Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = Reynolds analogy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 8580 KiB  
Article
Vortex-Induced Turbulence Optimized Membrane Enthalpy Exchanger: Dynamic Humidity Modulation and Coupled Heat–Mass Transfer Enhancement
by Yang Liu, Dong-Chuan Mo and Shu-Shen Lyu
Energies 2025, 18(11), 2892; https://doi.org/10.3390/en18112892 - 30 May 2025
Viewed by 787
Abstract
A bioinspired vortex-inducing architecture was engineered within the hydrodynamic focusing region of membrane-based enthalpy exchangers (MEEs) to generate controlled Kármán vortex shedding, strategically enhancing thermal–hygric coupling through boundary layer modulation. Computational simulations employing ANSYS Fluent 2024R1 and grid-convergence validation (GCI < 1.8%) demonstrated [...] Read more.
A bioinspired vortex-inducing architecture was engineered within the hydrodynamic focusing region of membrane-based enthalpy exchangers (MEEs) to generate controlled Kármán vortex shedding, strategically enhancing thermal–hygric coupling through boundary layer modulation. Computational simulations employing ANSYS Fluent 2024R1 and grid-convergence validation (GCI < 1.8%) demonstrated that at Re = 392 (2.57 m/s flow velocity), the vortex-integrated configuration achieved temperature exchange efficiency enhancements of 3.91% (summer) and 3.58% (winter), latent efficiency gains of 3.71% and 3.53%, alongside enthalpy effectiveness improvements of 3.37% and 3.36%, respectively. The interconnected momentum–heat–mass analogies culminated in peaks of performance evaluation criterion (PEC) = 1.33 (heat transfer) and 1.22 (mass transfer), substantiating vortex-induced Reynolds analogy optimization under typical HVAC operational scenarios (summer: 27 °C/50.3% RH; winter: 21 °C/39.7% RH). Full article
Show Figures

Figure 1

21 pages, 1753 KiB  
Article
Nusselt Number Dependence on Friction Factor in the Boundary Slip Flow of a Newtonian Liquid Between Parallel Plates
by Krishna Kota, Sarada Kuravi and Prasanna Jayaramu
Thermo 2025, 5(1), 7; https://doi.org/10.3390/thermo5010007 - 17 Feb 2025
Viewed by 1011
Abstract
This study explored the relationship between the Nusselt number and the friction factor in the laminar boundary slip flow of a Newtonian liquid between parallel plates. In addition, simplified equations were developed to estimate two key parameters—slip velocity and temperature jump—both of which [...] Read more.
This study explored the relationship between the Nusselt number and the friction factor in the laminar boundary slip flow of a Newtonian liquid between parallel plates. In addition, simplified equations were developed to estimate two key parameters—slip velocity and temperature jump—both of which are typically difficult to measure in experimental settings. The primary objectives of investigating the relationship between the Nusselt number and the friction factor were twofold: (1) to uncover the previously unknown mathematical connection (or analogy) between momentum transfer and heat transfer in the presence of boundary slip and (2) to enable predictions of either the pressure drop or the heat transfer coefficient by measuring just one of these quantities, thus simplifying experimental procedures. Considering the difficulty of conducting experiments of this type of flow (as described in the published literature), a finite element-based numerical model built in COMSOL Multiphysics software was used to validate the theoretically developed relationship over a wide range of Reynolds numbers and boundary slip values. While surface modifications like dimples, bumps, and ribs typically modify both the Nusselt number and pressure drop, leading to their increase for a given fluid and constant inlet Reynolds number, their behavior changes when boundary slip is present, particularly in cases where there is a low temperature jump at the wall. The analysis identified a specific threshold for the dimensionless temperature jump below which the Nusselt number with boundary slip will exceed 8.235. Furthermore, the analysis showed that for the Nusselt number to rise above 8.235, the non-dimensional velocity slip must be at least 3.19 times larger than the non-dimensional temperature jump. This means that the velocity slip has to be significantly larger than the temperature jump to achieve enhanced heat transfer in boundary slip flows. Full article
Show Figures

