Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (869)

Search Parameters:
Keywords = Photochemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 790 KB  
Communication
Seasonal Dynamics of Chlorophyll Fluorescence in the Evergreen Peumus boldus and the Semideciduous Colliguaja odorifera Under Field Conditions
by Sergio Espinoza, Marco Yáñez, Eduardo Martínez-Herrera and Carlos Magni
Plants 2026, 15(2), 276; https://doi.org/10.3390/plants15020276 - 16 Jan 2026
Viewed by 231
Abstract
We used chlorophyll fluorescence techniques to investigate seasonal variations in photosystem II (PSII) quantum yield in five-year-old saplings of the sclerophyllous Peumus boldus Molina (evergreen) and Colliguaja odorifera Molina (semideciduous) planted in a semiarid site with a Mediterranean-type climate. Chlorophyll fluorescence rise kinetics [...] Read more.
We used chlorophyll fluorescence techniques to investigate seasonal variations in photosystem II (PSII) quantum yield in five-year-old saplings of the sclerophyllous Peumus boldus Molina (evergreen) and Colliguaja odorifera Molina (semideciduous) planted in a semiarid site with a Mediterranean-type climate. Chlorophyll fluorescence rise kinetics (OJIP) were monitored monthly for one year (September 2024 to September 2025). With this information, we estimated the relative deviation of the performance index (PIABS) of each species from the average PIABS in each season (denoted as ∆PIABS). P. boldus was associated with destruction of PSII reaction centers and incapacity for electron transport, i.e., higher values of parameters ABS/RC (effective antenna size of an active reaction center) and F0 (minimal fluorescence), whereas C. odorifera was associated with higher photosynthetic performance i.e., higher values of PIABS, PITOT (total performance index), FV/F0 (ratio between variable and minimal fluorescence), and FV/FM (maximum quantum yield of primary PSII photochemistry). PIABS exhibited a 52 and 38% reduction (i.e., −∆PIABS) during spring and winter in P. boldus, but an increase (i.e., +∆PIABS) of 52 and 37% in the same seasons for C. odorifera. P. boldus was considerably more depressed during the winter–spring season than the summer months. This suggests that PSII function in P. boldus is more sensitive to low temperatures in winter and spring than the lack of water and high temperatures during summer. Full article
(This article belongs to the Special Issue Mediterranean Shrub Ecosystems Under Climate Change)
Show Figures

Figure 1

41 pages, 6896 KB  
Review
Illuminating Total Synthesis: Strategic Applications of Photochemistry in Natural Product Construction
by Pietro Capurro, Cristina Martini and Andrea Basso
Photochem 2026, 6(1), 5; https://doi.org/10.3390/photochem6010005 - 12 Jan 2026
Viewed by 242
Abstract
Synthesizing natural substances has always been a significant challenge for organic chemists. The key to a successful total synthesis lies in utilizing reactions that generate molecular complexity with high stereocontrol. Photochemical reactions offer immense potential in this regard, though their complex mechanisms require [...] Read more.
Synthesizing natural substances has always been a significant challenge for organic chemists. The key to a successful total synthesis lies in utilizing reactions that generate molecular complexity with high stereocontrol. Photochemical reactions offer immense potential in this regard, though their complex mechanisms require careful mastery. This review explores recent examples from the literature where light-mediated reactions are crucial, often irreplaceable by thermal alternatives. The manuscript is organized by different photochemical processes, each introduced with relevant background. This review does not offer a complete analysis of all recent light-assisted syntheses; rather, it offers a glimpse into the growing trend of using photo-driven transformations to address significant synthetic challenges. Full article
(This article belongs to the Special Issue Feature Review Papers in Photochemistry)
Show Figures

