Biodegradable Zwitterionic PLA-Based Nanoparticles: Design and Evaluation for pH-Responsive Tumor-Targeted Drug Delivery
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Zwitterionic PLA/PEAd-SBMA Copolymers
2.2.1. Synthesis of PEAd
2.2.2. Synthesis of PLA/PEAd Copolymers
2.2.3. Grafting of SBMA Monomer
2.3. Preparation of PTX-Loaded Nanoparticles
2.4. Characterization Methods
2.4.1. Attenuated Total Reflection Fourier Transform Infrared (ATR-FTIR) Spectroscopy
2.4.2. X-Ray Diffractometry (XRD)
2.4.3. Differential Scanning Calorimetry (DSC)
2.4.4. Thermogravimetric Analysis (TGA)
2.4.5. Gel Permeation Chromatoy (GPC)
2.4.6. In Vitro Enzymatic Degradation Testing
2.4.7. Water Contact Angle
2.4.8. Particle Size and ζ-Potential Estimation (DLS)
2.4.9. Scanning Electron Microscopy (SEM)8
2.4.10. Drug Loading and in Vitro Drug Release Studies
2.4.11. Evaluation of Hemocompatibility
2.4.12. In Vitro Cytotoxicity and Cell Viability
3. Results and Discussion
3.1. Characterization of the Zwitterionic Copolymers
3.1.1. Structural Characterization (ATR-FTIR, GPC)
3.1.2. Crystallinity and Thermal Properties (XRD, DSC, TGA)
3.1.3. In Vitro Degradation Under Physiological and Acidic Conditions
3.1.4. Wettability Measurements
3.2. Characterization of the PTX-Loaded Zwitterionic Nanoparticles
3.2.1. Structural and Morphological Characterization (FTIR, SEM)
3.2.2. Particle Size Analysis
3.2.3. Crystalline Structure and Thermal Analysis
3.2.4. pH-Responsive Drug Release Profiles
3.3. Evaluation of Biocompatibility
3.3.1. Hemocompatibility Assessment
3.3.2. In Vitro Cytotoxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pridgen, E.M.; Langer, R.; Farokhzad, O.C. Biodegradable, Polymeric Nanoparticle Delivery Systems for Cancer Therapy. Nanomedicine 2007, 2, 669–680. [Google Scholar] [CrossRef]
- Gagliardi, A.; Giuliano, E.; Venkateswararao, E.; Fresta, M.; Bulotta, S.; Awasthi, V.; Cosco, D. Biodegradable Polymeric Nanoparticles for Drug Delivery to Solid Tumors. Front. Pharmacol. 2021, 12, 601626. [Google Scholar] [CrossRef]
- Karlsson, J.; Vaughan, H.J.; Green, J.J. Biodegradable Polymeric Nanoparticles for Therapeutic Cancer Treatments. Annu. Rev. Chem. Biomol. Eng. 2018, 9, 105–127. [Google Scholar] [CrossRef]
- Yadav, S.; Sharma, A.K.; Kumar, P. Nanoscale Self-Assembly for Therapeutic Delivery. Front. Bioeng. Biotechnol. 2020, 8, 127. [Google Scholar] [CrossRef] [PubMed]
- Ulery, B.D.; Nair, L.S.; Laurencin, C.T. Biomedical Applications of Biodegradable Polymers. J. Polym. Sci. B Polym. Phys. 2011, 49, 832–864. [Google Scholar] [CrossRef]
- Calzoni, E.; Cesaretti, A.; Polchi, A.; Di Michele, A.; Tancini, B.; Emiliani, C. Biocompatible Polymer Nanoparticles for Drug Delivery Applications in Cancer and Neurodegenerative Disorder Therapies. J. Funct. Biomater. 2019, 10, 4. [Google Scholar] [CrossRef] [PubMed]
