxide. Adv. Synth. Catal. 2018, 361, 265–282. [Google Scholar] [CrossRef]
- Sugimoto, H.; Goto, H.; Honda, S.; Yamada, R.; Manabe, Y.; Handa, S. Synthesis of four- and six-armed star-shaped polycarbonates by immortal alternating copolymerization of CO2 and propylene oxide. Polym. Chem. 2016, 7, 3906–3912. [Google Scholar] [CrossRef]
- Mbabazi, R.; Wendt, O.F.; Allan Nyanzi, S.; Naziriwo, B.; Tebandeke, E. Advances in carbon dioxide and propylene oxide copolymerization to form poly(propylene carbonate) over heterogeneous catalysts. Results Chem. 2022, 4, 100542. [Google Scholar] [CrossRef]
- Li, X.; Duan, R.-L.; Hu, C.-Y.; Pang, X.; Deng, M.-X. Copolymerization of lactide, epoxides and carbon dioxide: A highly efficient heterogeneous ternary catalyst system. Polym. Chem. 2021, 12, 1700–1706. [Google Scholar] [CrossRef]
- Seo, Y.H.; Lee, M.R.; Lee, D.Y.; Park, J.H.; Seo, H.J.; Park, S.U.; Kim, H.; Kim, S.J.; Lee, B.Y. Preparation of Well-Defined Double-Metal Cyanide Catalysts for Propylene Oxide Polymerization and CO(2) Copolymerization. Inorg. Chem. 2024, 63, 1414–1426. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Fan, T.; Yang, Z.; Yu, R.; Zeng, X.; Xu, Y.; Zhang, M.; Hu, H.; Ou, J.Z.; Zheng, L. Crystal phase-driven copolymerization of CO2 and cyclohexene oxide in Prussian blue analogue nanosheets. Appl. Mater. Today 2022, 26, 101352. [Google Scholar] [CrossRef]
- Matthes, R.; Bapp, C.; Wagner, M.; Zarbakhsh, S.; Frey, H. Unexpected Random Copolymerization of Propylene Oxide with Glycidyl Methyl Ether via Double Metal Cyanide Catalysis: Introducing Polarity in Polypropylene Oxide. Macromolecules 2021, 54, 11228–11237. [Google Scholar] [CrossRef]
- Milgrom, J. Method of Making a Polyether Using a Double Metal Cyanide Complex Compound; General Tire & Rubber Company: Akron, OH, USA, 1966. [Google Scholar]
- Sebastian, J.; Srinivas, D. Novel application of a Fe-Zn double-metal cyanide catalyst in the synthesis of biodegradable, hyperbranched polymers. Chem. Commun. 2011, 47, 10449–10451. [Google Scholar] [CrossRef]
- Gu, Y.; Dong, X. Novel application of double metal cyanide in the synthesis of hyperbranched polyether polyols. Des. Monomers Polym. 2012, 16, 72–78. [Google Scholar] [CrossRef]
- Tran, C.-H.; Lee, M.-W.; Park, S.-W.; Jeong, J.-E.; Lee, S.-J.; Song, W.; Huh, P.; Kim, I. Heterogeneous Double Metal Cyanide Catalyzed Synthesis of Poly(ε-caprolactone) Polyols for the Preparation of Thermoplastic Elastomers. Catalysts 2021, 11, 1033. [Google Scholar] [CrossRef]
- Liu, Z.-H.; Li, Y.; Zhang, C.-J.; Zhang, Y.-Y.; Cao, X.-H.; Zhang, X.-H. Synthesis of high-molecular-weight poly(ε-caprolactone) via heterogeneous zinc-cobalt(III) double metal cyanide complex. Giant 2020, 3, 100030. [Google Scholar] [CrossRef]
- Tran, C.H.; Moon, B.-R.; Heo, J.-Y.; Kim, S.-Y.; Park, J.-H.; Jae, W.-S.; Kim, I. Synthesis of α,ω-Primary Hydroxyl-Terminated Polyether Polyols Using Prussian Blue Analogs as Catalysts. Top. Catal. 2025, 68, 1084–1093. [Google Scholar] [CrossRef]
