New Generation Antibiotics Derived from DABCO-Based Cationic Polymers
Abstract
1. Introduction
2. Results
2.1. Characterization of Polymers
2.2. Removal of Residual Ruthenium (Ru) from Polymers
2.3. Antimicrobial Activity of Polymers
2.4. Evaluation of Hemolytic Activity and Toxicity Profiles of Antimicrobial Polymers
2.5. Stability Profiles of Polymers
2.6. Morphological Evaluation of S. aureus (SEM)
2.7. Ultrastructural Evaluation of S. aureus (TEM)
3. Discussion
4. Materials and Methods
4.1. Materials
4.1.1. Instruments
4.1.2. Monomer and Polymer Synthesis
4.1.3. Bacterial Strains and Cells
4.1.4. In Vitro Experiments
4.2. Methods
4.2.1. Monomer and Polymer Synthesis
4.2.2. Removal of Residual Ruthenium from Polymers
4.2.3. Minimum Inhibitory Concentration of Antimicrobial Polymers
4.2.4. Hemolytic Activity of Antimicrobial Polymers
4.2.5. Toxicity Profiles of Antimicrobial Polymers
4.2.6. Stability Profiles of Antimicrobial Polymers
4.2.7. Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MIC | Minimal Inhibitory Concentration |
SEM | Scanning Electron Microscopy |
TEM | Transmission Electron Microscopy |
DMF | Dimethylformamide |
MHA | Mueller–Hinton Agar |
References
- Baker, R.E.; Mahmud, A.S.; Miller, I.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang, L.-F.; et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 2022, 20, 193–205. [Google Scholar] [CrossRef]
- Urban-Chmiel, R.; Marek, A.; Stepien-Pysniak, D.; Wieczorek, K.; Nowaczek, A.; Osek, J. Antibiotic resistance in bacteria—A review. Antibiotics 2022, 11, 1079. [Google Scholar] [CrossRef]
- Alanis, A.J. Resistance to antibiotics: Are we in the post-antibiotic era? Arch. Med. Res. 2005, 36, 697–705. [Google Scholar] [CrossRef] [PubMed]
- European Academies Science Advisory Council. Healthcare-Associated Infections: The View from EASAC. 2009. Available online: www.hpa.org.uk (accessed on 24 June 2025).
- World Health Organization. WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; WHO: Geneva, Switzerland, 2024. [Google Scholar]
- Uddin, T.M.; Chakraborty, A.J.; Khusro, A.; Zidan, B.R.M.; Mitra, S.; Bin Emran, T.; Dhama, K.; Ripon, K.H.; Gajdács, M.; Sahibzada, M.U.K.; et al. Antibiotic resistance in microbes: History, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health 2021, 14, 1750–1766. [Google Scholar] [CrossRef]
- Karampatakis, T.; Tsergouli, K.; Behzadi, P. Carbapenem-Resistant Klebsiella pneumoniae: Virulence Factors, Molecular Epidemiology and Latest Updates in Treatment Options. Antibiotics 2023, 12, 234. [Google Scholar] [CrossRef]
- Gadar, K.; McCarthy, R.R. Using next generation antimicrobials to target the mechanisms of infection. NPJ Antimicrob. Resist. 2023, 1, 1–14. [Google Scholar] [CrossRef]
- Hetta, H.F.; Sirag, N.; Alsharif, S.M.; Alharbi, A.A.; Alkindy, T.T.; Alkhamali, A.; Albalawi, A.S.; Ramadan, Y.N.; Rashed, Z.I.; Alanazi, F.E. Antimicrobial Peptides: The Game-Changer in the Epic Battle Against Multidrug-Resistant Bacteria. Pharmaceuticals 2024, 17, 1555. [Google Scholar] [CrossRef]
- Islam, T.; Tamanna, N.T.; Sagor, M.S.; Zaki, R.M.; Rabbee, M.F.; Lackner, M. Antimicrobial Peptides: A Promising Solution to the Rising Threat of Antibiotic Resistance. Pharmaceutics 2024, 16, 1542. [Google Scholar] [CrossRef]