- Kuperkar, K.; Atanase, L.I.; Bahadur, A.; Crivei, I.C.; Bahadur, P. Degradable Polymeric Bio (Nano) Materials and Their Biomedical Applications: A Comprehensive Overview and Recent Updates. Polymers 2024, 16, 206. [Google Scholar] [CrossRef]
- Han, S.; Wu, J. Recent Advances of Poly (Ester Amide) s-Based Biomaterials. Biomacromolecules 2022, 23, 1892–1919. [Google Scholar] [PubMed]
- Cohen-Arazi, N.; Domb, A.J.; Katzhendler, J. New Biocompatible Polyesters Derived from α-Amino Acids: Hydrolytic Degradation Behavior. Polymers 2010, 2, 418–439. [Google Scholar] [CrossRef]
- Grigore, M.E.; Grigorescu, R.M.; Iancu, L.; Ion, R.-M.; Zaharia, C.; Andrei, E.R. Methods of Synthesis, Properties and Biomedical Applications of Polyhydroxyalkanoates: A Review. J. Biomater. Sci. Polym. Ed. 2019, 30, 695–712. [Google Scholar] [CrossRef]
- Ansari, S.; Sami, N.; Yasin, D.; Ahmad, N.; Fatma, T. Biomedical Applications of Environmental Friendly Poly-Hydroxyalkanoates. Int. J. Biol. Macromol. 2021, 183, 549–563. [Google Scholar] [CrossRef]
- Tang, R.; Palumbo, R.N.; Ji, W.; Wang, C. Poly (Ortho Ester Amides): Acid-Labile Temperature-Responsive Copolymers for Potential Biomedical Applications. Biomacromolecules 2009, 10, 722–727. [Google Scholar] [CrossRef]
- Woodard, L.N.; Grunlan, M.A. Hydrolytic Degradation and Erosion of Polyester Biomaterials. ACS Macro Lett. 2018, 7, 976–982. [Google Scholar] [CrossRef]
- Samantaray, P.K.; Little, A.; Haddleton, D.M.; McNally, T.; Tan, B.; Sun, Z.; Huang, W.; Ji, Y.; Wan, C. Poly (Glycolic Acid) (PGA): A Versatile Building Block Expanding High Performance and Sustainable Bioplastic Applications. Green Chem. 2020, 22, 4055–4081. [Google Scholar] [CrossRef]
- Jain, R.A. The Manufacturing Techniques of Various Drug Loaded Biodegradable Poly (Lactide-Co-Glycolide) (PLGA) Devices. Biomaterials 2000, 21, 2475–2490. [Google Scholar] [CrossRef]
- Pandey, A.; Jain, D.S. Poly Lactic-Co-Glycolic Acid (PLGA) Copolymer and Its Pharmaceutical Application. In Handbook of Polymers for Pharmaceutical Technologies: Processing and Applications; Wiley Online Library: Hoboken, NJ, USA, 2015; Volume 2, pp. 151–172. [Google Scholar]
- Vlachopoulos, A.; Karlioti, G.; Balla, E.; Daniilidis, V.; Kalamas, T.; Stefanidou, M.; Bikiaris, N.D.; Christodoulou, E.; Koumentakou, I.; Karavas, E. Poly (Lactic Acid)-Based Microparticles for Drug Delivery Applications: An Overview of Recent Advances. Pharmaceutics 2022, 14, 359. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, N.; Misra, M.; Mohanty, A.K. Durable Polylactic Acid (PLA)-Based Sustainable Engineered Blends and Biocomposites: Recent Developments, Challenges, and Opportunities. ACS Eng. Au 2021, 1, 7–38. [Google Scholar] [CrossRef]