Graphical abstract

19 pages, 2766 KB  
Article
Regulatory Effects of Exogenous Trehalose on the Growth and Photosynthetic Characteristics of Celery (Apium graveolens L.) Under Salt Stress
by Yanqiang Gao, Liangmei Zhang, Wenjing Rui, Miao Zhang, Zixiao Liang, Kaiguo Pu, Youlin Chang, Yongwei Ma, Jingwen Huo, Jiongjie Zhang, Jing Li and Jianming Xie
Plants 2026, 15(2), 212; https://doi.org/10.3390/plants15020212 - 9 Jan 2026
Viewed by 168
Abstract
Salinity has been recognized as one of the major environmental stresses that restrict the growth and quality of celery (Apium graveolens L.). Therefore, this study investigates the impact of different NaCl concentrations on celery growth and photosynthetic characteristics, as well as the [...] Read more.
Salinity has been recognized as one of the major environmental stresses that restrict the growth and quality of celery (Apium graveolens L.). Therefore, this study investigates the impact of different NaCl concentrations on celery growth and photosynthetic characteristics, as well as the potential regulatory role of exogenous trehalose application in mitigating the stress-induced effects. The results indicated that an increase in NaCl concentration from 50 to 200 mM markedly inhibited the growth of celery plants compared to that under control conditions. The application of different concentrations of trehalose mitigated the inhibitory effects of salt stress (100 mM NaCl) on celery growth and photosynthesis. Among the different trehalose treatments, T3 (10 mM trehalose) exhibited the most significant effects, increasing the aboveground biomass, belowground biomass, plant height, chlorophyll a, chlorophyll b, total chlorophyll, and net photosynthetic rate compared to that of salt stress alone, respectively. Furthermore, trehalose treatments enhanced the various fluorescence parameters, including the maximum efficiency of PSII photochemistry (Fv/Fm), coefficient of photochemical quenching (qP), fluorescence intensity, and photosynthetic performance index (PIabs) under salt stress. Meanwhile, trehalose reduced intercellular carbon dioxide concentration, excess excitation energy (1-qP)/NPQ, heat dissipation per unit area (DIo/CSm), and energy dissipated per reaction center (DIo/RC). Additionally, the results of principal component analysis (PCA) and membership function comprehensive evaluation indicate that an appropriate concentration of trehalose positively alleviates the salnitiy-induced effects in celery. Overall, the T3 demonstrated the most promising effects on mitigating the effects of salt stress by decreasing the excess excitation energy of PSII in celery leaves through the heat dissipation pathway. This reduction lowers the excitation pressure on the reaction centers, enhances the activity of PSII reaction centers per unit cross-section, and improves photosynthesis activity, thereby improving the growth of celery plants under salt stress. Full article
(This article belongs to the Section Plant Response to Abiotic Stress and Climate Change)
Show Figures

Figure 1

19 pages, 3132 KB  
Review
Suspension Type TiO2 Photocatalysts for Water Treatment: Magnetic TiO2/SiO2/Fe3O4 Nanoparticles and Submillimeter TiO2-Polystyrene Beads
by Manabu Kiguchi and Nobuhiro Hanada
ChemEngineering 2026, 10(1), 3; https://doi.org/10.3390/chemengineering10010003 - 4 Jan 2026
Viewed by 343
Abstract
Photocatalytic degradation of organic molecules using TiO2 has attracted attention in wastewater treatment because it can decompose organic compounds that are difficult to decompose by other methods. Meanwhile, efficient photocatalytic water treatment is difficult because it is not easy to separate nano-sized [...] Read more.
Photocatalytic degradation of organic molecules using TiO2 has attracted attention in wastewater treatment because it can decompose organic compounds that are difficult to decompose by other methods. Meanwhile, efficient photocatalytic water treatment is difficult because it is not easy to separate nano-sized photocatalysts from water. In this review, we have described two approaches to solve the water separation challenge in the suspension type TiO2 photocatalysts, which are uniformly distributed in water: magnetic TiO2/SiO2/Fe3O4 nanoparticles and TiO2-polystyrene beads. The preparation, characterization, and photocatalytic performance of the two types of photocatalysts and their application are discussed. Finally, we compare two types of photocatalysts while focusing on the respective advantages and disadvantages of each, and the future direction of research. Full article
(This article belongs to the Special Issue Advances in Chemical Engineering and Wastewater Treatment)
Show Figures

