Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (96)

Search Parameters:
Keywords = Poly(γ-glutamic acid)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1675 KB  
Article
γ-PGA Enhances Zea mays L. Seedling Growth by Fertile Rhizosphere Establishment and Osmotic Modulation in Saline Soil
by Xin Li, Weiming Shi, Herbert J. Kronzucker, Xiaodong Ding and Yilin Li
Agronomy 2026, 16(3), 317; https://doi.org/10.3390/agronomy16030317 - 27 Jan 2026
Viewed by 289
Abstract
Soil salinization is a major threat to agricultural sustainability. Poly-gamma-glutamic acid (γ-PGA), a biopolymer produced by microbial fermentation, has received attention as a biostimulant due to its positive effects on crop performance. However, the function of γ-PGA in crop salt stress tolerance and [...] Read more.
Soil salinization is a major threat to agricultural sustainability. Poly-gamma-glutamic acid (γ-PGA), a biopolymer produced by microbial fermentation, has received attention as a biostimulant due to its positive effects on crop performance. However, the function of γ-PGA in crop salt stress tolerance and its effect on the rhizosphere are unclear. This study explores the effects of γ-PGA application on rhizosphere soil nutrients and the soil–physical environment and examines the salt tolerance response of maize seedlings grown in saline–alkali soil under such an application regime. The results show a significant promotion of maize seedling growth and of nutrient accumulation with γ-PGA application under salt stress; plant dry weight, stem diameter, and plant height increased 121%, 39.5%, 18.4%, respectively, and shoot accumulation of nitrogen, phosphorus, potassium, and carbon increased by 1.38, 2.11, 1.50, and 1.36 times, respectively, under an optimal-concentration γ-PGA treatment (5.34 mg kg−1 (12 kg ha−1)) compared with the control. γ-PGA treatment significantly decreased rhizospheric pH and soil electrical conductivity and significantly increased nutrient availability in the rhizosphere, especially available nitrogen (AN) and available potassium (AK). Compared with the control, AN, available phosphorus (AP), and AK increased by 13.9%, 7.70%, and 17.7%, respectively, under an optimal concentration treatment with γ-PGA. γ-PGA application also significantly increased the activities of urease, acid phosphatase, alkaline phosphatase, dehydrogenase, and cellulose in rhizosphere soil by 35.5–39.3%, 35.4–39.3%, 5.59–8.85%, 18.9–19.8%, and 19.2–47.0%, respectively. γ-PGA application significantly decreased Na+ concentration and increased K+ concentration in shoots, resulting in a lowering of the Na+/K+ ratio by 30.5% and an increase in soluble sugar and soluble protein contents. Therefore, rhizosphere application of water-soluble and biodegradable γ-PGA facilitates the creation of an optimized rhizospheric environment for maize seedling and overcomes osmotic and ionic stresses, offering possibilities for future use in drip-irrigation systems in the cultivation of crops on saline-alkali land. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

17 pages, 2269 KB  
Article
Purification, Structural Characterization, and Antibacterial Evaluation of Poly-γ-Glutamic Acid from Bacillus subtilis
by Gobinath Chandrakasan, Genaro Martin Soto-Zarazúa, Manuel Toledano-Ayala, Priscila Sarai Flores-Aguilar and Said Arturo Rodríguez-Romero
Polymers 2026, 18(2), 172; https://doi.org/10.3390/polym18020172 - 8 Jan 2026
Viewed by 338
Abstract
Extracellular poly-γ-glutamic acid (γ-PGA) produced by Bacillus species demonstrates significant antibacterial properties, positioning it as a promising candidate for diverse biomedical and industrial applications. This study focused on molecular identification of Bacillus subtilis using Polymerase Chain Reaction (PCR) and evaluated the initial production [...] Read more.
Extracellular poly-γ-glutamic acid (γ-PGA) produced by Bacillus species demonstrates significant antibacterial properties, positioning it as a promising candidate for diverse biomedical and industrial applications. This study focused on molecular identification of Bacillus subtilis using Polymerase Chain Reaction (PCR) and evaluated the initial production of γ-PGA from a novel biological source of Bacillus subtilis. Shake flask fermentation was utilized for γ-PGA production, with three distinct growth media (Tryptic, MRS, and Mineral medium) assessed for their efficiency in polymer yield. Characterization of γ-PGA was conducted through FT-IR, HPLC, and GC-MS analyses. FT-IR spectroscopy confirmed the presence of characteristic functional groups such as carbonyl, amide, and hydroxyl groups. HPLC and GC-MS analyses provided insights into the polymer’s purity and molecular composition, highlighting components like methyl esters, hexanoic acid, and monomethyl esters. Furthermore, the study quantified γ-PGA production during a four-day shake flask fermentation period. These findings contribute significantly to bacterial characterization, optimization of fermentation processes, and the exploration of γ-PGA’s potential as an antibacterial agent. Future research directions include refining purification techniques to enhance γ-PGA’s antibacterial efficacy and expanding its applications across various fields. Full article
Show Figures