- Tsachouridis, K.; Christodoulou, E.; Zamboulis, A.; Michopoulou, A.; Barmpalexis, P.; Bikiaris, D.N. Evaluation of Poly (Lactic Acid)/and Poly (Lactic-Co-Glycolic Acid)/Poly (Ethylene Adipate) Copolymers for the Preparation of Paclitaxel Loaded Drug Nanoparticles. J. Drug Deliv. Sci. Technol. 2022, 77, 103918. [Google Scholar] [CrossRef]
- Klonos, P.A.; Lazaridou, M.; Samiotaki, C.; Kyritsis, A.; Bikiaris, D.N. Dielectric and Calorimetric Study in Renewable Polymer Blends Based on Poly (Ethylene Adipate) and Poly (Lactic Acid) with Microphase Separation. Polymer 2022, 259, 125329. [Google Scholar] [CrossRef]
- Dai, L.; Liu, J.; Luo, Z.; Li, M.; Cai, K. Tumor Therapy: Targeted Drug Delivery Systems. J. Mater. Chem. B 2016, 4, 6758–6772. [Google Scholar] [CrossRef]
- Zhu, D.; Tao, W.; Zhang, H.; Liu, G.; Wang, T.; Zhang, L.; Zeng, X.; Mei, L. Docetaxel (DTX)-Loaded Polydopamine-Modified TPGS-PLA Nanoparticles as a Targeted Drug Delivery System for the Treatment of Liver Cancer. Acta Biomater. 2016, 30, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Yang, W.-W.; Xu, D.-G. Stimuli-Responsive Nanoscale Drug Delivery Systems for Cancer Therapy. J. Drug Target. 2019, 27, 423–433. [Google Scholar] [CrossRef]
- Manjappa, A.S.; Kumbhar, P.S.; Patil, A.B.; Disouza, J.I.; Patravale, V.B. Polymeric Mixed Micelles: Improving the Anticancer Efficacy of Single-Copolymer Micelles. Crit. Rev. Ther. Drug Carrier Syst. 2019, 36, 1–58. [Google Scholar] [CrossRef] [PubMed]
- Deirram, N.; Zhang, C.; Kermaniyan, S.S.; Johnston, A.P.R.; Such, G.K. PH-responsive Polymer Nanoparticles for Drug Delivery. Macromol. Rapid Commun. 2019, 40, 1800917. [Google Scholar] [CrossRef] [PubMed]
- Dararatana, N.; Seidi, F.; Hamel, J.; Crespy, D. Controlling Release Kinetics of PH-Responsive Polymer Nanoparticles. Polym. Chem. 2020, 11, 1752–1762. [Google Scholar] [CrossRef]
- Kim, H.; Sehgal, D.; Kucaba, T.A.; Ferguson, D.M.; Griffith, T.S.; Panyam, J. Acidic PH-Responsive Polymer Nanoparticles as a TLR7/8 Agonist Delivery Platform for Cancer Immunotherapy. Nanoscale 2018, 10, 20851–20862. [Google Scholar] [CrossRef]
- Srivastava, N.; Choudhury, A.R. Stimuli-Responsive Polysaccharide-Based Smart Hydrogels and Their Emerging Applications. Ind. Eng. Chem. Res. 2022, 62, 841–866. [Google Scholar] [CrossRef]
- Qu, K.; Yuan, Z.; Wang, Y.; Song, Z.; Gong, X.; Zhao, Y.; Mu, Q.; Zhan, Q.; Xu, W.; Wang, L. Structures, Properties, and Applications of Zwitterionic Polymers. ChemPhysMater 2022, 1, 294–309. [Google Scholar] [CrossRef]
- Lv, W.; Wang, Y.; Fu, H.; Liang, Z.; Huang, B.; Jiang, R.; Wu, J.; Zhao, Y. Recent Advances of Multifunctional Zwitterionic Polymers for Biomedical Application. Acta Biomater. 2024, 181, 19–45. [Google Scholar] [CrossRef]
- Sienkiewicz, A.; Czub, P. Antifouling, Antibacterial, and Bioactive Polymer Coatings. In Polymer Coatings: Technologies and Applications; CRC Press: Boca Raton, FL, USA, 2020; pp. 269–286. [Google Scholar]
