Synthesis and Characterization of Curcumin-Polycaprolactone Block Copolymers for Biomedical Applications
Abstract
1. Introduction
2. Material and Methods
2.1. Materials
2.2. Preparation of Maleic Anhydride Modified Curcumin (MC)
2.3. Preparation of Maleic Anhydride Modified Curcumin–PCL (MCP)
2.4. Preparation of MCP-Metal Complexes
2.5. Electrospinning of PCL, MCP and MCP-Based Composite
2.6. Structural Characterization by FTIR and 1H NMR
2.7. Thermal and Spectroscopic Characterization
2.8. Antioxidant Analysis
- ○
- For Cur, MC and MCP
- ○
- For MCP-based composite electrospun films
2.9. Scanning Electron Microscope (SEM) Analysis
2.10. Biological Evaluation of MCP Electrospun Films
2.10.1. Alamar Blue Assay
2.10.2. MTS Assay
2.11. Scratch Assay for Cell Migration of MCP Electrospun Films
2.12. UV Blocking Test of MCP Electrospun Films
2.13. Systemic Toxicity Assessment in Galleria Mellonella Model of MCP-Based Composite Electrospun Films
2.14. Contact Toxicity Assay in Galleria Mellonella Model of MCP-Based Composite Electrospun Films
2.15. Modified Disk Diffusion Assay of MCP-Based Composite Electrospun Films
2.16. Antibiofilm Activity Measurement (Modified A.D.A.M. Assay) of MCP-Based Composite Electrospun Films
2.17. Bacterial Adhesion Assay via TTC Reduction of MCP-Based Composite Electrospun Films
2.18. Fabrication of Maleic Anhydride Modified Curcumin–PCL Scaffolds
2.19. Statistical Analysis
3. Results and Discussion
3.1. Synthesis and Structural Characterization of MC and MCP
3.2. Spectroscopic and Thermal Characterization of MCP
3.3. Morphologies of MCP Electrospun Fibers
3.4. Biocompatibility and Cell Migration of MCP Electrospun Fibers
3.5. UV-Block Capability of MCP Electrospun Fibers
3.6. Antioxidant Assay
3.7. Systemic and Contact Toxicity Evaluation of MCP-Based Composite Electrospun Films
3.8. Evaluation of Antimicrobial Activity and Bacterial Adherence of MCP-Based Composite Electrospun Films
3.9. MCP Scaffold Fabrication
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, S.; Yu, J.-M.; Gan, Y.-C.; Qiu, X.-Z.; Gao, Z.-C.; Wang, H.; Chen, S.-X.; Xiong, Y.; Liu, G.-H.; Lin, S.-E. Biomimetic natural biomaterials for tissue engineering and regenerative medicine: New biosynthesis methods, recent advances, and emerging applications. Mil. Med. Res. 2023, 10, 16. [Google Scholar] [CrossRef]
- Bello, A.B.; Kim, D.; Kim, D.; Park, H.; Lee, S.-H. Engineering and functionalization of gelatin biomaterials: From cell culture to medical applications. Tissue Eng. Part B Rev. 2020, 26, 164–180. [Google Scholar] [CrossRef]
- Ullah, S.; Chen, X. Fabrication, applications and challenges of natural biomaterials in tissue engineering. Appl. Mater. Today 2020, 20, 100656. [Google Scholar] [CrossRef]
- Christman, K.L. Biomaterials for tissue repair. Science 2019, 363, 340–341. [Google Scholar] [CrossRef]
- Nasiri, S.S.; Ahmadi, Z.; Afshar-Taromi, F. Synthesis biomaterials in biomedical applications. In Functional Biomaterials: Drug Delivery and Biomedical Applications; Springer: Berlin/Heidelberg, Germany, 2022; pp. 285–317. [Google Scholar]