Graphical abstract

24 pages, 15012 KB  
Article
A New Way to Engineer Cell Sheets for Articular Cartilage Regeneration
by Ta-Lun Tan, Yuan Tseng, Jia-Wei Li, Cheng-Tse Yang, Hsuan-Yu Chen, Her-I Lee, Jun-Jen Liu, Yi-Yuan Yang and How Tseng
J. Funct. Biomater. 2025, 16(12), 437; https://doi.org/10.3390/jfb16120437 - 25 Nov 2025
Viewed by 1233
Abstract
Background: Articular cartilage has limited self-repair capacity. While thermoresponsive poly N-isopropyl acrylamide (pNIPAAm)-based Cell Sheet Engineering (CSE) is a promising scaffold-free strategy, its inherent material properties pose limitations. This study developed and validated a novel, non-thermoresponsive CSE platform for functional cartilage regeneration. [...] Read more.
Background: Articular cartilage has limited self-repair capacity. While thermoresponsive poly N-isopropyl acrylamide (pNIPAAm)-based Cell Sheet Engineering (CSE) is a promising scaffold-free strategy, its inherent material properties pose limitations. This study developed and validated a novel, non-thermoresponsive CSE platform for functional cartilage regeneration. Methods: A culture platform was fabricated by grafting the biocompatible polymer poly gamma-glutamic acid (γ-PGA) and a disulfide-containing amino acid onto porous PET membranes. This design enables intact cell sheet detachment with its native extracellular matrix (ECM) via specific cleavage of the disulfide bonds by a mild reducing agent. Results: The hydrated substrate exhibited a biomimetic stiffness (~16.2 MPa) that closely mimics native cartilage. The platform showed superior biocompatibility and supported the cultivation of multi-layered rabbit chondrocyte sheets rich in Collagen II and Glycosaminoglycans. Critically, in a rabbit full-thickness defect model, transplanted autologous cell sheets successfully regenerated integrated, hyaline-like cartilage at 12 weeks, as confirmed by MRI, CT, and histological analyses. Conclusions: This novel CSE platform, featuring highly biomimetic stiffness and a gentle, chemically specific detachment mechanism, represents a highly promising clinical strategy for repairing articular cartilage defects. Full article
Show Figures

Figure 1

18 pages, 1283 KB  
Review
Polyglutamic Acid as an Antiviral Agent: Mechanistic and Structural Insights
by Ya-Na Wu and Shang-Rung Wu
Pharmaceutics 2025, 17(10), 1296; https://doi.org/10.3390/pharmaceutics17101296 - 2 Oct 2025
Viewed by 766
Abstract
Poly-γ-glutamic acid (γ-PGA), also known as polyglutamate, is a naturally derived polymer produced by Bacillus species that has demonstrated antiviral properties. Growing evidence from preclinical and clinical studies supports its therapeutic potential against various viral infections, highlighting both effective antiviral activity and a [...] Read more.
Poly-γ-glutamic acid (γ-PGA), also known as polyglutamate, is a naturally derived polymer produced by Bacillus species that has demonstrated antiviral properties. Growing evidence from preclinical and clinical studies supports its therapeutic potential against various viral infections, highlighting both effective antiviral activity and a favorable safety profile. This review emphasizes current findings on the antiviral mechanisms of γ-PGA, including its ability to interfere with viral entry and to activate serial immune signaling pathways, with additional insights from structural biology. Collectively, γ-PGA represents a promising biomaterial for the development of future broad-spectrum antiviral strategies and applications. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials as Therapeutic Agents)
Show Figures