- Miao, F.; Li, Y.; Tai, Z.; Zhang, Y.; Gao, Y.; Hu, M.; Zhu, Q. Antimicrobial Peptides: The Promising Therapeutics for Cutaneous Wound Healing. Macromol. Biosci. 2021, 21, e2100103. [Google Scholar] [CrossRef] [PubMed]
- Xuan, J.; Feng, W.; Wang, J.; Wang, R.; Zhang, B.; Bo, L.; Chen, Z.-S.; Yang, H.; Sun, L. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug. Resist. Updates 2023, 68, 100954. [Google Scholar] [CrossRef] [PubMed]
- Gan, B.H.; Gaynord, J.; Rowe, S.M.; Deingruber, T.; Spring, D.R. The multifaceted nature of antimicrobial peptides: Current synthetic chemistry approaches and future directions. Chem. Soc. Rev. 2021, 50, 7820–7880. [Google Scholar] [CrossRef] [PubMed]
- Haktaniyan, M.; Bradley, M. Polymers showing intrinsic antimicrobial activity. Chem. Soc. Rev. 2022, 51, 8584–8611. [Google Scholar] [CrossRef]
- Santos, M.R.E.; Fonseca, A.C.; Mendonça, P.V.; Branco, R.; Serra, A.C.; Morais, P.V.; Coelho, J.F.J. Recent Developments in Antimicrobial Polymers: A Review. Materials 2016, 9, 599. [Google Scholar] [CrossRef]
- Maset, R.G.; Hapeshi, A.; Hall, S.; Dalgliesh, R.M.; Harrison, F.; Perrier, S. Evaluation of the Antimicrobial Activity in Host-Mimicking Media and In Vivo Toxicity of Antimicrobial Polymers as Functional Mimics of AMPs. ACS Appl. Mater. Interfaces 2022, 14, 32855–32868. [Google Scholar] [CrossRef]
- Laroque, S.; Garcia Maset, R.; Hapeshi, A.; Burgevin, F.; Locock, K.E.S.; Perrier, S. Synthetic Star Nanoengineered Antimicrobial Polymers as Antibiofilm Agents: Bacterial Membrane Disruption and Cell Aggregation. Biomacromolecules 2023, 24, 3073–3085. [Google Scholar] [CrossRef]
- Yang, Y.; Cai, Z.; Huang, Z.; Tang, X.; Zhang, X. Antimicrobial cationic polymers: From structural design to functional control. Polym. J. 2018, 50, 33–44. [Google Scholar] [CrossRef]
- Raheem, N.; Straus, S.K. Mechanisms of Action for Antimicrobial Peptides with Antibacterial and Antibiofilm Functions. Front. Microbiol. 2019, 10, 501450. [Google Scholar] [CrossRef]
- Talapko, J.; Meštrović, T.; Juzbašić, M.; Tomas, M.; Erić, S.; Aleksijević, L.H.; Bekić, S.; Schwarz, D.; Matić, S.; Neuberg, M.; et al. Antimicrobial Peptides—Mechanisms of Action, Antimicrobial Effects and Clinical Applications. Antibiotics 2022, 11, 1417. [Google Scholar] [CrossRef]
- Modarresi Chahardehi, A.; Barati, M.; Navaderi, M.; Velashjerdi, Z.; Zare, I.; Mostafavi, E. Antibacterial and Antiviral Functional Materials: Design Strategies, Classifications, Mechanisms, Advantages, Challenges, and Future Perspectives. ACS Symp. Ser. 2023, 1458, 1–32. [Google Scholar] [CrossRef]
- Lin, L.; Chi, J.; Yan, Y.; Luo, R.; Feng, X.; Zheng, Y.; Xian, D.; Li, X.; Quan, G.; Liu, D.; et al. Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharm. Sin. B 2021, 11, 2609–2644. [Google Scholar] [CrossRef] [PubMed]
- Pham, P.; Oliver, S.; Boyer, C. Design of Antimicrobial Polymers. Macromol. Chem. Phys. 2023, 224, 2200226. [Google Scholar] [CrossRef]
- Javadi, H.; Lehnen, A.C.; Hartlieb, M. Bioinspired Cationic Antimicrobial Polymers. Angew. Chem. Int. Ed. 2025, 64, e202503738. [Google Scholar] [CrossRef] [PubMed]