Graphical abstract

22 pages, 4227 KB  
Review
Current Status and Future Prospects of Photocatalytic Technology for Water Sterilization
by Nobuhiro Hanada, Manabu Kiguchi and Akira Fujishima
Catalysts 2026, 16(1), 40; https://doi.org/10.3390/catal16010040 - 1 Jan 2026
Viewed by 409
Abstract
Photocatalytic water sterilization has emerged as a promising sustainable technology for addressing microbial contamination across diverse sectors including healthcare, food production, and environmental management. This review examines the fundamental mechanisms and recent advances in photocatalytic water sterilization, with a particular emphasis on the [...] Read more.
Photocatalytic water sterilization has emerged as a promising sustainable technology for addressing microbial contamination across diverse sectors including healthcare, food production, and environmental management. This review examines the fundamental mechanisms and recent advances in photocatalytic water sterilization, with a particular emphasis on the differential bactericidal pathways against Gram-negative and Gram-positive bacteria. Gram-negative bacteria undergo a two-step inactivation process involving initial outer membrane lipopolysaccharide (LPS) degradation followed by inner membrane disruption, whereas Gram-positive bacteria exhibit simpler kinetics due to direct oxidative attacks on their thick peptidoglycan layer. Escherichia coli has long been used as the gold standard in photocatalytic sterilization studies owing to its aerobic nature and suitability for the colony-counting method. In contrast, Lactobacillus casei, a facultative anaerobe, can be cultured statically and evaluated rapidly using turbidity-based optical density measurements. Therefore, both organisms serve complementary roles depending on the experimental objectives—E. coli for precise quantification and L. casei for rapid, practical assessments of Gram-positive bacterial inactivation under laboratory conditions. We also describe sterilization using light alone while comparing it to photocatalytic sterilization and then discuss two innovative suspension-based photocatalyst systems: polystyrene bead-supported TiO2/SiO2 composites offering balanced reactivity and separability and magnetic TiO2-SiO2/Fe3O4 nanoparticles enabling rapid magnetic recovery. Future research directions should prioritize enhancing visible-light efficiency using metal-doped TiO2 such as Cu-doped systems; improving catalyst durability; developing new applications of photocatalysts, such as protecting RO membranes; and validating scalability across diverse industrial and medical water treatment applications. Full article
Show Figures

Graphical abstract

22 pages, 932 KB  
Review
Absorption of Energy in Excess, Photoinhibition, Transpiration, and Foliar Heat Emission Feedback Loops During Global Warming
by Roshanak Zarrin Ghalami, Maria Duszyn and Stanisław Karpiński
Cells 2026, 15(1), 75; https://doi.org/10.3390/cells15010075 - 1 Jan 2026
Viewed by 495
Abstract
Global warming is increasingly constraining plant productivity by altering the photosynthetic energy balance and leaf thermoregulation. Under high light and elevated temperatures, absorption of energy in excess (AEE) by photosystem II disrupts photosynthetic electron transport, oxygen evolution, and CO2 assimilation, often accompanied [...] Read more.
Global warming is increasingly constraining plant productivity by altering the photosynthetic energy balance and leaf thermoregulation. Under high light and elevated temperatures, absorption of energy in excess (AEE) by photosystem II disrupts photosynthetic electron transport, oxygen evolution, and CO2 assimilation, often accompanied by reduced foliar transpiration. These conditions promote photoinhibition, as reflected by a decrease in maximal photosynthetic efficiency (Fv/Fm), an increase in non-photochemical quenching (NPQ), and photooxidative stress associated with enhanced reactive oxygen species (ROS) production. In addition to environmental heat stress, AEE influences foliar temperature through internal energy partitioning, including regulated dissipation of AEE as heat and changes in transpirational cooling. The relative contributions of NPQ, photochemistry, and transpiration to leaf temperature regulation are strongly context dependent and vary with light intensity, temperature changes, and water availability. Under global warming, rising background temperatures and increased vapor pressure deficit may constrain transpirational cooling and alter the balance between non-photochemical and photochemical energy dissipation and usage, respectively. In this review, we synthesize current knowledge on AEE handling, photoinhibition, NPQ and other quenching processes, and on transpiration cooling, and discuss a conceptual framework in which sustained imbalance among these processes under global warming conditions could amplify foliar heat stress and increase the risk of cellular damage. Rather than proposing new physiological mechanisms, this work integrates existing evidence across molecular, leaf, and ecosystem scales to highlight potential feedbacks relevant to plant performance under future climate prediction scenarios. Full article
(This article belongs to the Special Issue Plant Stress and Acclimation Responses During Global Warming)
Show Figures