Graphical abstract

15 pages, 3879 KB  
Review
Hydrophobization of Natural Polymers by Enzymatic Grafting of Hydrophobic Polysaccharides, Partially 2-Deoxygenated Amyloses
by Masayasu Totani and Jun-ichi Kadokawa
Processes 2025, 13(10), 3042; https://doi.org/10.3390/pr13103042 - 24 Sep 2025
Viewed by 587
Abstract
This review overviews the efficient hydrophobization method of hydrophilic natural polymers, which has been developed by means of glucan phosphorylase (GP)-induced enzymatic grafting of unnatural heteropolysaccharides, that is, partially 2-deoxygenated (P2D)-amyloses. The enzymatic polymerization technique is well known as a useful approach to [...] Read more.
This review overviews the efficient hydrophobization method of hydrophilic natural polymers, which has been developed by means of glucan phosphorylase (GP)-induced enzymatic grafting of unnatural heteropolysaccharides, that is, partially 2-deoxygenated (P2D)-amyloses. The enzymatic polymerization technique is well known as a useful approach to prepare polysaccharides with well-defined structures. The authors have found that the hydrophobicity of P2D-amylose, synthesized by the thermostable GP (from Aquifex aeolicus VF5)-induced enzymatic copolymerization of α-d-glucose 1-phosphate (Glc-1-P)/d-glucal as comonomers, started from maltooligosaccharide primers. Based on this finding, glycogen, a hydrophilic spherical natural polysaccharide, was hydrophobized by means of the thermostable GP-induced enzymatic functionalization of the P2D-amylose chains because glycogen acted as the polymeric primer for the GP catalysis. After introducing the maltooligosaccharide primers onto hydrophilic natural polymers with carboxylate groups—such as poly(γ-glutamic acid), carboxymethyl cellulose, and alginic acid—via chemical reactions, the thermostable GP-induced enzymatic copolymerization of Glc-1-P/d-glucal was carried out using the resulting polymeric primers, enabling their hydrophobization through the grafting of P2D-amylose chains (the chemoenzymatic approach). Moreover, the chemoenzymatic method has extensively been employed for hydrophobization of the surfaces on natural polysaccharide nanofibers, such as cellulose and chitin nanofibers. Full article
(This article belongs to the Topic Advances in Sustainable Materials and Products)
Show Figures

Figure 1

21 pages, 2216 KB  
Article
Microfluidic Assembly of Poly(glutamic acid) Nanogels Through SPAAC Click Chemistry
by Pasquale Mastella and Stefano Luin
Pharmaceutics 2025, 17(9), 1150; https://doi.org/10.3390/pharmaceutics17091150 - 2 Sep 2025
Cited by 1 | Viewed by 1089
Abstract
Background/Objectives: Nanogels (NGs) are promising carriers for drug delivery due to their tunable size, biocompatibility, and capability to encapsulate sensitive molecules. However, conventional batch synthesis often lacks control over key parameters, such as size distribution and encapsulation efficiency. This study aimed to develop [...] Read more.
Background/Objectives: Nanogels (NGs) are promising carriers for drug delivery due to their tunable size, biocompatibility, and capability to encapsulate sensitive molecules. However, conventional batch synthesis often lacks control over key parameters, such as size distribution and encapsulation efficiency. This study aimed to develop a microfluidic platform for the reproducible synthesis of poly(α-glutamic acid) (PGA)-based NGs using strain-promoted azide–alkyne cycloaddition (SPAAC) click chemistry and to investigate the effects of flow parameters on the physicochemical properties of nanogels. Methods: Functionalized PGAs (with azide and DBCO) were co-injected into a microfluidic system within a flux of acetone to form NGs via SPAAC. Flow rate ratios (FRR) and total flow rates were systematically screened at 25 °C, with tests at 50 °C. We evaluated the particle size, polydispersity index (PDI), zeta potential, and encapsulation efficiency (EE%) of doxorubicin-loaded NGs. Results: NGs with tunable sizes ranging from ~50 nm to >170 nm and low PDI (<0.1 in optimal conditions) were obtained. Higher FRR and total flow rates yielded smaller and more uniform NGs. Doxorubicin loading did not affect the nanogel size and uniformity, and in some cases, it improved them. The EE% reached up to ~65%, and ~40% for the best formulations. Elevated temperature improved the characteristics of drug-loaded nanogels at intermediate solvent ratios. Compared to batch synthesis, the microfluidic process offers enhanced reproducibility and size control. Conclusions: Microfluidic SPAAC synthesis enables precise and scalable fabrication of PGA NGs with controllable size and drug loading. This platform supports future integration of on-chip purification and monitoring for clinical nanomedicine applications. Full article
Show Figures