- Jin, Q.; Chen, Y.; Wang, Y.; Ji, J. Zwitterionic Drug Nanocarriers: A Biomimetic Strategy for Drug Delivery. Colloids Surf. B Biointerfaces 2014, 124, 80–86. [Google Scholar] [CrossRef]
- Xing, C.-M.; Meng, F.-N.; Quan, M.; Ding, K.; Dang, Y.; Gong, Y.-K. Quantitative Fabrication, Performance Optimization and Comparison of PEG and Zwitterionic Polymer Antifouling Coatings. Acta Biomater. 2017, 59, 129–138. [Google Scholar] [CrossRef]
- Singh, M.; Tarannum, N. Polyzwitterions. In Engineering of Biomaterials for Drug Delivery Systems; Elsevier: Amsterdam, The Netherlands, 2018; pp. 69–101. [Google Scholar]
- Kim, I.; Kang, S.M. Formation of Amphiphilic Zwitterionic Thin Poly (SBMA-Co-TFEMA) Brushes on Solid Surfaces for Marine Antifouling Applications. Langmuir 2024, 40, 3213–3221. [Google Scholar]
- Lazaridou, M.; Nanaki, S.; Zamboulis, A.; Papoulia, C.; Chrissafis, K.; Klonos, P.A.; Kyritsis, A.; Vergkizi-Nikolakaki, S.; Kostoglou, M.; Bikiaris, D.N. Super Absorbent Chitosan-Based Hydrogel Sponges as Carriers for Caspofungin Antifungal Drug. Int. J. Pharm. 2021, 606, 120925. [Google Scholar] [CrossRef] [PubMed]
- Balla, E.; Zamboulis, A.; Klonos, P.; Kyritsis, A.; Barmpalexis, P.; Bikiaris, D.Ν. Synthesis of Novel Interpenetrated Network for Ocular Co-Administration of Timolol Maleate and Dorzolamide Hydrochloride Drugs. Int. J. Pharm. 2023, 646, 123439. [Google Scholar] [CrossRef] [PubMed]
- Nanaki, S.; Viziridou, A.; Zamboulis, A.; Kostoglou, M.; Papageorgiou, G.Z.; Bikiaris, D.N. New Biodegradable Poly (l-Lactide)-Block-Poly (Propylene Adipate) Copolymer Microparticles for Long-Acting Injectables of Naltrexone Drug. Polymers 2020, 12, 852. [Google Scholar] [PubMed]
- Karava, V.; Siamidi, A.; Vlachou, M.; Christodoulou, E.; Zamboulis, A.; Bikiaris, D.N.; Kyritsis, A.; Klonos, P.A. Block Copolymers Based on Poly (Butylene Adipate) and Poly (l-Lactic Acid) for Biomedical Applications: Synthesis, Structure and Thermodynamical Studies. Soft Matter 2021, 17, 2439–2453. [Google Scholar] [CrossRef]
- Wu, Z.; Gan, Z.; Chen, B.; Chen, F.; Cao, J.; Luo, X. PH/Redox Dual-Responsive Amphiphilic Zwitterionic Polymers with a Precisely Controlled Structure as Anti-Cancer Drug Carriers. Biomater. Sci. 2019, 7, 3190–3203. [Google Scholar] [CrossRef]
- Tsamesidis, I.; Pouroutzidou, G.K.; Lymperaki, E.; Kazeli, K.; Lioutas, C.B.; Christodoulou, E.; Perio, P.; Reybier, K.; Pantaleo, A.; Kontonasaki, E. Effect of Ion Doping in Silica-Based Nanoparticles on the Hemolytic and Oxidative Activity in Contact with Human Erythrocytes. Chem. Biol. Interact. 2020, 318, 108974. [Google Scholar]