Figure 1

11 pages, 746 KiB  
Article
Hydroacoustic Simulation of a Reτ = 180 Channel Flow
by Renato Montillo
Water 2025, 17(4), 553; https://doi.org/10.3390/w17040553 - 14 Feb 2025
Viewed by 528
Abstract
This study presents a numerical methodology for analyzing hydroacoustic noise generation and its propagation in a homogeneous domain using Lighthill’s analogy, the finite volume method, and hybrid-Higdon boundary conditions. The approach consists of three key steps: performing an eddy-resolving Large Eddy Simulation to [...] Read more.
This study presents a numerical methodology for analyzing hydroacoustic noise generation and its propagation in a homogeneous domain using Lighthill’s analogy, the finite volume method, and hybrid-Higdon boundary conditions. The approach consists of three key steps: performing an eddy-resolving Large Eddy Simulation to capture the unsteady fluid dynamics, extracting the turbulent field to compute the acoustic source term via Lighthill’s analogy, and solving a homogeneous wave equation to propagate the noise in an open domain. The methodology is applied to a turbulent plane channel flow, simulating the acoustic field for a fluid with water-like density at a Mach number of 0.1. The results reveal the spatial distribution of the acoustic pressure, highlighting the dominant noise sources and their spectral characteristics. The acoustic domain extends beyond the turbulent region, enabling the study of pressure propagation outside the flow. The findings demonstrate that noise generation is strongly linked to turbulent structures near the walls, with significant acoustic radiation occurring in the low-wavenumber range. This framework provides a powerful tool for modeling noise propagation in marine and industrial applications, offering insights into turbulence-induced sound in underwater environments. Future work could extend the approach to more complex geometries, higher Reynolds numbers, and heterogeneous domains, further advancing its applicability to real-world acoustic challenges. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

24 pages, 10275 KiB  
Article
New Nusselt Number Correlation and Turbulent Prandtl Number Model for Turbulent Convection with Liquid Metal Based on Quasi-DNS Results
by Hao Fu, Juan Chen, Yanjun Tong, Sifan Peng, Fang Liu, Xuefeng Lyu and Houjian Zhao
Energies 2025, 18(3), 547; https://doi.org/10.3390/en18030547 - 24 Jan 2025
Viewed by 1310
Abstract
Liquid metal is widely used as the primary coolant in many advanced nuclear energy systems. Prandtl number of liquid metal is much lower than that of the conventional coolant of water or gas. Based on the Reynolds analogy, the turbulent Prandtl number is [...] Read more.
Liquid metal is widely used as the primary coolant in many advanced nuclear energy systems. Prandtl number of liquid metal is much lower than that of the conventional coolant of water or gas. Based on the Reynolds analogy, the turbulent Prandtl number is assumed to be a constant around unity. For the turbulent convection of liquid metal, dissipations of half the temperature variance are larger than those of turbulent kinetic energies. The dissimilarity between the thermal and momentum fields increases as Pr decreases. The turbulent Prandtl number is larger than one for the liquid metal. In the current investigation, the turbulent convection of liquid metal in the channel is quasi-directly simulated with OpenFOAM-7. The turbulent statistics of the momentum and the thermal field are compared with the existing database to validate the numerical model. The power law for dimensionless temperature distribution with different Prandtl numbers is obtained by regression analysis of numerical results. A new Nusselt number correlation is derived based on the power law. The new Nusselt number correlation agrees well with the DNS results in the literature. The momentum mixing process between different layers in the cross section is compared with the thermal mixing process. The effects of the Prandtl number on the difference between the turbulence time scale and scalar time scale are analyzed. A new turbulent Prandtl number model with local parameters is obtained for turbulent convection with liquid metal. Combined with the kω model, the temperature distributions with the new turbulent Prandtl number model agree well with the DNS results in the literature. The new turbulent Prandtl number model can be used for turbulent convection with different Prandtl and different Reynolds numbers. Full article
(This article belongs to the Special Issue Thermal Hydraulics and Safety Research for Nuclear Reactors)
Show Figures