Graphical abstract

21 pages, 3142 KB  
Article
Influence of Biosurfactants on the Efficiency of Petroleum Hydrocarbons Biodegradation in Soil
by Katarzyna Wojtowicz, Teresa Steliga, Tomasz Skalski and Piotr Kapusta
Sustainability 2025, 17(14), 6520; https://doi.org/10.3390/su17146520 - 16 Jul 2025
Cited by 2 | Viewed by 2145
Abstract
Soil contamination with petroleum hydrocarbons is a serious environmental issue, necessitating the development of effective and environmentally friendly remediation methods that align with the principles of sustainable development. This study investigated the impact of selected biosurfactants on the efficiency of the biodegradation of [...] Read more.
Soil contamination with petroleum hydrocarbons is a serious environmental issue, necessitating the development of effective and environmentally friendly remediation methods that align with the principles of sustainable development. This study investigated the impact of selected biosurfactants on the efficiency of the biodegradation of total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs) in contaminated soil. Six biosurfactants—poly-γ-glutamic acid (γ-PGA), rhamnolipid, surfactin, a mixture of γ-PGA, rhamnolipids, and surfactin (PSR), as well as two commercial formulations (JBR 425 and JBR 320)—were evaluated in combination with a bacterial consortium. Biodegradation experiments were conducted under laboratory conditions for a 90-day period. The effectiveness of the tested biosurfactants was assessed using respirometric analysis, the chromatographic determination of the residual hydrocarbon content, and toxicity assays. The results showed that the application of a bacterial consortium enriched with a mixture of biosurfactants PSR (a biosurfactant concentration in the inoculating mixture: 5 g/dm3) was the most effective approach, resulting in an oxygen uptake of 5164.8 mgO2/dm3 after 90 days, with TPH and PAH degradation rates of 77.3% and 70.32%, respectively. Phytotoxicity values decreased significantly, with TU values ranging from 6.32 to 4.62 (growth inhibition) and 3.77 to 4.13 (germination). Toxicity also decreased in the ostracodtoxkit test (TU = 4.35) and the Microtox SPT test (TU = 4.91). Among the tested biosurfactants, surfactin showed the least improvement in its bioremediation efficiency. Under the same concentration as in the PSR mixture, the oxygen uptake was 3446.7 mgO2/dm3, with TPH and PAH degradation rates of 60.64% and 52.64%, respectively. In the system inoculated with the bacterial consortium alone (without biosurfactants), the biodegradation efficiency reached 44.35% for TPH and 36.97% for PAHs. The results demonstrate that biosurfactants can significantly enhance the biodegradation of petroleum hydrocarbons in soil, supporting their potential application in sustainable bioremediation strategies. Full article
Show Figures