- Srivastava, R.; Srinivas, D.; Ratnasamy, P. Fe–Zn double-metal cyanide complexes as novel, solid transesterification catalysts. J. Catal. 2006, 241, 34–44. [Google Scholar] [CrossRef]
- Yan, F.; Yuan, Z.; Lu, P.; Luo, W.; Yang, L.; Deng, L. Fe–Zn double-metal cyanide complexes catalyzed biodiesel production from high-acid-value oil. Renew. Energy 2011, 36, 2026–2031. [Google Scholar] [CrossRef]
- Satyarthi, J.K.; Srinivas, D.; Ratnasamy, P. Influence of Surface Hydrophobicity on the Esterification of Fatty Acids over Solid Catalysts. Energy Fuels 2010, 24, 2154–2161. [Google Scholar] [CrossRef]
- Marquez, C.; Rivera-Torrente, M.; Paalanen, P.P.; Weckhuysen, B.M.; Cirujano, F.G.; De Vos, D.; De Baerdemaeker, T. Increasing the availability of active sites in Zn-Co double metal cyanides by dispersion onto a SiO2 support. J. Catal. 2017, 354, 92–99. [Google Scholar] [CrossRef]
- Peeters, A.; Valvekens, P.; Vermoortele, F.; Ameloot, R.; Kirschhock, C.; De Vos, D. Lewis acid double metal cyanide catalysts for hydroamination of phenylacetylene. Chem. Commun. 2011, 47, 4114–4116. [Google Scholar] [CrossRef]
- Peeters, A.; Valvekens, P.; Ameloot, R.; Sankar, G.; Kirschhock, C.E.A.; De Vos, D.E. Zn–Co Double Metal Cyanides as Heterogeneous Catalysts for Hydroamination: A Structure–Activity Relationship. ACS Catal. 2013, 3, 597–607. [Google Scholar] [CrossRef]
- Patil, M.V.; Yadav, M.K.; Jasra, R.V. Prins condensation for synthesis of nopol from β-pinene and paraformaldehyde on novel Fe–Zn double metal cyanide solid acid catalyst. J. Mol. Catal. A Chem. 2007, 273, 39–47. [Google Scholar] [CrossRef]
- García-Ortiz, A.; Grirrane, A.; Reguera, E.; García, H. Mixed (Fe2+ and Cu2+) double metal hexacyanocobaltates as solid catalyst for the aerobic oxidation of oximes to carbonyl compounds. J. Catal. 2014, 311, 386–392. [Google Scholar] [CrossRef]
- Zhang, X.-H.; Hua, Z.-J.; Chen, S.; Liu, F.; Sun, X.-K.; Qi, G.-R. Role of zinc chloride and complexing agents in highly active double metal cyanide catalysts for ring-opening polymerization of propylene oxide. Appl. Catal. A Gen. 2007, 325, 91–98. [Google Scholar] [CrossRef]
- Marquez, C.; Simonov, A.; Wharmby, M.T.; Van Goethem, C.; Vankelecom, I.; Bueken, B.; Krajnc, A.; Mali, G.; De Vos, D.; De Baerdemaeker, T. Layered Zn2[Co(CN)6](CH3COO) double metal cyanide: A two-dimensional DMC phase with excellent catalytic performance. Chem. Sci. 2019, 10, 4868–4875. [Google Scholar] [CrossRef]
- Seo, Y.H.; Hyun, Y.B.; Lee, H.J.; Baek, J.W.; Lee, H.C.; Lee, J.H.; Lee, J.; Lee, B.Y. Preparation of double-metal cyanide catalysts with H3Co(CN)6 for propylene oxide homo- and CO2-copolymerization. J. CO2 Util. 2021, 53, 101755. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Li, X.; Chen, Q.; Kang, M.; Li, Q.; Wang, J. Modification of the Zn–Co double metal cyanide complex for the synthesis of carbon dioxide–derived poly(ether–carbonate) polyols. J. CO2 Util. 2024, 82, 102768. [Google Scholar] [CrossRef]
