Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (509)

Search Parameters:
Keywords = Pb remediation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 7171 KiB  
Article
Distribution Characteristics, Mobility, and Influencing Factors of Heavy Metals at the Sediment–Water Interface in South Dongting Lake
by Xiaohong Fang, Xiangyu Han, Chuanyong Tang, Bo Peng, Qing Peng, Linjie Hu, Yuru Zhong and Shana Shi
Water 2025, 17(15), 2331; https://doi.org/10.3390/w17152331 - 5 Aug 2025
Abstract
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments [...] Read more.
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments with heavy metals (HMs). This study investigated the distribution, mobility, and influencing factors of HMs at the sediment–water interface. To this end, sediment samples were analyzed from three key regions (Xiangjiang River estuary, Zishui River estuary, and northeastern South Dongting Lake) using traditional sampling methods and Diffusive Gradients in Thin Films (DGT) technology. Analysis of fifteen HMs (Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, V, Cr, Cu, Tl, Co, and Fe) revealed significant spatial heterogeneity. The results showed that Cr, Cu, Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, and Fe exhibited high variability (CV > 0.20), whereas V, Tl, and Co demonstrated stable concentrations (CV < 0.20). Concentrations were found to exceed background values of the upper continental crust of eastern China (UCC), Yangtze River sediments (YZ), and Dongting Lake sediments (DT), particularly at the Xiangjiang estuary (XE) and in the northeastern regions. Speciation analysis revealed that V, Cr, Cu, Ni, and As were predominantly found in the residual fraction (F4), while Pb and Co were concentrated in the oxidizable fraction (F3), Mn and Zn appeared primarily in the exchangeable fractions (F1 and F2), and Cd was notably dominant in the exchangeable fraction (F1), suggesting a high potential for mobility. Additionally, DGT results confirmed a significant potential for the release of Pb, Zn, and Cd. Contamination assessment using the Pollution Load Index (PLI) and Geoaccumulation Index (Igeo) identified Pb, Bi, Ni, As, Se, Cd, and Sb as major pollutants. Among these, Bi and Cd were found to pose the highest risks. Furthermore, the Risk Assessment Code (RAC) and the Potential Ecological Risk Index (PERI) highlighted Cd as the primary ecological risk contributor, especially in the XE. The study identified sediment grain size, pH, electrical conductivity, and nutrient levels as the primary influencing factors. The PMF modeling revealed HM sources as mixed smelting/natural inputs, agricultural activities, natural weathering, and mining/smelting operations, suggesting that remediation should prioritize Cd control in the XE with emphasis on external inputs. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

18 pages, 1555 KiB  
Review
Immobilization of Cadmium, Lead, and Copper in Soil Using Bacteria: A Literature Review
by Saulius Vasarevičius and Vaida Paliulienė
Land 2025, 14(8), 1547; https://doi.org/10.3390/land14081547 - 28 Jul 2025
Viewed by 322
Abstract
The heavy metal contamination of soils is a global environmental challenge threatening water quality, food safety, and human health. Using a systematic literature review approach, this study aimed to assess the potential of bacterial strains to immobilize cadmium (Cd2+), lead (Pb [...] Read more.
The heavy metal contamination of soils is a global environmental challenge threatening water quality, food safety, and human health. Using a systematic literature review approach, this study aimed to assess the potential of bacterial strains to immobilize cadmium (Cd2+), lead (Pb2+), and copper (Cu2+) in contaminated soils. A total of 45 articles were analyzed, focusing on studies that reported heavy metal concentrations before and after bacterial treatment. The analysis revealed that bacterial genera such as Bacillus, Pseudomonas, and Enterobacter were most commonly used for the immobilization of these metals. Immobilization efficiencies ranged from 25% to over 98%, with higher efficiencies generally observed when microbial consortia or amendments (e.g., phosphate compounds and biochar) were applied. The main immobilization mechanisms included biosorption, bioprecipitation (such as carbonate-induced precipitation), bioaccumulation, and biomineralization, which convert mobile metal ions into more stable, less bioavailable forms. These findings highlight the promising role of microbial-assisted immobilization in mitigating heavy metal pollution and reducing ecological risks. Further laboratory and field studies are needed to optimize the use of these microbial strains under site-specific conditions to ensure effective and sustainable soil remediation practices. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