- Han, J.; Tian, Y.; Jeon, I. Natural and Nature-Inspired Biomaterial Additives for Metal Halide Perovskite Optoelectronics. Adv. Mater. 2025, 37, 2410327. [Google Scholar] [CrossRef]
- Bolívar-Monsalve, E.J.; Alvarez, M.M.; Hosseini, S.; Espinosa-Hernandez, M.A.; Ceballos-González, C.F.; Sanchez-Dominguez, M.; Shin, S.R.; Cecen, B.; Hassan, S.; Di Maio, E. Engineering bioactive synthetic polymers for biomedical applications: A review with emphasis on tissue engineering and controlled release. Mater. Adv. 2021, 2, 4447–4478. [Google Scholar] [CrossRef]
- Fang, T.; Wen, J.; Zhou, J.; Shao, Z.; Dong, J. Poly (ε-caprolactone) coating delays vancomycin delivery from porous chitosan/β-tricalcium phosphate composites. J. Biomed. Mater. Res. Part B Appl. Biomater. 2012, 100, 1803–1811. [Google Scholar] [CrossRef]
- Soares, Í.; Faria, J.; Marques, A.; Ribeiro, I.A.C.; Baleizão, C.; Bettencourt, A.; Ferreira, I.M.M.; Baptista, A.C. Drug Delivery from PCL/Chitosan Multilayer Coatings for Metallic Implants. ACS Omega 2022, 7, 23096–23106. [Google Scholar] [CrossRef]
- Song, P.; Jiang, S.; Ren, Y.; Zhang, X.; Qiao, T.; Song, X.; Liu, Q.; Chen, X. Synthesis and characterization of tannin grafted polycaprolactone. J. Colloid Interface Sci. 2016, 479, 160–164. [Google Scholar] [CrossRef]
- Staffa, L.H.; Huysecom, A.-S.; Bettini, S.H.P.; Moldenaers, P.; Chinelatto, M.A. Effect of molecular structure of PEG/PCL multiblock copolymers on the morphology and interfacial properties of PLA/PCL blends. J. Polym. Res. 2022, 29, 388. [Google Scholar] [CrossRef]
- Tian, J.; Yang, Y.; Song, J. Grafting polycaprolactone onto alkaline lignin for improved compatibility and processability. Int. J. Biol. Macromol. 2019, 141, 919–926. [Google Scholar] [CrossRef]
- Arghavani, P.; Behjati Hosseini, S.; Moosavi-Movahedi, F.; Karami, S.; Edrisi, M.; Azadi, M.; Azadarmaki, S.; Moosavi-Movahedi, A.A. In situ nanoencapsulation of curcumin in soy protein isolate amyloid-like aggregates for enhanced wound healing. ACS Appl. Mater. Interfaces 2024, 16, 30997–31010. [Google Scholar] [CrossRef]
- Liu, H.; Jin, L.; Zhu, S.; Wu, S.; Mao, C.; Wang, C.; Zheng, Y.; Li, Z.; Jiang, H.; Cui, Z. Interfacial electronic modulation on polyaniline/curcumin fiber for photo-powered rapid wound healing. Nano Today 2024, 57, 102397. [Google Scholar] [CrossRef]
- Zoi, V.; Galani, V.; Tsekeris, P.; Kyritsis, A.P.; Alexiou, G.A. Radiosensitization and radioprotection by curcumin in glioblastoma and other cancers. Biomedicines 2022, 10, 312. [Google Scholar] [CrossRef] [PubMed]
- Bhagat, K.K.; Cheke, R.S.; Gavali, V.D.; Kharkar, P.S.; Arote, N.D. A brief review on metal-curcumin complexes: Synthesis approaches and their pharmaceutical applications. Discov. Chem. 2025, 2, 119. [Google Scholar] [CrossRef]
- Boschetto, F.; Honma, T.; Adachi, T.; Kanamura, N.; Zhu, W.; Yamamoto, T.; Marin, E.; Pezzotti, G. Development and evaluation of osteogenic PMMA bone cement composite incorporating curcumin for bone repairing. Mater. Today Chem. 2023, 27, 101307. [Google Scholar] [CrossRef]