Figure 1

27 pages, 2143 KB  
Perspective
Towards Flow Heterogeneous Photocatalysis as a Practical Approach to Point-of-Use Water Remediation Strategies
by Maria Jazmin Silvero C., Julia Ong, Carly J. Frank, Nelson Rutajoga, Neeraj Joshi, Benjamin Cajka, Saba Didarataee, Mahtab Hamrahjoo and Juan C. Scaiano
Catalysts 2026, 16(1), 35; https://doi.org/10.3390/catal16010035 - 1 Jan 2026
Viewed by 380
Abstract
The United Nations and the World Health Organization provide clear guidelines to ensure water security for urban and rural populations. Common contaminants include bacteria and a variety of organic contaminants, such as medications and agricultural runoff. The rapid advancement of point-of-use water treatment [...] Read more.
The United Nations and the World Health Organization provide clear guidelines to ensure water security for urban and rural populations. Common contaminants include bacteria and a variety of organic contaminants, such as medications and agricultural runoff. The rapid advancement of point-of-use water treatment is crucial to align with these international recommendations. While some problems are chronic and require long-term solutions, others are transient contamination issues that occur without warning and frequently lead to boil water advisories that can last for extended periods. In these cases, providing reliable water security requires solutions that can be deployed rapidly, are affordable, and can be implemented at the point of use with minimal operator training. Our research explores the state of the art in photocatalysis as a method for purifying water from organic contaminants and bacteria. We present a comparative analysis of various catalysts, supports, and light sources, along with our perspective on the benefits of flow systems. Practical solutions require flow techniques that are portable and can address at least the recommended survival requirements of ~7.5 L per capita per day for small communities, schools, or small hospitals. In this perspective, we propose that flow-compatible modified TiO2 catalysts can offer practical solutions implemented with either solar light or LED sources in the UVA or visible region. Full article
(This article belongs to the Special Issue Remediation of Natural Waters by Photocatalysis)
Show Figures

Graphical abstract

22 pages, 6992 KB  
Article
Photoinduced Geometric Isomerization of 1-Aryl-1,3-Butadienes: Influence of Substituent on Photoreactivity—Structural and Photochemical Insights
by Maria Antonietta Dettori, Davide Fabbri, Roberto Dallocchio, Nicola Culeddu, Maria Orecchioni and Paola Carta
Chemistry 2026, 8(1), 4; https://doi.org/10.3390/chemistry8010004 - 31 Dec 2025
Viewed by 367
Abstract
This study investigates the synthesis and photochemical behavior of a series of (E)-1-aryl-1,3-butadienes with different aromatic substituents. Despite their simple structure and straightforward preparation, detailed studies of their photochemical properties, especially UV light-induced (E) to (Z) isomerization, [...] Read more.
This study investigates the synthesis and photochemical behavior of a series of (E)-1-aryl-1,3-butadienes with different aromatic substituents. Despite their simple structure and straightforward preparation, detailed studies of their photochemical properties, especially UV light-induced (E) to (Z) isomerization, are scarce. Our results demonstrate that these compounds can efficiently undergo photo-triggered geometric changes, highlighting their potential as functional units in photochemical applications. The findings underline the significance of extended conjugation in managing excited-state processes, providing new insights into the dynamics of photoinduced transformations in conjugated diene systems. Additional computational analyses show how geometric modifications influence conformational energies in the synthesized compounds. Overall, these results improve understanding of structure–reactivity relationships and lay the foundation for designing photoresponsive materials based on (E) and (Z)-1-aryl-1,3-butadiene frameworks, with promising applications in photochemistry and materials science. Full article
(This article belongs to the Section Photochemistry and Excited States)
Show Figures

Graphical abstract

17 pages, 4176 KB  
Article
Solvent-Mediated Control of Twisted Intramolecular Charge Transfer in 7-(Diethylamino)coumarin-3-carboxylic Acid
by Xilin Bai, Jing Xiao, Bingqi Du, Duidui Liu, Yanzhuo Wang, Shujing Shi and Jing Ge
Molecules 2026, 31(1), 76; https://doi.org/10.3390/molecules31010076 - 24 Dec 2025
Viewed by 524
Abstract
Understanding the influence of solvent environments on the excited-state charge transfer process remains a fundamental question in molecular photophysics and photochemistry. While twisted intramolecular charge transfer (TICT) is crucial in determining fluorescence efficiency and photostability, the combined effects of solvent polarity and hydrogen [...] Read more.
Understanding the influence of solvent environments on the excited-state charge transfer process remains a fundamental question in molecular photophysics and photochemistry. While twisted intramolecular charge transfer (TICT) is crucial in determining fluorescence efficiency and photostability, the combined effects of solvent polarity and hydrogen bonding interactions are still elusive. Here, we employ steady-state and femtosecond transient absorption (fs-TA) spectroscopy with density functional theory (DFT) calculations to investigate the excited-state dynamics of 7-(diethylamino)coumarin-3-carboxylic acid (7-DCCA) in different solvents. Our findings reveal that in highly polar solvents with strong hydrogen-donating and hydrogen-accepting capabilities, 7-DCCA undergoes significant TICT formation, resulting in fluorescence quenching. Conversely, in environments with low polarity or weak hydrogen-bonding interactions, this transformation is largely suppressed. Quantitative correlation analysis utilizing the Kamlet–Taft and Catalán four-parameter models further elucidates the synergistic role of solvent polarity and specific hydrogen-bonding parameters in modulating the steady-state spectral behavior of 7-DCCA. This study provides microscopic insights into solvent–charge transfer interactions and establishes a general framework for enhancing the luminescence efficiency and structural robustness of organic optoelectronic materials through strategic solvent engineering. Full article
(This article belongs to the Section Physical Chemistry)
Show Figures

