A Rapid RI-TP Model for Predicting Turbine Wake Interaction Broadband Noise
Abstract
:1. Introduction
2. Turbine Broadband Noise Model
2.1. The Dilemma of Modeling Turbine Noise
2.2. Two-Flat-Plates Assumption
2.3. Turbine Broadband Noise Model
3. Validation of RI-TP Model
3.1. Experimental Validation
3.1.1. Turbine Acoustic Test Rig NPU-Turb
3.1.2. Experimental Setting
3.1.3. RANS Simulation of RI-TP Model
3.1.4. Basic Input Parameters of NPU-Turb for RI-TP Model
3.1.5. Experimental Validation Results
3.2. Numerical Validation
3.2.1. Brief Discussion of CFD/AA Hybrid Model
3.2.2. Introduction of DES-Class Method
3.2.3. Computational Mesh and Setting
3.2.4. Acoustic Calculation Method of CFD/AA Hybrid Model
3.2.5. Hybrid Model’s Validation Result
4. Studies of the RI-TP Model
4.1. Flat-Plate Assumption
4.2. JP Location
4.3. Extraction Location for Turbulent Information
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moreau, S. Turbomachinery Noise Predictions: Present and Future. Acoustics 2019, 1, 92–116. [Google Scholar] [CrossRef]
- Rolf, R.; Richard, S. Fundamentals of High Lift for Future Civil Aircraft, 1st ed.; Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 579–592. [Google Scholar]
- Hughes, C. NASA Collaborative Research on the Ultra High Bypass Engine Cycle and Potential Benefits for Noise, Performance, and Emissions; Technical Memorandum TM-2013-216345; NASA: Washington, DC, USA, 2013. [Google Scholar]
- Hultgren, L.S. Editorial: Emerging importance of turbine noise. Int. J. Aeroacoust. 2011, 10, i–iv. [Google Scholar] [CrossRef]
- Nesbitt, E. Towards a quieter low pressure turbine: Design characteristics and prediction needs. Int. J. Aeroacoust. 2011, 10, 1–15. [Google Scholar] [CrossRef]
- Xiang, K.S.; Chen, W.J.; Wang, L.F.; Tao, M.Y.; Qiao, W.Y. Turbine tonal noise prediction using an improved quasi-3D linear model. Aerosp. Sci. Technol. 2022, 123, 107437. [Google Scholar] [CrossRef]
- Ventres, C.S.; Theobald, M.A.; Mark, W.D. Turbofan Noise Generation, Volume 1: Analysis; NASA: Washington, DC, USA, 1987. [Google Scholar]
- Nallasamy, M.; Envia, E. Computation of rotor wake turbulence noise. J. Sound Vib 2005, 282, 649–678. [Google Scholar] [CrossRef]
- Posson, H.; Roger, M.; Moreau, S. On a uniformly valid analytical rectilinear cascade response function. J. Fluid Mech. 2010, 663, 22–52. [Google Scholar] [CrossRef]
- Posson, H.; Moreau, S.; Roger, M. On the use of a uniformly valid analytical cascade response function for fan broadband noise predictions. J. Sound Vib. 2010, 329, 3721–3743. [Google Scholar] [CrossRef]
- Posson, H.; Moreau, S.; Roger, M. Broadband noise prediction of fan outlet guide vane using a cascade response function. J. Sound Vib. 2011, 330, 6153–6183. [Google Scholar] [CrossRef]
- Masson, V.; Posson, H.; Sanjosé, M.; Moreau, S.; Roger, M. Fan-OGV interaction broadband noise prediction in a rigid annular duct with swirling and sheared mean flow. In Proceedings of the 22nd AIAA/CEAS Aeroacoustics Conference (AIAA 2016-2944), Lyon, France, 30 May–1 June 2016. [Google Scholar]
- Rai, M.; Madavan, N. Multi-Airfoil Navier–Stokes Simulations of Turbine Rotor-Stator Interaction. J. Turbomach. 1990, 112, 377–384. [Google Scholar] [CrossRef]
- Gerolymos, G.; Michon, G.; Neubauer, J. Analysis and application of chronic periodicity in turbomachinery rotor/stator interaction computations. J. Propuls. Power 2002, 18, 1139–1152. [Google Scholar] [CrossRef]
- Giles, M.B. Calculation of unsteady wake/rotor interaction. J. Propuls. Power 1988, 4, 356–362. [Google Scholar] [CrossRef]
- Guédeney, T.; Gomar, A.; Gallard, F.; Sicot, F.; Dufour, G.; Puigt, G. Non-uniform time sampling for multiple-frequency harmonic balance computations. J. Comput. Phys. 2013, 236, 317–345. [Google Scholar] [CrossRef]
- Chen, S.; Dooler, G.D. Lattice Boltzmann method for fluid flows. Ann. Rev. Fluid Mech. 1998, 30, 329–364. [Google Scholar] [CrossRef]