Figure 1

27 pages, 17970 KiB  
Article
Determination of Local Heat Transfer Coefficients and Friction Factors at Variable Temperature and Velocity Boundary Conditions for Complex Flows
by Christopher Hartmann and Jens von Wolfersdorf
Fluids 2024, 9(9), 197; https://doi.org/10.3390/fluids9090197 - 27 Aug 2024
Viewed by 1546
Abstract
Transient conjugate heat transfer measurements under varying temperature and velocity inlet boundary conditions at incompressible flow conditions were performed for flat plate and ribbed channel geometries. Therefrom, local adiabatic wall temperatures and heat transfer coefficients were determined. The data were analyzed using typical [...] Read more.
Transient conjugate heat transfer measurements under varying temperature and velocity inlet boundary conditions at incompressible flow conditions were performed for flat plate and ribbed channel geometries. Therefrom, local adiabatic wall temperatures and heat transfer coefficients were determined. The data were analyzed using typical heat transfer correlations, e.g., Nu=CRemPrn, determining the local distributions of C and m. It is shown that they are closely linked. A relationship lnC=AmB is observed, with A and B as modeling parameters. They could be related to parameters in log-law or power-law representations for turbulent boundary layer flows. The parameter m is shown to have a close link to local pressure gradients and, therewith, near wall streamlines as well as friction factor distributions. A normalization of the C parameter allows one to derive a Reynolds analogy factor and, therefrom, local wall shear stresses. Full article
Show Figures

Figure 1

31 pages, 15837 KiB  
Review
Numerical Simulations of Scalar Transport on Rough Surfaces
by Zvi Hantsis and Ugo Piomelli
Fluids 2024, 9(7), 159; https://doi.org/10.3390/fluids9070159 - 11 Jul 2024
Cited by 3 | Viewed by 1891
Abstract
Numerical simulations provide unfettered access to details of the flow where experimental measurements are difficult to obtain. This paper summarises the progress achieved in the study of passive scalars in flows over rough surfaces thanks to recent numerical simulations. Townsend’s similarity applies to [...] Read more.
Numerical simulations provide unfettered access to details of the flow where experimental measurements are difficult to obtain. This paper summarises the progress achieved in the study of passive scalars in flows over rough surfaces thanks to recent numerical simulations. Townsend’s similarity applies to various scalar statistics, implying the differences due to roughness are limited to the roughness sublayer (RSL). The scalar field exhibits a diffusive sublayer that increasingly conforms to the roughness surface as ks+ or Pr increase. The scalar wall flux is enhanced on the windward slopes of the roughness, where the analogy between momentum and scalar holds well; the momentum and scalar fields, however, have very different behaviours downwind of the roughness elements, due to recirculation, which reduces the scalar wall flux. Roughness causes breakdown of the Reynolds analogy: any increase in St is accompanied by a larger increase in cf. A flattening trend for the scalar roughness function, ΔΘ+, is observed as ks+ increases, suggesting the possibility of a scalar fully rough regime, different from the velocity one. The form-induced (FI) production of scalar fluctuations becomes dominant inside the RSL and is significantly different from the FI production of turbulent kinetic energy, resulting in notable differences between the scalar and velocity fluctuations. Several key questions remain open, in particular regarding the existence of a fully rough scalar regime and its characteristics. With the increase in Re and Pr, various quantities such as scalar roughness function, the dispersive fluxes, FI wall flux, etc., appear to trend towards saturation. However, the limited range of Re and Pr achieved by numerical simulations only allows us to speculate regarding such asymptotic behaviour. Beyond extending the range of Re and Pr, systematic coverage of different roughness types and topologies is needed, as the scalar appears to remain sensitive to the geometrical details. Full article
(This article belongs to the Special Issue Recent Advances in Fluid Mechanics: Feature Papers, 2024)
Show Figures