- Prasad, S.; DuBourdieu, D.; Srivastava, A.; Kumar, P.; Lall, R. Metal–curcumin complexes in therapeutics: An approach to enhance pharmacological effects of curcumin. Int. J. Mol. Sci. 2021, 22, 7094. [Google Scholar] [CrossRef]
- Barik, A.; Mishra, B.; Shen, L.; Mohan, H.; Kadam, R.; Dutta, S.; Zhang, H.-Y.; Priyadarsini, K.I. Evaluation of a new copper (II)–curcumin complex as superoxide dismutase mimic and its free radical reactions. Free Radic. Biol. Med. 2005, 39, 811–822. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, A.; Bose, S. Zinc curcumin complex on fluoride doped hydroxyapatite with enhanced biological properties for dental and orthopedic applications. J. Mater. Res. 2022, 37, 2009–2020. [Google Scholar] [CrossRef]
- Su, J.; Cai, Y.; Zhi, Z.; Guo, Q.; Mao, L.; Gao, Y.; Yuan, F.; Van der Meeren, P. Assembly of propylene glycol alginate/β-lactoglobulin composite hydrogels induced by ethanol for co-delivery of probiotics and curcumin. Carbohydr. Polym. 2021, 254, 117446. [Google Scholar] [CrossRef]
- Farooq, S.; Ahmad, M.I.; Ali, U.; Zhang, H. Fabrication of curcumin-loaded oleogels using camellia oil bodies and gum arabic/chitosan coatings for controlled release applications. Int. J. Biol. Macromol. 2024, 254, 127758. [Google Scholar] [CrossRef]
- Rahaman, S.M.; Dutta, G.; Biswas, R.; Sugumaran, A.; Salem, M.M.; Gamal, M.; Abdelrahman, M.; Salem-Bekhit, M.M. Succinyl Curcumin Conjugated Chitosan Polymer-Prodrug Nanomicelles: A Potential Treatment for Type-II Diabetes in Diabetic Balb/C Mice. Acta Chim. Slov. 2024, 71, 421–435. [Google Scholar] [CrossRef]
- He, Y.; Chen, J.; Rafique, I.; Lu, Z. Star-shaped polycaprolactone bearing mussel-inspired catechol end-groups as a promising bio-adhesive. Eur. Polym. J. 2020, 139, 110025. [Google Scholar] [CrossRef]
- Zioło, A.; Mossety-Leszczak, B.; Walczak, M.; Strachota, B.; Strachota, A.; Awsiuk, K.; Janiszewska, N.; Raczkowska, J. Synthesis and morphology characteristics of new highly branched polycaprolactone PCL. Molecules 2024, 29, 991. [Google Scholar] [CrossRef] [PubMed]
- Bicer, N.; Yildiz, E.; Yegani, A.A.; Aksu, F. Synthesis of curcumin complexes with iron(iii) and manganese(ii), and effects of curcumin–iron(iii) on Alzheimer’s disease. New J. Chem. 2018, 42, 8098–8104. [Google Scholar] [CrossRef]
- Sun, M.; Wang, Y.; Huang, A.; Tian, Y.; Yang, R.; Wang, H.; Zhao, X.; Song, X. Naturally flavonoid-derived PVA nanofibers for antioxidation. New J. Chem. 2023, 47, 14046–14055. [Google Scholar] [CrossRef]
- Siminska-Stanny, J.; Hobbi, P.; Ghaffari-Bohlouli, P.; Li, M.; Junka, A.; Jafari, H.; Delporte, C.; Nie, L.; Shavandi, A. Borax- and tannic acid-based post-3D-printing treatment to tune the mechanical properties of scaffolds. Biomater. Sci. 2025, 13, 3689–3706. [Google Scholar] [CrossRef]
- Benassi, R.; Ferrari, E.; Lazzari, S.; Spagnolo, F.; Saladini, M. Theoretical study on Curcumin: A comparison of calculated spectroscopic properties with NMR, UV–vis and IR experimental data. J. Mol. Struct. 2008, 892, 168–176. [Google Scholar] [CrossRef]