- Brès, G.; Pérot, F.; Freed, D. Properties of the Lattice–Boltzmann Method for Acoustics. In Proceedings of the 15th AIAA/CEAS Aeroacoustics Conference (AIAA 2009-3395), Miami, FL, USA, 11–13 May 2019. [Google Scholar]
- Ju, H.; Mani, R.; Vysohlid, M.; Sharma, A. Investigation of fan-wake/ outlet-guide-vane interaction broadband noise. AIAA J. 2015, 53, 3534–3550. [Google Scholar] [CrossRef]
- Ju, H.B. Effects of vane sweep on fan-wake/outlet-guide-vane interaction broadband noise. In Proceedings of the 22nd AIAA/CEAS Aeroacoustics Conference, Lyon, France, 30 May–1 June 2016; AIAA: Reston, VA, USA, 2016. [Google Scholar]
- Guérin, S.; Kissner, C.; Kajasa, B.; Jaron, R.; Behn, M.; Pardowitz, B.; Tapken, U.; Hakansson, S.; Meyer, R.; Enghardt, L. Noise prediction of the ACAT1 fan with a RANS-informed analytical method: Success and challenge. In Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference, Delft, The Netherlands, 20–23 May 2019. [Google Scholar]
- Lewis, D.; Moreau, S.; Jacob, M. On the Use of RANS-informed Analytical Models to Perform Broadband Rotor-Stator Interaction Noise Predictions. In Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference, Delft, The Netherlands, 20–23 May 2019. [Google Scholar]
- Tong, H.; Ll, L.; Wang, L.; Mao, L.; Qiao, W. Investigation of rotor–stator interaction broadband noise using a RANS-informed analytical method. Chin. J. Aeronaut. 2021, 34, 53–66. [Google Scholar] [CrossRef]
- Karman, T. Progress in the statistical theory of turbulence. Proc. Natl. Acad. Sci. USA 1948, 34, 530–539. [Google Scholar] [CrossRef]
- Liepmann, H.W. Extension of the statistical approach to buffeting and gust response of wings of finite span. J. Aeronaut. Sci. 1955, 22, 197–200. [Google Scholar] [CrossRef]
- Liepmann, H.W.; Laufer, J.; Liepmann, K. On the Spectrum of Isotropic Turbulence; NASA: Washington, DC, USA, 1951. [Google Scholar]
- Grace, S.; Wixom, A.; Winkler, J.; Sondak, D.; Logue, M.M. Fan Broadband Interaction Noise Modeling. In Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), Colorado Springs, CO, USA, 4–6 June 2012. [Google Scholar]
- Laborderie, L.; Moreau, S.; Berry, A. Compressor Stage Broadband Noise Prediction Using a Large-Eddy Simulation and Comparisons with a Cascade Response Model. In Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference, Berlin, Germany, 27–29 May 2013. [Google Scholar]
- Goldstein, M.E. Aeroacoustics, 1st ed.; McGraw-Hill International Book Company: New York, NY, USA, 1976. [Google Scholar]
- Mani, R. Noise due to interaction of inlet turbulence with isolated stators and rotors. J. Sound Vib. 1971, 17, 251–260. [Google Scholar] [CrossRef]
- Amiet, R.K. Acoustic radiation from an airfoil in a turbulent stream. J. Sound Vib. 1975, 41, 407–420. [Google Scholar] [CrossRef]
- Glegg, S.A.L. The response of swept blade row to a three-dimensional gust. J. Sound Vib. 1999, 227, 29–64. [Google Scholar] [CrossRef]
- Smith, S.N. Discrete Frequency Sound Generation in Axial Flow Turbomachines; HM Stationery Office: London, UK, 1972. [Google Scholar]
- Whitehead, D.S. Vibration and Sound Generation in a Cascade of Flat Plates in Subsonic Flow; HM Stationery Office: London, UK, 1972. [Google Scholar]
- Kaji, S.; Okazaki, T. Generation of sound by rotor-stator interaction. J. Sound Vib. 1970, 13, 281–307. [Google Scholar] [CrossRef]
- Kaji, S. Noncompact source effect on the prediction of tone noise from a fan rotor. In Proceedings of the 2nd Aeroacoustics Conference, Hampton, VA, USA, 24–26 March 1975. [Google Scholar]
- Hanson, D.B. Coupled 2-Dimensional Cascade Theory for Noise and Unsteady Aerodynamics of Blade Row Interaction in Turbofans. Volume 1: Theory Development and Parametric Studies; NASA: Washington, DC, USA, 1995. [Google Scholar]
- Hanson, D.B. Coupled 2-Dimensional Cascade Theory for Noise and Unsteady Aerodynamics of Blade Row Interaction in Turbofans. Volume 2: Documentation for Computer Code CUP2D; NASA: Washington, DC, USA, 1995. [Google Scholar]