Figure 1

15 pages, 1884 KiB  
Article
Viscosity Modeling for Blood and Blood Analog Fluids in Narrow Gap and High Reynolds Numbers Flows
by Finn Knüppel, Sasha Malchow, Ang Sun, Jeanette Hussong, Alexander Hartmann, Frank-Hendrik Wurm and Benjamin Torner
Micromachines 2024, 15(6), 793; https://doi.org/10.3390/mi15060793 - 16 Jun 2024
Cited by 2 | Viewed by 1756
Abstract
For the optimization of ventricular assist devices (VADs), flow simulations are crucial. Typically, these simulations assume single-phase flow to represent blood flow. However, blood consists of plasma and blood cells, making it a multiphase flow. Cell migration in such flows leads to a [...] Read more.
For the optimization of ventricular assist devices (VADs), flow simulations are crucial. Typically, these simulations assume single-phase flow to represent blood flow. However, blood consists of plasma and blood cells, making it a multiphase flow. Cell migration in such flows leads to a heterogeneous cell distribution, significantly impacting flow dynamics, especially in narrow gaps of less than 300 μm found in VADs. In these areas, cells migrate away from the walls, forming a cell-free layer, a phenomenon not usually considered in current VAD simulations. This paper addresses this gap by introducing a viscosity model that accounts for cell migration in microchannels under VAD-relevant conditions. The model is based on local particle distributions measured in a microchannels with a blood analog fluid. We developed a local viscosity distribution for flows with particles/cells and a cell-free layer, applicable to both blood and analog fluids, with particle volume fractions of up to 5%, gap heights of 150 μm, and Reynolds numbers around 100. The model was validated by comparing simulation results with experimental data of blood and blood analog fluid flow on wall shear stresses and pressure losses, showing strong agreement. This model improves the accuracy of simulations by considering local viscosity changes rather than assuming a single-phase fluid. Future developments will extend the model to physiological volume fractions up to 40%. Full article
(This article belongs to the Special Issue Blood Flow in Microfluidic Medical Devices)
Show Figures

Figure 1

24 pages, 7124 KiB  
Article
Pressure Fluctuation and Flow-Induced Noise of the Fin and Rudder in a Water Tunnel
by Duo Qu, Yanfei Li, Ruibiao Li, Yunhui Chen and Yongou Zhang
Appl. Sci. 2024, 14(11), 4691; https://doi.org/10.3390/app14114691 - 29 May 2024
Cited by 1 | Viewed by 1200
Abstract
The flow field and radiated noise resulting from water flowing through a fin and rudder were analyzed in this study. A hydrodynamic experiment was conducted in a water tunnel to measure the pressure fluctuations affecting a fin and rudder, and then the experimental [...] Read more.
The flow field and radiated noise resulting from water flowing through a fin and rudder were analyzed in this study. A hydrodynamic experiment was conducted in a water tunnel to measure the pressure fluctuations affecting a fin and rudder, and then the experimental data and Large Eddy Simulation (LES) results were compared and analyzed. The discussion presented herein focuses on the zero angle of attack and the Reynolds number based on a maximum width of the fin and rudder ranging from 3.6 × 106 to 9.7 × 106. Furthermore, a numerical model was developed using the LES turbulence model and Lighthill’s acoustic analog theory to predict the flow-induced noise generated by the fin and rudder. The test data reveal that the pressure fluctuation decreases as frequency increases, and the average rate of decrease is obtained for frequencies up to 5.0 kHz. Additionally, as flow velocity increases, the overall sound pressure level of flow-induced noise also increases. The relationship between the sound power radiated by the fin and rudder and the flow velocity approximately follows a power law with an exponent of seven, and the noise radiated on both sides is greater than that radiated in the direction of flow. The findings presented in this paper have practical implications for designing quieter rudders and optimizing the noise performance of underwater vehicles and ships, thereby addressing concerns regarding the impact of anthropogenic noise on marine life and ecosystems. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