- Coudane, J.; Van Den Berghe, H.; Mouton, J.; Garric, X.; Nottelet, B. Poly(Lactic Acid)-Based Graft Copolymers: Syntheses Strategies and Improvement of Properties for Biomedical and Environmentally Friendly Applications: A Review. Molecules 2022, 27, 4135. [Google Scholar] [CrossRef]
- Boyer, C.; Corrigan, N.A.; Jung, K.; Nguyen, D.; Nguyen, T.-K.; Adnan, N.N.M.; Oliver, S.; Shanmugam, S.; Yeow, J. Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper (0) Mediated Polymerization): From Fundamentals to Bioapplications. Chem. Rev. 2016, 116, 1803–1949. [Google Scholar] [CrossRef]
- Su, L.; Zou, J.; Dong, S.; Hao, N.; Xu, H. Influence of Different β-Nucleation Agents on Poly (l-Lactic Acid): Structure, Morphology, and Dynamic Mechanical Behavior. RSC Adv. 2017, 7, 55364–55370. [Google Scholar] [CrossRef]
- Von Burkersroda, F.; Schedl, L.; Opferich, A.G. Why Degradable Polymers Undergo Surface Erosion or Bulk Erosion. Biomaterials 2002, 23, 4221–4231. [Google Scholar] [CrossRef]
- Limsukon, W.; Rubino, M.; Rabnawaz, M.; Lim, L.T.; Auras, R. Hydrolytic Degradation of Poly(Lactic Acid): Unraveling Correlations between Temperature and the Three Phase Structures. Polym. Degrad. Stab. 2023, 217, 110537. [Google Scholar] [CrossRef]
- Deshoulles, Q.; Gall, M.L.; Benali, S.; Raquez, J.M.; Dreanno, C.; Arhant, M.; Priour, D.; Cerantola, S.; Stoclet, G.; Gac, P.Y.L. Hydrolytic Degradation of Biodegradable Poly(Butylene Adipate-Co-Terephthalate) (PBAT)—Towards an Understanding of Microplastics Fragmentation. Polym. Degrad. Stab. 2022, 205, 110122. [Google Scholar] [CrossRef]
- Schlenoff, J.B. Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption. Langmuir 2014, 30, 9625–9636. [Google Scholar] [CrossRef]
- Cui, J.; Chen, Z.; Lin, Y. Accelerated Hydrolytic Degradation of Poly (l-Lactide) by Blending with Poly (Ether-Block-Amide). Int. J. Biol. Macromol. 2024, 278, 135053. [Google Scholar]
- Salmaso, S.; Caliceti, P. Stealth Properties to Improve Therapeutic Efficacy of Drug Nanocarriers. J. Drug Deliv. 2013, 2013, 374252. [Google Scholar] [CrossRef] [PubMed]
- Wen, P.; Ke, W.; Dirisala, A.; Toh, K.; Tanaka, M.; Li, J. Stealth and Pseudo-Stealth Nanocarriers. Adv. Drug Deliv. Rev. 2023, 198, 114895. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, E.; Nerantzaki, M.; Nanaki, S.; Barmpalexis, P.; Anastasiou, A.D.; Bikiaris, D.N. Paclitaxel Magnetic Core-Shell Nanoparticles Based on Poly(Lactic Acid) Semitelechelic Novel Block Copolymers for Combined Hyperthermia and Chemotherapy Treatment of Cancer. Pharmaceutics 2019, 11, 213. [Google Scholar] [CrossRef]
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chem. Rev. 2016, 116, 2602–2663. [Google Scholar] [CrossRef]
- Kuddushi, M.; Kanike, C.; Xu, B.B.; Zhang, X. Recent Advances in Nanoprecipitation: From Mechanistic Insights to Applications in Nanomaterial Synthesis. Soft Matter 2025, 21, 2759–2781. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, X.; Liu, Y.; Zheng, K.; Pang, Z.; Peng, S. Recent Advances in Zwitterionic Nanoscale Drug Delivery Systems to Overcome Biological Barriers. Asian J. Pharm. Sci. 2024, 19, 100883. [Google Scholar] [CrossRef] [PubMed]