- Barros, C.H.; Devlin, H.; Hiebner, D.W.; Vitale, S.; Quinn, L.; Casey, E. Enhancing curcumin’s solubility and antibiofilm activity via silica surface modification. Nanoscale Adv. 2020, 2, 1694–1708. [Google Scholar] [CrossRef] [PubMed]
- Prasad, C.; Bhatia, E.; Banerjee, R. Curcumin Encapsulated Lecithin Nanoemulsions: An Oral Platform for Ultrasound Mediated Spatiotemporal Delivery of Curcumin to the Tumor. Sci. Rep. 2020, 10, 8587. [Google Scholar] [CrossRef]
- Abedi, R.; Maher, B.M.; Amirkhani, L.; Rezaei, M.; Jamshidi, S. The relationship between chemical microstructure, crystallinity, mechanical properties, and CO2/N2 gases permselectivity of thermoplastic polyurethane membranes. Colloid Polym. Sci. 2024, 302, 1081–1095. [Google Scholar] [CrossRef]
- Mazİ, H.; SurmelİHİNdİ, B. Temperature and Ph-sensıtıve Super absorbent Polymers based on Modıfıed Maleıc Anhydrıde. J. Chem. Sci. 2021, 133, 10. [Google Scholar] [CrossRef]
- Sclavons, M.; Franquinet, P.; Carlier, V.; Verfaillie, G.; Fallais, I.; Legras, R.; Laurent, M.; Thyrion, F.C. Quantification of the maleic anhydride grafted onto polypropylene by chemical and viscosimetric titrations, and FTIR spectroscopy. Polymer 2000, 41, 1989–1999. [Google Scholar] [CrossRef]
- Pan, Y.; Li, X.-M.; Meng, R.; Zhang, B. Stability and bioaccessibility of curcumin emulsions stabilized by casein hydrolysates after maleic anhydride acylation and pullulan glycation. J. Dairy Sci. 2021, 104, 8425–8438. [Google Scholar] [CrossRef]
- Faham, S.; Ghavami, R.; Golmohammadi, H.; Khayatian, G. Spectrophotometric and visual determination of zoledronic acid by using a bacterial cell-derived nanopaper doped with curcumin. Microchim. Acta 2019, 186, 719. [Google Scholar] [CrossRef]
- Elbialy, N.S.; Abdelfatah, E.A.; Khalil, W.A. Antitumor Activity of Curcumin-Green Synthesized Gold Nanoparticles: In Vitro Study. BioNanoScience 2019, 9, 813–820. [Google Scholar] [CrossRef]
- Singh, N.; Batra, U.; Kumar, K.; Mahapatro, A. Evaluation of corrosion resistance, mechanical integrity loss and biocompatibility of PCL/HA/TiO2 hybrid coated biodegradable ZM21 Mg alloy. J. Magnes. Alloys 2022, 10, 3179–3204. [Google Scholar] [CrossRef]
- Badri, W.; Miladi, K.; Robin, S.; Viennet, C.; Nazari, Q.A.; Agusti, G.; Fessi, H.; Elaissari, A. Polycaprolactone Based Nanoparticles Loaded with Indomethacin for Anti-Inflammatory Therapy: From Preparation to Ex Vivo Study. Pharm. Res. 2017, 34, 1773–1783. [Google Scholar] [CrossRef]
- de Souza Morais, D.D.; Luna, C.B.B.; Bezerra, E.B.; de França, D.C.; Araújo, E.M.; do Nascimento, E.P.; de Oliveira, A.D.; de Mélo, T.J.A. Performance of poly (caprolactone)(pcl) as an impact modifier for polystyrene (ps): Effect of functionalized compatibilizers with maleic anhydride and glycidyl methacrylate. Sustainability 2022, 14, 9254. [Google Scholar] [CrossRef]
- Solomakha, O.; Stepanova, M.; Gofman, I.; Nashchekina, Y.; Rabchinskii, M.; Nashchekin, A.; Lavrentieva, A.; Korzhikova-Vlakh, E. Composites Based on Poly (ε-caprolactone) and Graphene Oxide Modified with Oligo/Poly (Glutamic Acid) as Biomaterials with Osteoconductive Properties. Polymers 2023, 15, 2714. [Google Scholar] [CrossRef] [PubMed]