34 pages, 13785 KiB  
Review
A Review of Pressure Drop and Mixing Characteristics in Passive Mixers Involving Miscible Liquids
by Arijit Ganguli, Viraj Bhatt, Anna Yagodnitsyna, Dipak Pinjari and Aniruddha Pandit
Micromachines 2024, 15(6), 691; https://doi.org/10.3390/mi15060691 - 24 May 2024
Cited by 3 | Viewed by 2498
Abstract
The present review focuses on the recent studies carried out in passive micromixers for understanding the hydrodynamics and transport phenomena of miscible liquid–liquid (LL) systems in terms of pressure drop and mixing indices. First, the passive micromixers have been categorized based on the [...] Read more.
The present review focuses on the recent studies carried out in passive micromixers for understanding the hydrodynamics and transport phenomena of miscible liquid–liquid (LL) systems in terms of pressure drop and mixing indices. First, the passive micromixers have been categorized based on the type of complexity in shape, size, and configuration. It is observed that the use of different aspect ratios of the microchannel width, presence of obstructions, flow and operating conditions, and fluid properties majorly affect the mixing characteristics and pressure drop in passive micromixers. A regime map for the micromixer selection based on optimization of mixing index (MI) and pressure drop has been identified based on the literature data for the Reynolds number (Re) range (1 ≤ Re ≤ 100). The map comprehensively summarizes the favorable, moderately favorable, or non-operable regimes of a micromixer. Further, regions for special applications of complex micromixer shapes and micromixers operating at low Re have been identified. Similarly, the operable limits for a micromixer based on pressure drop for Re range 0.1 < Re < 100,000 have been identified. A comparison of measured pressure drop with fundamentally derived analytical expressions show that Category 3 and 4 micromixers mostly have higher pressure drops, except for a few efficient ones. An MI regime map comprising diffusion, chaotic advection, and mixed advection-dominated zones has also been devised. An empirical correlation for pressure drop as a function of Reynolds number has been developed and a corresponding friction factor has been obtained. Predictions on heat and mass transfer based on analogies in micromixers have also been proposed. Full article
(This article belongs to the Special Issue Microreactors and Their Applications)
Show Figures

Figure 1

20 pages, 15912 KiB  
Article
A Rapid RI-TP Model for Predicting Turbine Wake Interaction Broadband Noise
by Kangshen Xiang, Weijie Chen, Siddiqui Aneeb and Weiyang Qiao
Aerospace 2024, 11(3), 210; https://doi.org/10.3390/aerospace11030210 - 8 Mar 2024
Viewed by 1396
Abstract
Future UHBR (Ultra-High Bypass-Ratio) engines might cause serious ‘turbine noise storms’ but, at present, turbine noise prediction capability is lacking. The large turning angle of the turbine blade is the first major factor deserving special attention. The RANS (Reynold Averaged Navier–Stokes equation)-informed (here [...] Read more.
Future UHBR (Ultra-High Bypass-Ratio) engines might cause serious ‘turbine noise storms’ but, at present, turbine noise prediction capability is lacking. The large turning angle of the turbine blade is the first major factor deserving special attention. The RANS (Reynold Averaged Navier–Stokes equation)-informed (here called RI) method and LINSUB (the bound vorticity 2D model LINearized SUBsonic flow in cascade), developed to predict fan broadband noise, coupled with a two-flat-plates (here called TP) assumption for the turbine blade, is applied here, and one autonomous rapid RI-TP model for predicting turbine wake interaction broadband noise has been developed. Firstly, taking the single axial turbine test rig NPU-Turb as the object, both the experimental data and the DDES/AA (delayed Detached Eddy Simulation/Acoustic Analogy) hybrid model have been used to validate the RI-TP model. High consistency in the medium and high frequencies among the three designed and off-designed rotation speeds indicates that the RI-TP model has the ability to predict turbine broadband noise rapidly. And compared with the original RANS-informed method, with one thin-flat-plate assumption on the blade, the RI-TP model can enhance the PWL (sound power level) in almost the whole spectral range below 10 KHz, which, in turn, is closer to the experimental data and the DDES/AA prediction results. The PWL trend with a ‘dividing point’ position is also studied. The spectrum would move up or down if the location is away from true value. In addition, the extraction location for turbulence as an input for the RI-TP model is negligible. In the future, multi-stage characteristics and the blade thickness effect should be further considered when predicting turbine noise. Full article
Show Figures