Figure 1

19 pages, 2940 KB  
Article
Effect of Poly-γ-Glutamic Acid Molecular Weight on the Properties of Whey Protein Isolate Hydrogels
by Daniel K. Baines, Zuzanna Pawlak-Likus, Nikoleta N. Tavernaraki, Varvara Platania, Mattia Parati, Timothy N. Wong Wong Cheung, Iza Radecka, Patrycja Domalik-Pyzik, Maria Chatzinikolaidou and Timothy E. L. Douglas
Polymers 2025, 17(12), 1605; https://doi.org/10.3390/polym17121605 - 9 Jun 2025
Cited by 2 | Viewed by 1271
Abstract
Whey protein isolate (WPI) hydrogel is a promising candidate as a biomaterial for tissue engineering. Previously, WPI hydrogels containing poly-γ-glutamic acid (γ-PGA) with a molecular weight (MW) of 440 kDa demonstrated potential as scaffolds for bone tissue engineering. Here, the study compares different [...] Read more.
Whey protein isolate (WPI) hydrogel is a promising candidate as a biomaterial for tissue engineering. Previously, WPI hydrogels containing poly-γ-glutamic acid (γ-PGA) with a molecular weight (MW) of 440 kDa demonstrated potential as scaffolds for bone tissue engineering. Here, the study compares different γ-PGA preparations of differing MW. WPI-γ-PGA hydrogels containing 40% WPI and 0%, 2.5%, 5%, 7.5%, and 10% γ-PGA were synthesised. Three γ-PGA MWs were compared, namely 10 kDa, 700 kDa, and 1100 kDa. Evidence of successful γ-PGA incorporation was demonstrated by scanning electron microscopy and Fourier transform infrared spectroscopy. Increasing γ-PGA concentration significantly improved the swelling potential of the hydrogels, as demonstrated by ratio mass increases of between 85 and 90% for each 10% variable group. Results suggested that γ-PGA delayed enzymatic proteolysis, potentially decreasing the rate of degradation. The addition of γ-PGA significantly decreased the Young’s modulus and compressive strength of hydrogels. Dental pulp mesenchymal stem cells proliferated on all hydrogels. The highest cellular growth was observed for the WPI-700 kDa γ-PGA group. Additionally, superior cell attachment was observed on all WPI hydrogels containing γ-PGA compared to the WPI control. These results further suggest the potential of WPI hydrogels containing γ-PGA as biomaterials for bone tissue engineering. Full article
(This article belongs to the Special Issue Recent Advances and Applications of Polymer Nanocomposites)
Show Figures

Figure 1

14 pages, 2074 KB  
Article
Production and Characterization of Poly-γ-Glutamic Acid by Bacillus velezensis SDU
by Guangyao Guo, Han Wang, Huiyuan Jia, Haiping Ni, Shouying Xu, Cuiying Zhang, Youming Zhang, Yuxia Wu and Qiang Tu
Microorganisms 2025, 13(4), 917; https://doi.org/10.3390/microorganisms13040917 - 16 Apr 2025
Cited by 2 | Viewed by 1806
Abstract
In this study, a Bacillus velezensis SDU strain capable of producing poly-γ-glutamate (γ-PGA) was newly identified from the rhizosphere soil of Baimiao taro. The strain is a glutamate-independent strain and can produce polyglutamic acid in a culture medium completely free of glutamate. The [...] Read more.
In this study, a Bacillus velezensis SDU strain capable of producing poly-γ-glutamate (γ-PGA) was newly identified from the rhizosphere soil of Baimiao taro. The strain is a glutamate-independent strain and can produce polyglutamic acid in a culture medium completely free of glutamate. The hydrolyzed product of the polyglutamic acid produced is D-glutamic acid. The molecular weight of γ-PGA, estimated via the Mark–Houwink equation, was 1390 kDa. Furthermore, the molecular weight measured by Waters gel permeation chromatography with multi-angle laser light scattering (GPC–MALLS) was 1167 kDa. The production of γ-PGA and its antioxidant and tyrosine inhibition properties were investigated. The γ-PGA production reached 23.1 g/L, and the productivity was 0.77 g L−1 h−1. Specifically, γ-PGA exhibited superoxide anion (·O2) radical scavenging activity and tyrosinase inhibitory activity. This study introduces a promising strain and a highly efficient application method for γ-PGA, which can be broadly utilized in the pharmaceutical, food, and cosmetic industries. Full article
Show Figures