- Dorner, F.; Lienkamp, K. Polymer-Based Synthetic Mimics of Antimicrobial Peptides (SMAMPs)—A New Class of Nature-Inspired Antimicrobial Agents with Low Bacterial Resistance Formation Potential. In Antimicrobial Polymers; Muñoz-Bonilla, A., Cerrada, M.L., Fernández-García, M., Eds.; Royal Society of Chemistry: Cambridge, UK, 2013; pp. 97–138. [Google Scholar] [CrossRef]
- Boschert, D.; Schneider-Chaabane, A.; Himmelsbach, A.; Eickenscheidt, A.; Lienkamp, K. Synthesis and Bioactivity of Polymer-Based Synthetic Mimics of Antimicrobial Peptides (SMAMPs) Made from Asymmetrically Disubstituted Itaconates. Chem. Eur. J. 2018, 24, 8217–8227. [Google Scholar] [CrossRef]
- Hancock, S.N.; Yuntawattana, N.; Diep, E.; Maity, A.; Tran, A.; Schiffman, J.D.; Michaudel, Q. Ring-opening metathesis polymerization of N-methylpyridinium-fused norbornenes to access antibacterial main-chain cationic polymers. Proc. Natl. Acad. Sci. USA 2023, 120, e2311396120. [Google Scholar] [CrossRef]
- Lienkamp, K.; Tew, G.N. Synthetic mimics of antimicrobial peptides—A versatile ring-opening metathesis polymerization-based platform for the synthesis of selective antibacterial and cell-penetrating polymers. Chem.–A Eur. J. 2009, 15, 11784–11800. [Google Scholar] [CrossRef]
- Ahmetali, E.; Galstyan, A.; Süer, N.C.; Eren, T.; Şener, M.K. Poly(oxanorbornene)s bearing triphenylphosphonium and PEGylated zinc(II) phthalocyanine with boosted photobiological activity and singlet oxygen generation. Polym. Chem. 2023, 14, 259–267. [Google Scholar] [CrossRef]
- Kuday, H.; Süer, N.C.; Bayır, A.; Aksu, B.; Hatipoğlu, A.; Güncü, M.M.; Degitz, İ.A.; Gallei, M.; Eren, T. Design of Aromatic Ring-Based Polyphosphonium Salts Synthesized via ROMP and the Investigation into Their Antibacterial and Hemolytic Activities. ACS Appl. Polym. Mater. 2021, 3, 6524–6538. [Google Scholar] [CrossRef]
- Süer, N.C.; Demir, C.; Ünübol, N.A.; Yalçın, Ö.; Kocagöz, T.; Eren, T. Antimicrobial activities of phosphonium containing polynorbornenes. RSC Adv. 2016, 6, 86151–86157. [Google Scholar] [CrossRef]
- Gabriel, G.J.; Madkour, A.E.; Dabkowski, J.M.; Nelson, C.F.; Nüsslein, K.; Tew, G.N. Synthetic mimic of antimicrobial peptide with nonmembrane-disrupting antibacterial properties. Biomacromolecules 2008, 9, 2980–2983. [Google Scholar] [CrossRef]
- Alkarri, S.; Bin Saad, H.; Soliman, M. On Antimicrobial Polymers: Development, Mechanism of Action, International Testing Procedures, and Applications. Polymers 2024, 16, 771. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.N.; Aksu, B.; Güncü, M.; Gallei, M.; Tulu, M.; Eren, T. Amphiphilic water soluble cationic ring opening metathesis copolymer as an antibacterial agent. J. Polym. Sci. 2020, 58, 872–884. [Google Scholar] [CrossRef]
- Kaymaz, A.P.; Acaroğlu-Degitz, İ.; Yapaöz, M.A.; Sezer, A.D.; Malta, S.; Aksu, B.; Eren, T. Synthesis of 1,4-diazabicyclo [2.2.2]octane and pyridinium based cationic polymers via ROMP technique and examination of their antibacterial activity and cytotoxicity. Materialia 2019, 5, 100246. [Google Scholar] [CrossRef]