- Park, S.U.; Seo, Y.H.; Lee, M.R.; Park, J.Y.; Seo, H.I.; Seo, S.; Lee, B.Y. Preparation of double-metal cyanide catalysts incorporating ZnOAc and ZnOtBu components for propylene oxide/CO2 copolymerization. Dalton Trans. 2025. [Google Scholar] [CrossRef] [PubMed]
- Penche, G.; González-Marcos, M.P.; González-Velasco, J.R.; Vos, C.W.; Kozak, C.M. Two-dimensional (2D) layered double metal cyanides as alternative catalysts for CO2/propylene oxide copolymerization. Catal. Sci. Technol. 2023, 13, 5214–5226. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, Y.; Yang, Y.; Yang, H.; Yang, Z.; Wang, S.; Li, W.; Sun, Y.; Huang, J.; Luo, Y.; et al. Dynamic Phase Transformations of Prussian Blue Analogue Crystals in Hydrotherms. J. Am. Chem. Soc. 2024, 146, 16659–16669. [Google Scholar] [CrossRef]
- Maeng, H.J.; Kim, D.-H.; Kim, N.-W.; Ruh, H.; Lee, D.K.; Yu, H. Synthesis of spherical Prussian blue with high surface area using acid etching. Curr. Appl. Phys. 2018, 18, S21–S27. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Ogata, F.; Nakamura, T.; Kawasaki, N. Synthesis of novel zeolites produced from fly ash by hydrothermal treatment in alkaline solution and its evaluation as an adsorbent for heavy metal removal. J. Environ. Chem. Eng. 2020, 8, 103687. [Google Scholar] [CrossRef]
- He, F.; Li, J.; Li, T.; Li, G. Solvothermal synthesis of mesoporous TiO2: The effect of morphology, size and calcination progress on photocatalytic activity in the degradation of gaseous benzene. Chem. Eng. J. 2014, 237, 312–321. [Google Scholar] [CrossRef]
- Wei, H.; Zhang, Q.; Zhang, Y.; Yang, Z.; Zhu, A.; Dionysiou, D.D. Enhancement of the Cr(VI) adsorption and photocatalytic reduction activity of g-C3N4 by hydrothermal treatment in HNO3 aqueous solution. Appl. Catal. A Gen. 2016, 521, 9–18. [Google Scholar] [CrossRef]
- Huo, Y.; Xiu, S.; Meng, L.-Y.; Quan, B. Solvothermal synthesis and applications of micro/nano carbons: A review. Chem. Eng. J. 2023, 451, 138572. [Google Scholar] [CrossRef]
- Kong, B.; Selomulya, C.; Zheng, G.; Zhao, D. New faces of porous Prussian blue: Interfacial assembly of integrated hetero-structures for sensing applications. Chem. Soc. Rev. 2015, 44, 7997–8018. [Google Scholar] [CrossRef]
- Kim, I.; Ahn, J.-T.; Ha, C.S.; Yang, C.S.; Park, I. Polymerization of propylene oxide by using double metal cyanide catalysts and the application to polyurethane elastomer. Polymer 2003, 44, 3417–3428. [Google Scholar] [CrossRef]
- ASTM E1899-97; Standard Test Method for Hydroxyl Groups Using Reaction with p-Toluenesulfonyl Isocyanate (TSI) and Potentiometric Titration with Tetrabutylammonium Hydroxide. ASTM International: West Conshohocken, PA, USA, 1997. [CrossRef]
- ASTM D4671-05; Standard Test Methods for Polyurethane Raw Materials: Determination of Unsaturation of Polyols. ASTM International: West Conshohocken, PA, USA, 2005.