Figure 1

15 pages, 4589 KB  
Article
Development of a Novel Nanoclay-Doped Hydrogel Adsorbent for Efficient Removal of Heavy Metal Ions and Organic Dyes from Wastewater
by Hang Zhao, Mengmeng Xie, Siyu He, Saishi Lin, Shige Wang and Xiuying Liu
Gels 2025, 11(4), 287; https://doi.org/10.3390/gels11040287 - 14 Apr 2025
Cited by 18 | Viewed by 1431
Abstract
Rapid industrialization has led to significant environmental challenges, particularly in wastewater treatment, where the removal of heavy metal ions and organic dyes is critical. This study presents the synthesis and characterization of a high-performance hydrogel adsorbent, (nanoclay)x@poly-γ-glutamic acid (γ-PGA)/polyethyleneimine (PEI) hydrogel [...] Read more.
Rapid industrialization has led to significant environmental challenges, particularly in wastewater treatment, where the removal of heavy metal ions and organic dyes is critical. This study presents the synthesis and characterization of a high-performance hydrogel adsorbent, (nanoclay)x@poly-γ-glutamic acid (γ-PGA)/polyethyleneimine (PEI) hydrogel adsorbent (denoted as NxPP, x = 0, 20, 40, 60, and 80), for the efficient removal of heavy metal ions (Cu2+, Fe3+, and Zn2+) and organic dyes (Methylene blue, as a typical example) from wastewater. The hydrogel was prepared using a one-pot method, combining γ-PGA and PEI with varying amounts of nanoclay. The N80PP hydrogel demonstrated exceptional adsorption capacities, achieving 224.37 mg/g for Cu2+, 236.60 mg/g for Fe3+, and 151.95 mg/g for Zn2+ within 30 min, along with 88.18 mg/g for Methylene blue within 5 h. The incorporation of nanoclay significantly enhanced the mechanical properties, with compressive strength reaching 560.49 kPa. The hydrogel exhibited excellent reusability, maintaining high adsorption capacity after five cycles. The adsorption kinetics followed a pseudo-second-order model, and the isotherms fit the Freundlich model, indicating a multilayer adsorption mechanism. This study highlights the potential of NxPP hydrogels as a versatile and sustainable solution for wastewater treatment. Full article
(This article belongs to the Special Issue Advanced Hydrogel for Water Treatment (2nd Edition))
Show Figures

Figure 1

25 pages, 1691 KB  
Review
Microbial Poly-Glutamic Acid: Production, Biosynthesis, Properties, and Their Applications in Food, Environment, and Biomedicals
by Verma Manika, Palanisamy Bruntha Devi, Sanjay Pratap Singh, Geereddy Bhanuprakash Reddy, Digambar Kavitake and Prathapkumar Halady Shetty
Fermentation 2025, 11(4), 208; https://doi.org/10.3390/fermentation11040208 - 10 Apr 2025
Cited by 6 | Viewed by 7812
Abstract
This review offers an in-depth analysis of microbial γ-poly-glutamic acid (γ-PGA), highlighting its production, biosynthetic pathways, unique properties, and extensive applications in the food and health industries. γ-PGA is a naturally occurring biopolymer synthesized by various microorganisms, particularly species of Bacillus. The [...] Read more.
This review offers an in-depth analysis of microbial γ-poly-glutamic acid (γ-PGA), highlighting its production, biosynthetic pathways, unique properties, and extensive applications in the food and health industries. γ-PGA is a naturally occurring biopolymer synthesized by various microorganisms, particularly species of Bacillus. The report delves into the challenges and advancements in cost-effective production strategies, addressing the economic constraints associated with large-scale γ-PGA synthesis. Its biocompatibility, biodegradability, and non-toxic nature make it a promising candidate for diverse industrial applications. γ-PGA’s exceptional water-holding capacity and humectant properties are key to its utility in the food industry. These features enable it to enhance the stability, viscosity, and shelf life of food products, making it a valuable ingredient in processed foods. The review highlights its ability to improve the textural quality of baked goods, stabilize emulsions, and act as a protective agent against staling. Beyond food applications, γ-PGA’s role in health and pharmaceuticals is equally significant. Its use as a drug delivery carrier, vaccine adjuvant, and biofilm inhibitor underscores its potential in advanced healthcare solutions. Full article
Show Figures