Graphical abstract

15 pages, 1414 KB  
Article
An Air-Quality-Based Analysis of NO, NO2, and O3 at a Suburban Mediterranean Site
by Sofia Eirini Chatoutsidou, Iliana Kordonouri and Mihalis Lazaridis
Atmosphere 2026, 17(1), 7; https://doi.org/10.3390/atmos17010007 - 22 Dec 2025
Viewed by 331
Abstract
NO, NO2, and O3 were measured for 1 year at a suburban site in the southeast Mediterranean. NO preserved no seasonality, but significant seasonal variations were obtained for NO2 and O3. These pollutants exhibited inverse trends with [...] Read more.
NO, NO2, and O3 were measured for 1 year at a suburban site in the southeast Mediterranean. NO preserved no seasonality, but significant seasonal variations were obtained for NO2 and O3. These pollutants exhibited inverse trends with higher NO2 levels measured during wintertime, whilst higher O3 levels were measured during summertime. Photochemistry was the primary reason for the opposing variations in both pollutants, although O3 levels were frequently increased due to O3-rich plumes travelling from northeast Europe, highlighting the impact of regional contributions in the measured concentrations. Nevertheless, anthropogenic sources were identified and contributed to both NO and NO2. Diurnal variations analysis showed that NO increased usually in the early morning and was linked with primary emissions from traffic. NO2 increased simultaneously with NO in the early morning, and besides primary vehicle emissions, it was associated with secondary formation from the emitted NO. Moreover, a significant contribution from domestic heating emissions on NO2 was identified in the late evening during wintertime. Overall, a relative burden of weekdays was associated with NO (morning rush hours) and NO2 (morning rush hours, evening), whereas weekends were burdened by O3 due to the weekend effect. Comparison with European Union air quality standards showed that NO2 was considerably lower than the limit values, but a significant number of exceedances were identified for O3, especially during the warmer months. This finding suggested the relative burden of the study site from O3. In conclusion, NO at the study site was influenced by primary traffic emissions, whereas NO2 had both primary and secondary contributions, and together with photochemistry, both pollutants governed O3 diurnal and seasonal cycles. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

22 pages, 1544 KB  
Review
The Quest for Luminescent Iron Complexes
by Salvatore Genovese, Federica Giorgianni, Alessandro Amadeo, Scolastica Serroni and Sebastiano Campagna
Photochem 2026, 6(1), 2; https://doi.org/10.3390/photochem6010002 - 19 Dec 2025
Viewed by 350
Abstract
The photochemistry of transition metal complexes has been crucial for the development of many fundamental topics, as well as to pave the way for several important applications. However, in most cases, photoactive transition metal complexes involved precious metals, with luminescent ruthenium polypyridine complexes [...] Read more.
The photochemistry of transition metal complexes has been crucial for the development of many fundamental topics, as well as to pave the way for several important applications. However, in most cases, photoactive transition metal complexes involved precious metals, with luminescent ruthenium polypyridine complexes playing the dominant role. Developing photoactive species based on earth-abundant metals is highly important for fundamental and applicative reasons. Iron is one of the most abundant metals on Earth’s crust, so luminescent iron complexes are highly desired. The recent search for iron complexes with long-lived and luminescent excited states is here presented, including Fe(II) species with metal-to-ligand charge transfer (MLCT) excited states and Fe(III) species with luminescent ligand-to-metal charge transfer (LMCT) states. The excited-state equilibration approach to prolong the luminescence lifetimes of Fe(III) compounds in multichromophoric species is also discussed. This latter approach can increase the possibility of luminescent iron complexes being involved in bimolecular processes as well as in photoinduced electron and energy transfer at interfaces, which is relevant for many applications. Full article
Show Figures