- Eren, T.; Som, A.; Rennie, J.R.; Nelson, C.F.; Urgina, Y.; Nüsslein, K.; Coughlin, E.B.; Tew, G.N. Antibacterial and hemolytic activities of quaternary pyridinium functionalized polynorbornenes. Macromol. Chem. Phys. 2008, 209, 516–524. [Google Scholar] [CrossRef]
- Kovalenko, V.; Akhmadiyarov, A.; Vandyukov, A.; Khamatgalimov, A. Experimental vibrational spectra and computational study of 1,4-diazabicyclo[2.2.2]octane. J. Mol. Struct. 2012, 1028, 134–140. [Google Scholar] [CrossRef]
- Tsai, H.-C.; Wu, S.-Y.; Chang, L.-T.; Peng, S. Calcium-activated gene transfection from DNA/poly(amic acid-co-imide) complexes. Int. J. Nanomed. 2015, 10, 1637–1647. [Google Scholar] [CrossRef]
- Ondrusek, B.A.; Chung, H. Modified N-Heterocyclic Carbene Ligand for the Recovery of Olefin Metathesis Catalysts via Noncovalent Host-Guest Interactions. ACS Omega 2017, 2, 3951–3957. [Google Scholar] [CrossRef]
- Degitz, İ.A.; Gazioğlu, B.H.; Aksu, M.B.; Malta, S.; Sezer, A.D.; Eren, T. Antibacterial and hemolytic activity of cationic polymer–vancomycin conjugates. Eur. Polym. J. 2020, 141, 110084. [Google Scholar] [CrossRef]
- López-García, J.; Lehocký, M.; Humpolíček, P.; Sáha, P. HaCaT Keratinocytes Response on Antimicrobial Atelocollagen Substrates: Extent of Cytotoxicity, Cell Viability and Proliferation. J. Funct. Biomater. 2014, 5, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Kocagoz, T.; Temur, B.Z.; Unubol, N.; Elmas, M.A.; Kanlidere, Z.; Cilingir, S.; Acar, D.; Boskan, G.; Deveci, S.A.; Aybakan, E.; et al. Protease-Resistant, Broad-Spectrum Antimicrobial Peptides with High Antibacterial and Antifungal Activity. Life 2025, 15, 242. [Google Scholar] [CrossRef]
- Love, J.A.; Morgan, J.P.; Trnka, T.M.; Grubbs, R.H. A Practical and Highly Active Ruthenium-Based Catalyst that Effects the Cross Metathesis of Acrylonitrile. Angew. Chem. Int. Ed. 2002, 41, 4035–4037. [Google Scholar] [CrossRef]
- EMEA/CHMP/SWP/4446/2000; Committee for Human Medicinal Products (CHMP). Guideline on the Specification Limits for Residues of Metal Catalysts—Draft. European Medicines Agency: London, UK, 2007. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/draft-guideline-specification-limits-residues-metal-catalysts_en.pdf (accessed on 3 July 2025).
- Cho, J.H.; Kim, B.M. An efficient method for removal of ruthenium byproducts from olefin metathesis reactions. Org. Lett. 2003, 5, 531–533. [Google Scholar] [CrossRef]
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 2003, 9, ix–xv. [Google Scholar] [CrossRef]
- Rex, J.H.; Alexander, B.D.; Andes, D.; Arthington-Skaggs, B.; Brown, S.D.; Chaturvedi, V.; Ghannoum, M.A.; Espinel-Ingroff, A.; Knapp, C.C.; Ostrosky-Zeichner, L.; et al. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts; Approved Standard—Third Edition; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008; Volume 22. [Google Scholar]
- Jia, F.; Zhang, Y.; Wang, J.; Peng, J.; Zhao, P.; Zhang, L.; Yao, H.; Ni, J.; Wang, K. The effect of halogenation on the antimicrobial activity, antibiofilm activity, cytotoxicity and proteolytic stability of the antimicrobial peptide Jelleine-I. Peptides 2019, 112, 56–66. [Google Scholar] [CrossRef] [PubMed]