- Tran, C.H.; Pham, L.T.T.; Lee, Y.; Jang, H.B.; Kim, S.; Kim, I. Mechanistic Insights on Zn(II)–Co(III) Double Metal Cyanide-Catalyzed Ring-Opening Polymerization of Epoxides. J. Catal. 2019, 372, 86–102. [Google Scholar] [CrossRef]
- Sunder, A.; Hanselmann, R.; Frey, H.; Lhaupt, R.M. Controlled Synthesis of Hyperbranched Polyglycerols by Ring-Opening Multibranching Polymerization. Macromolecules 1999, 32, 4240–4246. [Google Scholar] [CrossRef]
Catalyst | Formula a | Crystal Structure b | SBET c (m2 g−1) | Vp d (cm3 g−1) | Dp e (nm) |
---|---|---|---|---|---|
DMC-1 | Zn1.40Co(CN)5.64·2.13H2O·1.21Cl− | cubic | 40 | 0.07 | 2.8 |
HDMC | Zn1.71Co(CN)6.53·0.12PL·1.10H2O·1.13Cl− | cubic + hexagonal | 354 | 0.14 | 3.9 |
DMC-TBA | Zn2.01Co(CN)6.41·0.53TBA·0.02PL·0.58H2O·0.29Cl− | amorphous | 245 | 0.10 | 4.7 |
Run a | Monomer | mPPG initiator (g) | tp (h) | Yield (%) | Mn (g mol−1) | Ð | b |
---|---|---|---|---|---|---|---|
1 c | PO | 20 | 0.5 | 99.0 | 6000 | 1.15 | 2.15 |
2 | PO | 0.2 | 0.5 | 99.0 | 3200 | 1.15 | 2.26 |
3 | EB | 0.2 | 0.5 | 97.8 | 3400 | 1.17 | 2.21 |
4 | SO | 0.2 | 1 | 94.4 | 6800 | 1.25 | 2.08 |
5 | ECH | 0.2 | 2 | 86.1 | 1300 | 1.16 | 0.23 |
6 | G | - | 6 | 90.9 | 2900 | 1.33 | 11.5 |
Run a | Epoxide | Toluene (mL) | TP (°C) | (MPa) | Catalytic Activity | Polymer Properties | ||||
---|---|---|---|---|---|---|---|---|---|---|
Conv. (%) | Yield (%) | b (%) | Mn (g mol−1) | Ð | DB c | |||||
1 d | PO | 10 | 105 | 3 | 97.5 | 63.4 | 40.1 | 2400 | 1.83 | 0.00 |
2 | G | 10 | 110 | 2 | 84.3 | 47.8 | 22.8 | 1380 | 1.72 | 0.18 |
3 | G | 10 | 120 | 2 | 90.3 | 44.4 | 32.7 | 1150 | 1.49 | 0.14 |
4 | G | 10 | 130 | 2 | 90.7 | 50.0 | 21.6 | 2120 | 1.90 | 0.19 |
5 | G | 10 | 140 | 2 | 92.4 | 62.7 | 18.4 | 1340 | 1.50 | 0.19 |
6 | G | 10 | 120 | 1 | 87.2 | 70.2 | 18.3 | 1100 | 1.45 | 0.20 |
7 | G | 10 | 120 | 1.5 | 90.2 | 58.4 | 25.6 | 1220 | 1.56 | 0.17 |
8 | G | 10 | 120 | 2.5 | 90.7 | 33.2 | 25.9 | 1670 | 1.77 | 0.21 |
9 | G | 10 | 120 | 3 | 91.1 | 29.5 | 23.1 | 1400 | 1.68 | 0.19 |
10 | G | 0 | 120 | 2 | 93.8 | 62.5 | 25.8 | 1030 | 1.10 | 0.17 |
11 | G | 5 | 120 | 2 | 92.4 | 47.6 | 28.1 | 1080 | 1.22 | 0.17 |
12 | G | 20 | 120 | 2 | 80.6 | 64.2 | 14.2 | 1120 | 2.01 | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jae, W.S.; Choi, H.-K.; Lee, H.S.; Tran, C.H.; Tran, C.L.H.; Trinh, K.A.; Kim, I. Synthesis of Linear and Branched Polycarbonate Polyols via Double Metal Cyanide-Catalyzed Ring-Opening (Co)polymerization of Epoxides. Polymers 2025, 17, 2458. https://doi.org/10.3390/polym17182458
Jae WS, Choi H-K, Lee HS, Tran CH, Tran CLH, Trinh KA, Kim I. Synthesis of Linear and Branched Polycarbonate Polyols via Double Metal Cyanide-Catalyzed Ring-Opening (Co)polymerization of Epoxides. Polymers. 2025; 17(18):2458. https://doi.org/10.3390/polym17182458
Chicago/Turabian StyleJae, Won Seok, Ha-Kyung Choi, Han Su Lee, Chinh Hoang Tran, Chi Le Hoang Tran, Khoa Anh Trinh, and Il Kim. 2025. "Synthesis of Linear and Branched Polycarbonate Polyols via Double Metal Cyanide-Catalyzed Ring-Opening (Co)polymerization of Epoxides" Polymers 17, no. 18: 2458. https://doi.org/10.3390/polym17182458
APA StyleJae, W. S., Choi, H.-K., Lee, H. S., Tran, C. H., Tran, C. L. H., Trinh, K. A., & Kim, I. (2025). Synthesis of Linear and Branched Polycarbonate Polyols via Double Metal Cyanide-Catalyzed Ring-Opening (Co)polymerization of Epoxides. Polymers, 17(18), 2458. https://doi.org/10.3390/polym17182458