Figure 1

18 pages, 5264 KB  
Article
A Poly-γ-Glutamic Acid/ε-Polylysine Hydrogel: Synthesis, Characterization, and Its Role in Accelerated Wound Healing
by Jiaqi Li, Yuanli Huang, Yalu Wang and Qianqian Han
Gels 2025, 11(4), 226; https://doi.org/10.3390/gels11040226 - 22 Mar 2025
Cited by 2 | Viewed by 1923
Abstract
Wound healing is a complex biological process involving inflammation, proliferation, and remodeling phases. Effective healing is essential for maintaining skin integrity, driving the need for advanced materials like hydrogels, known for their high water retention and tunable mechanical properties. In this study, we [...] Read more.
Wound healing is a complex biological process involving inflammation, proliferation, and remodeling phases. Effective healing is essential for maintaining skin integrity, driving the need for advanced materials like hydrogels, known for their high water retention and tunable mechanical properties. In this study, we synthesized a biocompatible composite hydrogel composed of γ-polyglutamic acid (γ-PGA) and ε-polylysine (ε-PL) through a Schiff base reaction, forming a stable crosslinked network. Its physicochemical properties, including rheological behavior and swelling capacity, were systematically evaluated. Biocompatibility was assessed via in vitro hemolysis and cytotoxicity assays, and in vivo testing was performed using a full-thickness skin defect model in Sprague Dawley (SD) rats to evaluate wound-healing efficacy. The PGA-PL hydrogel demonstrated excellent physicochemical properties, with a maximum swelling ratio of 65.6%, and biocompatibility as evidenced by low hemolysis rates (<5%) and high cell viability (>80%). It promoted wound healing by inhibiting the inflammatory response, reducing levels of the inflammatory cytokine IL-6, enhancing angiogenesis, and accelerating collagen deposition. The hydrogel showed complete biodegradation within 21 days in vivo without inducing a significant inflammatory response and significantly accelerated wound healing, achieving an 86% healing rate within 7 days compared to 67% in the control group. The PGA-PL composite hydrogel exhibits excellent mechanical strength and biocompatibility, and its effective wound-healing capabilities lay the groundwork for future development and optimization in various tissue engineering applications. Full article
Show Figures

Graphical abstract

22 pages, 6109 KB  
Article
Amelioration of Alcoholic Hepatic Steatosis in a Rat Model via Consumption of Poly-γ-Glutamic Acid-Enriched Fermented Protaetia brevitarsis Larvae Using Bacillus subtilis
by So-Yeon Sim, Hyun-Dong Cho and Sae-Byuk Lee
Foods 2025, 14(5), 861; https://doi.org/10.3390/foods14050861 - 3 Mar 2025
Cited by 1 | Viewed by 2848
Abstract
Alcoholic hepatic steatosis (AHS) is a common early-stage symptom of liver disease caused by alcohol consumption. Accordingly, several aspects of AHS have been studied as potential preventive and therapeutic targets. In this study, a novel strategy was employed to inhibit fatty liver accumulation [...] Read more.
Alcoholic hepatic steatosis (AHS) is a common early-stage symptom of liver disease caused by alcohol consumption. Accordingly, several aspects of AHS have been studied as potential preventive and therapeutic targets. In this study, a novel strategy was employed to inhibit fatty liver accumulation and counteract AHS through the consumption of microorganism-fermented Protaetia brevitarsis larvae (FPBs). By using an AHS rat model, we assessed the efficacy of FPB by examining the lipid profile of liver/serum and liver function tests to evaluate lipid metabolism modulation. After FPB administration, the lipid profile—including high-density lipoprotein, total cholesterol, and total triglycerides—and histopathological characteristics exhibited improvement in the animal model. Interestingly, AHS amelioration via FPBs administration was potentially associated with poly-γ-glutamic acid (PγG), which is produced by Bacillus species during fermentation. These findings support the formulation of novel natural remedies for AHS through non-clinical animal studies, suggesting that PγG-enriched FPBs are a potentially valuable ingredient for functional foods, providing an ameliorative effect on AHS. Full article
(This article belongs to the Special Issue The Development of New Functional Foods and Ingredients: 2nd Edition)
Show Figures