Graphical abstract

17 pages, 3312 KB  
Article
Characterization of VOCs at Shaoxing in the Winter Campaign: Sources and Chemical Reactivity
by Dongfeng Shi, Yan Lyu, Junpeng Song, Qing Ren, Xing Chen, Liyong Hu, Wenting Zhuge, Kewen Hu, Dongmei Cai, Xianda Gong and Jianmin Chen
Atmosphere 2025, 16(12), 1404; https://doi.org/10.3390/atmos16121404 - 14 Dec 2025
Viewed by 427
Abstract
Despite recent improvements in particulate matter (PM) pollution, haze events still frequently occur in many regions of China. Volatile organic compounds (VOCs), as key precursors in atmospheric photochemistry, play a crucial role in haze formation. To elucidate their contributions, high-resolution hourly VOC measurements [...] Read more.
Despite recent improvements in particulate matter (PM) pollution, haze events still frequently occur in many regions of China. Volatile organic compounds (VOCs), as key precursors in atmospheric photochemistry, play a crucial role in haze formation. To elucidate their contributions, high-resolution hourly VOC measurements were conducted in Shaoxing, an industrial city in eastern China, during a winter field campaign from 1 December 2023 to 15 January 2024. The VOC groups were dominated by alkanes (31.5–53.8%), followed by alkenes (7.1–15.1%) and aromatics (6.7–14.1%). Positive Matrix Factorization (PMF) analysis resolved six major VOC sources: vehicle emissions (VE, 33.8%), combustion sources (CS, 20.0%), industrial emissions (IE, 13.4%), gasoline evaporation (GE, 14.6%), solvent usage (SU, 6.9%), and biogenic activities (BA, 12.6%). Based on the PMF results, we further evaluated the source-specific contributions of VOCs to OH radical loss rate (LOH), ozone formation potential (OFP), and secondary organic aerosol potential (SOAP). During the haze episode, GE was the dominant driver of LOH (33%), while IE (23%), GE (22%), and VE (20%) were major SOAP contributors. In contrast, during the other periods, CS contributed most to both OFP (24%) and SOAP (28%), followed by VE (22–23%). Overall, our study highlights the critical role of anthropogenic activities in driving secondary pollution and suggests that sector-specific mitigation strategies hold significant potential for local haze abatement. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

20 pages, 7210 KB  
Article
Seasonal Changes in Physiological Responses and Yield of Citrus latifolia Under High-Density Planting and Different Soil Moisture Tensions
by Benigno Rivera-Hernández, René Garruña, José Luis Andrade, Wilmer Tezara, Roberth Us Santamaría, Rubén H. Andueza-Noh, Vianey González-Jiménez and Eugenio Carrillo-Ávila
Horticulturae 2025, 11(12), 1472; https://doi.org/10.3390/horticulturae11121472 - 5 Dec 2025
Viewed by 431
Abstract
This study aimed to evaluate the physiological responses and yield of Tahiti lime (Citrus latifolia) cultivated at high density under three soil moisture tension (SMT) levels: low (L = −0.010 MPa), medium (M = −0.035 MPa), and high (H = −0.085 [...] Read more.
This study aimed to evaluate the physiological responses and yield of Tahiti lime (Citrus latifolia) cultivated at high density under three soil moisture tension (SMT) levels: low (L = −0.010 MPa), medium (M = −0.035 MPa), and high (H = −0.085 MPa). Measurements included water status, sap flow, photochemical activity, gas exchange, and fruit yield during the dry and early rainy seasons. The leaf water potential (ΨL) and relative water content (RWC) were higher in the L and M treatments than in H, with an overall improvement at the onset of the rainy season. From the dry to the rainy season, sap flow decreased by 25.3, 16.0, and 1.9 L day−1 in L, M, and H plants, respectively. Plants with higher soil water availability (L and M) maintained better water status during the dry season, which favored photochemistry and gas exchange, reflected in a greater shoot growth and fruit yield (54.5 and 53.4 kg plant−1, respectively). In contrast, H SMT significantly reduced water relations and photosynthetic activity, leading to yield loss. Short-term rainfall (six days) was insufficient to restore physiological performance. Maintaining SMT around −0.035 MPa during the dry season optimizes yield while reducing water use. Full article
(This article belongs to the Section Fruit Production Systems)
Show Figures