Figure 1

27 pages, 701 KiB  
Article
Electrohydrodynamic (In)Stability of Microfluidic Channel Flows: Analytical Expressions in the Limit of Small Reynolds Number
by Goran Goranović, Mads Peter Sørensen, Henrik Bruus and Morten Brøns
Water 2024, 16(4), 544; https://doi.org/10.3390/w16040544 - 9 Feb 2024
Cited by 3 | Viewed by 1931
Abstract
We study electrohydrodynamic (EHD) linear (in)stability of microfluidic channel flows, i.e., the stability of interface between two shearing viscous (perfect) dielectrics exposed to an electric field in large aspect ratio microchannels. We then apply our results to particular microfluidic systems known as two-liquid [...] Read more.
We study electrohydrodynamic (EHD) linear (in)stability of microfluidic channel flows, i.e., the stability of interface between two shearing viscous (perfect) dielectrics exposed to an electric field in large aspect ratio microchannels. We then apply our results to particular microfluidic systems known as two-liquid electroosmotic (EO) pumps. Our novel results are detailed analytical expressions for the growth rate of two-dimensional EHD modes in Couette–Poiseuille flows in the limit of small Reynolds number (R); the expansions to both zeroth and first order in R are considered. The growth rates are complicated functions of viscosity-, height-, density-, and dielectric-constant ratio, as well as of wavenumbers and voltages. To make the results useful to experimentalists, e.g., for voltage-control EO pump operations, we also derive equations for the impending voltages of the neutral stability curves that divide stable from unstable regions in voltage–wavenumber stability diagrams. The voltage equations and the stability diagrams are given for all wavenumbers. We finally outline the flow regimes in which our first-order-R voltage corrections could potentially be experimentally measured. Our work gives insight into the coupling mechanism between electric field and shear flow in parallel-planes channel flows, correcting an analogous EHD expansion to small R from the literature. We also revisit the case of pure shear instability, when the first-order-R voltage correction equals zero, and replace the renowned instability mechanism due to viscosity stratification at small R with the mechanism due to discontinuity in the slope of the unperturbed velocity profile. Full article
Show Figures

Figure 1

20 pages, 7919 KiB  
Article
Effects of Viscosity Law on High-Temperature Supersonic Turbulent Channel Flow for Chemical Equilibrium
by Shuo Zhao, Xiaoping Chen, Yuting Yang and Dengsong Huang
Processes 2024, 12(2), 256; https://doi.org/10.3390/pr12020256 - 24 Jan 2024
Cited by 2 | Viewed by 1483
Abstract
Direct numerical simulations of temporally evolving high-temperature supersonic turbulent channel flow for chemical equilibrium were conducted with a Mach number of 3.0, a Reynolds number of 4880, and a wall temperature of 1733.2 K to investigate the influence of the viscosity law. The [...] Read more.
Direct numerical simulations of temporally evolving high-temperature supersonic turbulent channel flow for chemical equilibrium were conducted with a Mach number of 3.0, a Reynolds number of 4880, and a wall temperature of 1733.2 K to investigate the influence of the viscosity law. The mean and fluctuating viscosity for the mixture rule is higher than that for Sutherland’s law, whereas an opposite trend is observed in the mean temperature, mean pressure, and dissociation degree. The Trettel and Larsson transformed mean velocity, the Reynolds shear stress, the turbulent kinetic energy budget, and the turbulent Prandtl number are insensitive to the viscosity law. The semilocal scaling that take into account local variation of fluid characteristics better collapses the turbulent kinetic energy budget. The modified strong Reynolds analogies provide reasonably good results for the mixture rule, which are better than those for Sutherland’s law. The streamwise and spanwise coherencies for the mixture rule are stronger and weaker than those for Sutherland’s law, respectively. The relationship between viscosity and species components can help to identify the traveling wave packet. Full article
Show Figures