- Al-Thubaiti, E.H. Antibacterial and antioxidant activities of curcumin/Zn metal complex with its chemical characterization and spectroscopic studies. Heliyon 2023, 9, e17468. [Google Scholar] [CrossRef] [PubMed]
- Patra, D.; Barakat, C. Synchronous fluorescence spectroscopic study of solvatochromic curcumin dye. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 79, 1034–1041. [Google Scholar] [CrossRef]
- Barik, A.; Mishra, B.; Kunwar, A.; Kadam, R.M.; Shen, L.; Dutta, S.; Padhye, S.; Satpati, A.K.; Zhang, H.-Y.; Priyadarsini, K.I. Comparative study of copper (II)–curcumin complexes as superoxide dismutase mimics and free radical scavengers. Eur. J. Med. Chem. 2007, 42, 431–439. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, C.; Shi, H.; Yang, M.; Liu, Y.; Ji, P.; Chen, H.; Tan, R.X.; Li, E. Curcumin is a biologically active copper chelator with antitumor activity. Phytomedicine 2016, 23, 1–8. [Google Scholar] [CrossRef]
- Wu, X.; Vedelaar, T.; Li, R.; Schirhagl, R.; Kamperman, M.; Włodarczyk-Biegun, M.K. Melt electrowritten scaffolds containing fluorescent nanodiamonds for improved mechanical properties and degradation monitoring. Bioprinting 2023, 32, e00288. [Google Scholar] [CrossRef]
- Kang, J.; Beers, K.J. Effect of temperature and water on microphase separation of PCL–PEO–PCL triblock copolymers. Polym. Bull. 2009, 63, 723–734. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, R.; Shi, H.; Li, X.; Li, Y.; Taha, A.; Xu, C. Protective effect of curcumin against ultraviolet A irradiation-induced photoaging in human dermal fibroblasts. Mol. Med. Rep. 2018, 17, 7227–7237. [Google Scholar] [CrossRef]
- Botalo, A.; Inprasit, T.; Ummartyotin, S.; Chainok, K.; Vatthanakul, S.; Pisitsak, P. Smart and UV-resistant edible coating and films based on alginate, whey protein, and curcumin. Polymers 2024, 16, 447. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xu, H.; Li, M.; Li, Z.; Zhang, H.; Guo, B.; Zhang, J. Antibacterial Conductive UV-Blocking Adhesion Hydrogel Dressing with Mild On-Demand Removability Accelerated Drug-Resistant Bacteria-Infected Wound Healing. ACS Appl. Mater. Interfaces 2022, 14, 41726–41741. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Qin, Y.; Zhang, X.; Sun, L.; Chang, J. Seeking materials from nature for interrupting eye damage: Ultraviolet to blue light blocking clear cellulose films enabled by curcumin. Int. J. Biol. Macromol. 2024, 279, 135325. [Google Scholar] [CrossRef] [PubMed]
- Martakov, I.S.; Shevchenko, O.G. Synthesis and enhanced antioxidant and membrane-protective activity of curcumin@AlOOH nanoparticles. J. Inorg. Biochem. 2020, 210, 111168. [Google Scholar] [CrossRef] [PubMed]
- Goupy, P.; Dufour, C.; Loonis, M.; Dangles, O. Quantitative Kinetic Analysis of Hydrogen Transfer Reactions from Dietary Polyphenols to the DPPH Radical. J. Agric. Food Chem. 2003, 51, 615–622. [Google Scholar] [CrossRef]