Figure 1

21 pages, 13065 KB  
Review
Application of Photochemistry in Natural Product Synthesis: A Sustainable Frontier
by Shipra Gupta
Photochem 2025, 5(4), 39; https://doi.org/10.3390/photochem5040039 - 5 Dec 2025
Viewed by 626
Abstract
Natural Product Synthesis (NPS) is a cornerstone of organic chemistry, historically rooted in the dual goals of structure elucidation and synthetic strategy development for bioactive compounds. Initially focused on identifying the structures of medicinally relevant natural products, NPS has evolved into a dynamic [...] Read more.
Natural Product Synthesis (NPS) is a cornerstone of organic chemistry, historically rooted in the dual goals of structure elucidation and synthetic strategy development for bioactive compounds. Initially focused on identifying the structures of medicinally relevant natural products, NPS has evolved into a dynamic field with applications in drug discovery, immunotherapy, and smart materials. This evolution has been propelled by advances in reaction design, mechanistic insight, and the integration of green chemistry principles. A particularly promising development in NPS is the use of photochemistry, which harnesses light—a renewable energy source—to drive chemical transformations. Photochemical reactions offer unique excited-state reactivity, enabling synthetic pathways that are often inaccessible through thermal methods. Their precision and sustainability make them ideal for modern synthetic challenges. This review explores a wide range of photochemical reactions, from classical to contemporary, emphasizing their role in total synthesis. By showcasing their potential, the review aims to encourage broader adoption of photochemical strategies in the synthesis of complex natural products, promoting innovation at the intersection of molecular complexity, sustainability, and synthetic efficiency. Full article
(This article belongs to the Special Issue Feature Review Papers in Photochemistry)
Show Figures

Graphical abstract

20 pages, 4079 KB  
Article
Oxidative Stress and Negative Consequences on Photosystem II Occasioned by Lead Stress Are Mitigated by 24-Epibrassinolide and Dopamine in Tomato Plants
by Lohana Ribeiro Prestes, Sharon Graziela Alves da Silva, Madson Mateus Santos da Silva, Maria Andressa Fernandes Gonçalves, Elaine Maria Silva Guedes Lobato, Caroline Cristine Augusto, Bruno Lemos Batista and Allan Klynger da Silva Lobato
Plants 2025, 14(23), 3699; https://doi.org/10.3390/plants14233699 - 4 Dec 2025
Viewed by 531
Abstract
Food security and human health are directly related to the condition of agricultural soils. Soil contamination by heavy metals is a global environmental problem. Lead (Pb) is a toxic and non-biodegradable element posing a significant risk to ecosystems and human health. 24-Epibrassinolide (EBR) [...] Read more.
Food security and human health are directly related to the condition of agricultural soils. Soil contamination by heavy metals is a global environmental problem. Lead (Pb) is a toxic and non-biodegradable element posing a significant risk to ecosystems and human health. 24-Epibrassinolide (EBR) has multiple benefits in plant metabolism, including maximizing gas exchange. In plants, exogenous application of dopamine (DOP) confers tolerance to abiotic stresses, minimizing interferences on growth. This study aimed to investigate whether the exogenous application of EBR and DOP, administered independently or jointly, can contribute to mitigating the oxidative stress and impacts on photosystem II in Pb-stressed tomato, evaluating parameters related to nutritional status, photosystem II activity, gas exchange, antioxidant enzymes, and biomass. Better results were observed with the isolated EBR application, improving the photosynthetic efficiency, as evidenced by the increases in chlorophyll contents, effective quantum yield of PSII photochemistry, photochemical quenching coefficient, and electron transport rate, resulting in a higher net photosynthesis rate. Parallelly, treatment using both plant growth regulators (DOP and EBR) promoted significant increases of 14%, 18%, 13%, and 35% in the activities of superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase, contributing to the reduction in oxidative stress in photosystem II of Pb-stressed plants. Therefore, this research proves that the exogenous application of DOP and EBR, alone or in combination, attenuates the toxic effects generated by Pb in tomato plants. Full article
Show Figures

Figure 1

Back to TopTop