Figure 1

17 pages, 4522 KB  
Article
Poly-γ-Glutamic Acid from a Novel Bacillus subtilis Strain: Strengthening the Skin Barrier and Improving Moisture Retention in Keratinocytes and a Reconstructed Skin Model
by Hyun-Ju Ko, SeoA Park, Eunjin Shin, Jinhwa Kim, Geun Soo Lee, Ye-Jin Lee, Sung Min Park, Jungno Lee and Chang-Gu Hyun
Int. J. Mol. Sci. 2025, 26(3), 983; https://doi.org/10.3390/ijms26030983 - 24 Jan 2025
Cited by 2 | Viewed by 5052
Abstract
A novel Bacillus subtilis HB-31 strain was isolated from Gotjawal Wetland in Jeju Island, Republic of Korea. A mucus substance produced by this strain was identified as high-molecular-weight poly-γ-glutamic acid (γ-PGA) using NMR, Fourier transform infrared spectroscopy, and size-exclusion chromatography/multi-angle light scattering analyses. [...] Read more.
A novel Bacillus subtilis HB-31 strain was isolated from Gotjawal Wetland in Jeju Island, Republic of Korea. A mucus substance produced by this strain was identified as high-molecular-weight poly-γ-glutamic acid (γ-PGA) using NMR, Fourier transform infrared spectroscopy, and size-exclusion chromatography/multi-angle light scattering analyses. We evaluated whether γ-PGA strengthened the skin barrier using keratinocytes and a reconstructed skin model. In keratinocytes, γ-PGA treatment dose-dependently increased the mRNA expression of skin barrier markers, including filaggrin, involucrin, loricrin, serine palmitoyl transferase, fatty acid synthase, and 3-hydroxy-3-methylglutaryl coenzyme A reductase. γ-PGA also enhanced hyaluronic acid synthesis by upregulating hyaluronic acid synthase-1, -2, and -3 mRNA levels and promoted aquaporin 3 expression, which is involved in skin hydration. In the reconstructed skin model, topical application of 1% γ-PGA elevated filaggrin, involucrin, CD44, and aquaporin 3 expression, compared to the control. These results suggest that the newly isolated HB-31 can be used as a commercial production system of high-molecular-weight γ-PGA, which can serve as an effective ingredient for strengthening the skin barrier and improving moisture retention. Further research is needed to explore the long-term effects of γ-PGA on skin health and its application in treating skin conditions. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

11 pages, 1295 KB  
Article
A Convenient and Highly Efficient Strategy for Esterification of Poly (γ-Glutamic Acid) with Alkyl Halides at Room Temperature
by Youhong Ai, Yangyang Zhan, Dongbo Cai and Shouwen Chen
Polymers 2025, 17(1), 10; https://doi.org/10.3390/polym17010010 - 25 Dec 2024
Cited by 1 | Viewed by 1712
Abstract
The presented work discusses the highly efficient esterification of poly (γ-glutamic acid) (γ-PGA) with alkyl halides at room temperature. The esterification reaction was completed within 3 h, and the prepared γ-PGA esters were obtained with excellent yields (98.6%) when 1,1,3,3-tetramethylguanidine (TMG) was used [...] Read more.
The presented work discusses the highly efficient esterification of poly (γ-glutamic acid) (γ-PGA) with alkyl halides at room temperature. The esterification reaction was completed within 3 h, and the prepared γ-PGA esters were obtained with excellent yields (98.6%) when 1,1,3,3-tetramethylguanidine (TMG) was used as a promoter. The influence of the amount of TMG, solvent, reaction conditions, and alkyl halides on the esterification reaction was examined. It was found that polar aprotic solvents, such as N-Methylpyrrolidone (NMP) and 1,3-Dimethyl-2-imidazolidinone (DMI), were favorable for the esterification. Non-polar or weakly polar solvents (i.e., dichloroethane, acetonitrile) were not favorable for the esterification. Water as a solvent had a negative effect on esterification. The reactivity of bromine halogenated compounds was higher than that of chlorine halogenated compounds but lower than that of iodine halogenated compounds. The structures of the prepared γ-PGA ester were confirmed by 1H NMR and FT-IR spectroscopy. Thermal stability and hydrophobic properties of the resulting product were tested. The results showed that the prepared γ-PGA propyl ester had high thermal stability (up to 267 °C) and showed good hydrophobicity (contact angle 118.7°). Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

Back to TopTop