Figure 1

16 pages, 1496 KiB  
Article
A Detailed Limited-Area Atmospheric Energy Cycle for Climate and Weather Studies
by Yves Franklin Ngueto, René Laprise and Oumarou Nikiéma
Atmosphere 2024, 15(1), 87; https://doi.org/10.3390/atmos15010087 - 9 Jan 2024
Cited by 1 | Viewed by 1491
Abstract
Lorenz’ seminal work on global atmospheric energetics improved our understanding of the general circulation. With the advent of Regional Climate Models (RCMs), it is important to have a limited-area energetic budget available that is applicable for both weather and climate, analogous to Lorenz’ [...] Read more.
Lorenz’ seminal work on global atmospheric energetics improved our understanding of the general circulation. With the advent of Regional Climate Models (RCMs), it is important to have a limited-area energetic budget available that is applicable for both weather and climate, analogous to Lorenz’ global atmospheric energetics. A regional-scale energetic budget is obtained in this study by applying Reynolds decomposition rules to quadratic forms of the kinetic energy K and the available enthalpy A, to obtain time mean and time deviation contributions. According to the employed definition, the time mean energy contributions are decomposed in a component associated with the time-averaged atmospheric state and a component due to the time-averaged statistics of transient eddies; these contributions are suitable for the study of the climate over a region of interest. Energy fluctuations (the deviations of instantaneous energies from their climate value) that are appropriate for weather studies are split into quadratic and linear contributions. The sum of all the contributions returns exactly to the total primitive kinetic energy and available enthalpy equations. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

65 pages, 1935 KiB  
Article
Skin-Friction and Forced Convection from Rough and Smooth Plates
by Aubrey Jaffer
Thermo 2023, 3(4), 711-775; https://doi.org/10.3390/thermo3040040 - 16 Dec 2023
Cited by 1 | Viewed by 2517
Abstract
Since the 1930s, theories of skin-friction drag from plates with rough surfaces have been based by analogy to turbulent flow in pipes with rough interiors. Failure of this analogy at small fluid velocities has frustrated attempts to create a comprehensive theory. Utilizing the [...] Read more.
Since the 1930s, theories of skin-friction drag from plates with rough surfaces have been based by analogy to turbulent flow in pipes with rough interiors. Failure of this analogy at small fluid velocities has frustrated attempts to create a comprehensive theory. Utilizing the concept of a self-similar roughness that disrupts the boundary layer at all scales, this investigation derives formulas for a rough or smooth plate’s skin-friction coefficient and forced convection heat transfer given its characteristic length, root-mean-squared (RMS) height-of-roughness, isotropic spatial period, Reynolds number, and the fluid’s Prandtl number. This novel theory was tested with 456 heat transfer and friction measurements in 32 data-sets from one book, six peer-reviewed studies, and the present apparatus. Compared with the present theory, the RMS relative error (RMSRE) values of the 32 data-sets span 0.75% through 8.2%, with only four data-sets exceeding 6%. Prior work formulas have smaller RMSRE on only four of the data-sets. Full article
Show Figures

Graphical abstract

21 pages, 5023 KiB  
Article
Hybrid Computation of the Aerodynamic Noise Radiated by the Wake of a Subsonic Cylinder
by Benet Eiximeno, Carlos Tur-Mongé, Oriol Lehmkuhl and Ivette Rodríguez
Fluids 2023, 8(8), 236; https://doi.org/10.3390/fluids8080236 - 21 Aug 2023
Cited by 2 | Viewed by 1940
Abstract
The noise radiated by the flow around a cylinder in the subcritical regime at ReD=1×104 and at a subsonic Mach number of M=0.5 is here studied. The aerodynamic sound radiated by a cylinder has [...] Read more.
The noise radiated by the flow around a cylinder in the subcritical regime at ReD=1×104 and at a subsonic Mach number of M=0.5 is here studied. The aerodynamic sound radiated by a cylinder has been studied with a wide range of Reynolds numbers, but there are no studies about how the Mach number affects the acoustic field in the subsonic regime. The flow field is resolved by means of large-eddy simulations of the compressible Navier–Stokes equations. For the study of the noise propagation, formulation 1C of the Ffowcs Williams–Hawkings analogy is used. The fluid flow results show good agreement when comparing the surface pressure coefficient, the recirculation length, the vortex shedding frequency and the force coefficients against other studies performed under similar conditions. The dynamic mode decomposition of the pressure fluctuations is used to relate them with the far-field noise. It is shown that, in contrast to what happens for low Mach numbers, quadrupoles have a significant impact mainly in the observers located in the streamwise direction. This effect leads to a global monopole directivity pattern as the shear fluctuations compensate for the lower value of the aeolian tone away from the cross-stream direction. Full article
Show Figures

Figure 1

Back to TopTop