- Zhou, Y.; Tang, R.-C. Modification of curcumin with a reactive UV absorber and its dyeing and functional properties for silk. Dyes Pigment. 2016, 134, 203–211. [Google Scholar] [CrossRef]
- Jha, N.S.; Mishra, S.; Jha, S.K.; Surolia, A. Antioxidant activity and electrochemical elucidation of the enigmatic redox behavior of curcumin and its structurally modified analogues. Electrochim. Acta 2015, 151, 574–583. [Google Scholar] [CrossRef]
- Su, C.; Wang, X.; Deng, Y.; Min, D.; Fang, G.; Huang, C. The Enhancement Origin of Antioxidant Property of Carboxylated Lignin Isolated from Herbaceous Biomass Using the Maleic Acid Hydrotropic Fractionation. Int. J. Mol. Sci. 2024, 25, 9257. [Google Scholar] [CrossRef]
- Sharma, P.K.; Choudhury, D.; Karanwad, T.; Mohapatra, P.; Murty, U.S.; Banerjee, S. Curcumin nanoparticles as a multipurpose additive to achieve high-fidelity SLA-3D printing and controlled delivery. Biomater. Adv. 2023, 153, 213527. [Google Scholar] [CrossRef]
- Pitarresi, G.; Tripodo, G.; Cavallaro, G.; Palumbo, F.; Giammona, G. Inulin-iron complexes: A potential treatment of iron deficiency anaemia. Eur. J. Pharm. Biopharm. 2008, 68, 267–276. [Google Scholar] [CrossRef]
- Takahashi, A. Role of Zinc and Copper in Erythropoiesis in Patients on Hemodialysis. J. Ren. Nutr. 2022, 32, 650–657. [Google Scholar] [CrossRef]
Sample | DPPH Scavenging Activity (%) | SD | Interpretation |
---|---|---|---|
Curcumin | 69.9 | 2.3 | Strong scavenging relative to MCP composites |
MC | 88.1 | 0.7 | Strong scavenging (approaching control) |
MCP | 41.7 | 0.5 | Moderate scavenging activity |
Ascorbic acid | 94.3 | 1.2 | Positive control |
PVA | 4.7 | 0.5 | Negligible scavenging |
PVA-MCP | 6.2 | 0.4 | Negligible scavenging |
PVA-MCP-Cu | 13.1 | 0.8 | Weak scavenging activity |
PVA-MCP-Fe | 12.6 | 1.0 | Weak scavenging activity |
DPPH alone | 0.0 | 0.0 | Negative control |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, Q.; Junka, A.; Dudek, B.; Alimoradi, H.; Simińska-Stanny, J.; Nie, L.; Okoro, O.V.; Shavandi, A. Synthesis and Characterization of Curcumin-Polycaprolactone Block Copolymers for Biomedical Applications. Materials 2025, 18, 4348. https://doi.org/10.3390/ma18184348
Wei Q, Junka A, Dudek B, Alimoradi H, Simińska-Stanny J, Nie L, Okoro OV, Shavandi A. Synthesis and Characterization of Curcumin-Polycaprolactone Block Copolymers for Biomedical Applications. Materials. 2025; 18(18):4348. https://doi.org/10.3390/ma18184348
Chicago/Turabian StyleWei, Qianqian, Adam Junka, Bartlomiej Dudek, Houman Alimoradi, Julia Simińska-Stanny, Lei Nie, Oseweuba Valentine Okoro, and Armin Shavandi. 2025. "Synthesis and Characterization of Curcumin-Polycaprolactone Block Copolymers for Biomedical Applications" Materials 18, no. 18: 4348. https://doi.org/10.3390/ma18184348
APA StyleWei, Q., Junka, A., Dudek, B., Alimoradi, H., Simińska-Stanny, J., Nie, L., Okoro, O. V., & Shavandi, A. (2025). Synthesis and Characterization of Curcumin-Polycaprolactone Block Copolymers for Biomedical Applications. Materials, 18(18), 4348. https://doi.org/10.3390/ma18184348