- de la Harpe, K.M.; Kondiah, P.P.D.; Choonara, Y.E.; Marimuthu, T.; du Toit, L.C.; Pillay, V. The Hemocompatibility of Nanoparticles: A Review of Cell–Nanoparticle Interactions and Hemostasis. Cells 2019, 8, 1209. [Google Scholar] [CrossRef]
- Thomas, J.; Kumar, V.; Sharma, N.; John, N.; Umesh, M.; Huligowda, L.K.D.; Kaur, K.; Utreja, D. Recent Approaches in Nanotoxicity Assessment for Drug Delivery Applications: Challenges and Prospects. Med. Drug Discov. 2025, 25, 100204. [Google Scholar] [CrossRef]
Sample | Mn (g/mol) | Mw (g/mol) | PDI |
---|---|---|---|
PLA-SBMA | 4400 | 5600 | 1.28 |
PLAPEAd9505-SBMA | 4900 | 6700 | 1.38 |
PLAPEAd9010-SBMA | 3200 | 3800 | 1.17 |
PLAPEAd7525-SBMA | 4500 | 6600 | 1.48 |
NPs Sample | pH Value | ||
---|---|---|---|
7.4 | 6.5 | 5.0 | |
PLA-SBMA | 220 ± 24 | 242 ± 32 | 215 ± 18 |
PLAPEAd9505-SBMA | 268 ± 33 | 283 ± 41 | 245 ± 26 |
PLAPEAd9010-SBMA | 565 ± 48 | 608 ± 39 | 271 ± 34 |
PLAPEAd7525-SBMA | 476 ± 29 | 524 ± 49 | 247 ± 21 |
NPs Sample | % Drug Loading | % EE |
---|---|---|
PLA-SBMA | 14.2 ± 0.86 | 58.3 ± 2.41 |
PLAPEAd9505-SBMA | 12.78 ± 1.24 | 42.6 ± 1.85 |
PLAPEAd9010-SBMA | 13.41 ± 0.92 | 49.7 ± 1.43 |
PLAPEAd7525-SBMA | 9.83 ± 1.58 | 33.9 ± 1.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Christodoulou, E.; Tsimpolis, A.; Theodorakis, K.; Axypolitou, S.; Tsamesidis, I.; Kontonasaki, E.; Pavlidou, E.; Bikiaris, D.N. Biodegradable Zwitterionic PLA-Based Nanoparticles: Design and Evaluation for pH-Responsive Tumor-Targeted Drug Delivery. Polymers 2025, 17, 2495. https://doi.org/10.3390/polym17182495
Christodoulou E, Tsimpolis A, Theodorakis K, Axypolitou S, Tsamesidis I, Kontonasaki E, Pavlidou E, Bikiaris DN. Biodegradable Zwitterionic PLA-Based Nanoparticles: Design and Evaluation for pH-Responsive Tumor-Targeted Drug Delivery. Polymers. 2025; 17(18):2495. https://doi.org/10.3390/polym17182495
Chicago/Turabian StyleChristodoulou, Evi, Alexandros Tsimpolis, Konstantinos Theodorakis, Styliani Axypolitou, Ioannis Tsamesidis, Eleana Kontonasaki, Eleni Pavlidou, and Dimitrios N. Bikiaris. 2025. "Biodegradable Zwitterionic PLA-Based Nanoparticles: Design and Evaluation for pH-Responsive Tumor-Targeted Drug Delivery" Polymers 17, no. 18: 2495. https://doi.org/10.3390/polym17182495
APA StyleChristodoulou, E., Tsimpolis, A., Theodorakis, K., Axypolitou, S., Tsamesidis, I., Kontonasaki, E., Pavlidou, E., & Bikiaris, D. N. (2025). Biodegradable Zwitterionic PLA-Based Nanoparticles: Design and Evaluation for pH-Responsive Tumor-Targeted Drug Delivery. Polymers, 17(18), 2495. https://doi.org/10.3390/polym17182495