- de Lucio, H.; Gamo, A.M.; Ruiz-Santaquiteria, M.; de Castro, S.; Sánchez-Murcia, P.A.; Toro, M.A.; Gutiérrez, K.J.; Gago, F.; Jiménez-Ruiz, A.; Camarasa, M.-J.; et al. Improved proteolytic stability and potent activity against Leishmania infantum trypanothione reductase of α/β-peptide foldamers conjugated to cell-penetrating peptides. Eur. J. Med. Chem. 2017, 140, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xu, Y.; Dong, M.; Hang, B.; Sun, Y.; Wang, L.; Wang, Y.; Hu, J.; Zhang, W. HJH-1, a broad-spectrum antimicrobial peptide with low cytotoxicity. Molecules 2018, 23, 2026. [Google Scholar] [CrossRef] [PubMed]
- Taştan, C.; Yurtsever, B.; Karakuş, G.S.; Kançaği, D.D.; Demir, S.; Abanuz, S.; Seyis, U.; Yildirim, M.; Kuzay, R.; ElibOl, Ö.; et al. SARS-CoV-2 isolation and propagation from Turkish COVID-19 patients. Turk. J. Biol. 2020, 44, 192–202. [Google Scholar] [CrossRef]
Polymer | m/n NMR | Mn, Theoretical [a] | Mn, NMR [b] | d.nm, Zeta-Sizer [c] |
---|---|---|---|---|
D-subs 1kDa | - | 1000 | 1239 | 340.3 |
D-subs 5kDa | - | 5000 | 3304 | 494 |
D-subs 15kDa | - | 15,000 | 7434 | 1158 |
PyH-subs 5kDa_D-subs 5kDa | 0.69 | 10,000 | 6574 | 1076 |
PyH-subs 7kDa_D-subs 3kDa | 0.82 | 10,000 | 8548 | 173.5 |
PyH-subs 3kDa_D-subs 7kDa | 0.88 | 10,000 | 13,167 | 1199 |
Polymer | Decreasing Ruthenium (%) | |
---|---|---|
Dialysis Membrane | Active Carbon | |
D-subs 10kDa | 34.3 ± 3.3% | 63.6 ± 1.9% |
D-subs 15kDa | 66.9 ± 4.1% | 83.2 ± 0.9% |
Polymer | E. coli | S. aureus | P. aeruginosa | C. albicans |
---|---|---|---|---|
D-subs 1kDa | 256 | 8 | 256 | 512 |
D-subs 5kDa | 128 | 8 | 128 | 512 |
D-subs 15kDa | 16 | 16 | 64 | 256 |
PyH-subs 3kDa_D-subs 7kDa | 256 | 16 | 1024 | 516 |
PyH-subs 5kDa_D-subs 5kDa | 128 | 8 | 256 | 1024 |
PyH-subs 7kDa_D-subs 3kDa | 32 | 16 | 32 | 256 |
Polymer | HaCaT IC50 (µg/mL) | S. aureus SI * | 3t3 IC50 (µg/mL) | S. aureus SI * |
---|---|---|---|---|
D-subs 1kDa | 234.82 | 29.35 | 646.29 | 80.78 |
D-subs 5kDa | 267.86 | 33.48 | 244.25 | 30.53 |
D-subs 15kDa | 214.26 | 26.78 | 612.95 | 76.61 |
PyH-subs 5kDa_D-subs 5kDa | 264.29 | 33.03 | 1780 | 222.5 |
PyH-subs 7kDa_D-subs 3kDa | 218.37 | 27.29 | 483.29 | 60.41 |
PyH-subs 3kDa_D-subs 7kDa | 253.84 | 31.73 | 870 | 108.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temur, B.Z.; Cetinkaya, I.C.; Acikel Elmas, M.; Unubol, N.; Arbak, S.; Kocagoz, T.; Eren, T.; Can, O. New Generation Antibiotics Derived from DABCO-Based Cationic Polymers. Antibiotics 2025, 14, 856. https://doi.org/10.3390/antibiotics14090856
Temur BZ, Cetinkaya IC, Acikel Elmas M, Unubol N, Arbak S, Kocagoz T, Eren T, Can O. New Generation Antibiotics Derived from DABCO-Based Cationic Polymers. Antibiotics. 2025; 14(9):856. https://doi.org/10.3390/antibiotics14090856
Chicago/Turabian StyleTemur, Betul Zehra, Ilay Ceren Cetinkaya, Merve Acikel Elmas, Nihan Unubol, Serap Arbak, Tanil Kocagoz, Tarik Eren, and Ozge Can. 2025. "New Generation Antibiotics Derived from DABCO-Based Cationic Polymers" Antibiotics 14, no. 9: 856. https://doi.org/10.3390/antibiotics14090856
APA StyleTemur, B. Z., Cetinkaya, I. C., Acikel Elmas, M., Unubol, N., Arbak, S., Kocagoz, T., Eren, T., & Can, O. (2025). New Generation Antibiotics Derived from DABCO-Based Cationic Polymers. Antibiotics, 14(9), 856. https://doi.org/10.3390/antibiotics14090856