- Cheong, C.; Joseph, P.; Soogab, L.E.E. High frequency formulation for the acoustic power spectrum due to cascade-turbulence interaction. J. Acoust. Soc. 2006, 119, 108–122. [Google Scholar] [CrossRef]
- Pedro, C.L.; Adolfo, S. A Frequency Domain Model for Turbine Interaction Broadband Noise: Comparison with Measurements. In Proceedings of the AIAA/CEAS Aeroacoustics Conference, Atlanta, GA, USA, 25–29 June 2018. [Google Scholar]
- Michalke, A.; Arnold, F.; Holste, F. On the Coherence of the Sound Field in a Circular Duct with Uniform Mean Flow. J. Sound Vib. 1996, 190, 261–271. [Google Scholar] [CrossRef]
- Lighthill, M.J. On sound generated aerodynamically, I. General theory. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Sci. 1952, 211, 564–587. [Google Scholar]
- Lighthill, M.J. On sound generated aerodynamically, II. Turbulence as a source of sound. Proc. Roy. Soc. Lond. Ser. A Math. Phys. Sci. 1954, 222, 1–32. [Google Scholar]
- Ffowcs Williams, J.E.; Hawkings, D.L. Sound Generation by Turbulence and Surfaces in Arbitrary Motion. Philo. Trans. R. Soc. Lond. A Math. Phys. Sci. 1969, 264, 321–342. [Google Scholar]
- Ffowcs-Williams, J.E.; Hawkings, D.L. Theory relating to the noise of rotating machinery. J. Sound Vib. 1969, 10, 10–21. [Google Scholar] [CrossRef]
- Spalart, P.R.; Jou, W.H.; Strelets, M.; Allmaras, S.R. Comments on the feasibility of LES for wings, and on a hybrid RANS-LES approach. In Advances in DNS/LES; Liu, C., Liu, Z., Eds.; ResearchGate: Berlin, Germany, 1997; pp. 137–147. [Google Scholar]
- Shur, M.; Spalart, P.R.; Strelets, M.; Travin, A. Detached-eddy simulation of an airfoil at high angle of attack. In Engineering Turbulence Modelling and Experiments; Elsevier Science Ltd.: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Menter, F.R.; Kuntz, M. Adaptation of eddy-viscosity turbulence models to unsteady separated flow behind vehicles. In The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains; Springer: Berlin, Germany, 2004; pp. 339–352. [Google Scholar]
- Spalart, P.R.; Deck, S.; Shur, M.L.; Squires, K.D.; Strelets, M.K.; Travin, A. A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 2006, 20, 181–195. [Google Scholar] [CrossRef]
- Gritskevich, M.S.; Garbaruk, A.V.; Schütze, J.; Menter, F.R. Development of DDES and IDDES Formulations for the k-ω Shear Stress Transport Model. J. Flow Turbul. Combust. 2012, 88, 431–449. [Google Scholar] [CrossRef]
Parameters | Value |
---|---|
Number of rotor blades | 40 |
Number of stator blades | 30 |
Rotation speed (rpm) | 3000 |
Mass flow rate (kg/s) | 6.3 |
Rotor axial chord length (mm) | 38 (mid-span) |
Stator axial chord length (mm) | 47.13 (mid-span) |
Rotor tip clearance (mm) | 0.425 |
Stator–rotor axial spacing (mm) | 20 |
Radius (m) | NP | (°) | (°) |
---|---|---|---|
0.17 | 0.40 | 49.99 | 25.79 |
0.18 | 0.40 | 51.81 | 32.23 |
0.19 | 0.40 | 54.05 | 32.77 |
0.20 | 0.40 | 56.52 | 33.73 |
0.21 | 0.40 | 59.25 | 34.67 |
0.22 | 0.40 | 62.71 | 34.68 |
0.23 | 0.40 | 67.76 | 34.31 |
0.24 | 0.40 | 75.72 | 33.07 |
0.25 | 0.40 | 77.49 | 33.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, K.; Chen, W.; Aneeb, S.; Qiao, W. A Rapid RI-TP Model for Predicting Turbine Wake Interaction Broadband Noise. Aerospace 2024, 11, 210. https://doi.org/10.3390/aerospace11030210
Xiang K, Chen W, Aneeb S, Qiao W. A Rapid RI-TP Model for Predicting Turbine Wake Interaction Broadband Noise. Aerospace. 2024; 11(3):210. https://doi.org/10.3390/aerospace11030210
Chicago/Turabian StyleXiang, Kangshen, Weijie Chen, Siddiqui Aneeb, and Weiyang Qiao. 2024. "A Rapid RI-TP Model for Predicting Turbine Wake Interaction Broadband Noise" Aerospace 11, no. 3: 210. https://doi.org/10.3390/aerospace11030210
APA StyleXiang, K., Chen, W., Aneeb, S., & Qiao, W. (2024). A Rapid RI-TP Model for Predicting Turbine Wake Interaction Broadband Noise. Aerospace, 11(3), 210. https://doi.org/10.3390/aerospace11030210