22 pages, 6926 KiB  
Article
Exploring Heavy Metals Exposure in Urban Green Zones of Thessaloniki (Northern Greece): Risks to Soil and People’s Health
by Ioannis Papadopoulos, Evangelia E. Golia, Ourania-Despoina Kantzou, Sotiria G. Papadimou and Anna Bourliva
Toxics 2025, 13(8), 632; https://doi.org/10.3390/toxics13080632 - 27 Jul 2025
Viewed by 1050
Abstract
This study investigates the heavy metal contamination in urban and peri-urban soils of Thessaloniki, Greece, over a two-year period (2023–2024). A total of 208 composite soil samples were systematically collected from 52 sites representing diverse land uses, including high-traffic roadsides, industrial zones, residential [...] Read more.
This study investigates the heavy metal contamination in urban and peri-urban soils of Thessaloniki, Greece, over a two-year period (2023–2024). A total of 208 composite soil samples were systematically collected from 52 sites representing diverse land uses, including high-traffic roadsides, industrial zones, residential neighborhoods, parks, and mixed-use areas, with sampling conducted both after the wet (winter) and dry (summer) seasons. Soil physicochemical properties (pH, electrical conductivity, texture, organic matter, and calcium carbonate content) were analyzed alongside the concentrations of heavy metals such as Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn. A pollution assessment employed the Geoaccumulation Index (Igeo), Contamination Factor (Cf), Pollution Load Index (PLI), and Potential Ecological Risk Index (RI), revealing variable contamination levels across the city, with certain hotspots exhibiting a considerable to very high ecological risk. Multivariate statistical analyses (PCA and HCA) identified distinct anthropogenic and geogenic sources of heavy metals. Health risk assessments, based on USEPA models, evaluated non-carcinogenic and carcinogenic risks for both adults and children via ingestion and dermal contact pathways. The results indicate that while most sites present low to moderate health risks, specific locations, particularly near major transport and industrial areas, pose elevated risks, especially for children. The findings underscore the need for targeted monitoring and remediation strategies to mitigate the ecological and human health risks associated with urban soil pollution in Thessaloniki. Full article
(This article belongs to the Special Issue Distribution and Behavior of Trace Metals in the Environment)
Show Figures

Figure 1

14 pages, 728 KiB  
Article
Groundwater Quality Analysis: Assessing the Impact of a Closed Landfill—A Case Study on Physico-Chemical and Microplastic Contaminants
by Grzegorz Przydatek, Józef Ciuła, Narcis Barsan, Diana Mirila and Emilian Mosnegutu
Appl. Sci. 2025, 15(15), 8223; https://doi.org/10.3390/app15158223 - 24 Jul 2025
Viewed by 313
Abstract
In the context of increasing concern over long-term environmental impacts of closed landfill sites, this study investigates the composition of groundwater and leachate at a municipal waste landfill in southwestern Poland, two decades after its closure. The research, conducted in 2023, aimed to [...] Read more.
In the context of increasing concern over long-term environmental impacts of closed landfill sites, this study investigates the composition of groundwater and leachate at a municipal waste landfill in southwestern Poland, two decades after its closure. The research, conducted in 2023, aimed to assess groundwater quality using 11 physico-chemical and 13 microplastic indicators. Groundwater and leachate samples were collected seasonally to assess of groundwater quality around landfill, including presence of heavy metals (Cd, Cr6+, Cu, Pb), PAHs and TOC, and microplastics. The results revealed persistent environmental degradation, with elevated concentrations of total organic carbon (24.8 mg/L) and cadmium (0.0211 mg/L), particularly in the second half of the year. Additionally, PET microplastics were detected in correlation with increased precipitation and leachate generation. These findings indicate that pollutants continue to migrate from the waste deposit into the surrounding groundwater, with seasonal patterns amplifying their presence. The study confirms that even decades after closure, municipal landfills can remain significant sources of both chemical and microplastic contamination, underlining the need for long-term monitoring and remediation strategies to protect groundwater resources. Full article
Show Figures

Figure 1

20 pages, 1612 KiB  
Review
Phytoremediation Potential of Silicon-Treated Brassica juncea L. in Mining-Affected Water and Soil Composites in South Africa: A Review
by Kamogelo Katlego Motshumi, Awonke Mbangi, Elmarie Van Der Watt and Zenzile Peter Khetsha
Agriculture 2025, 15(15), 1582; https://doi.org/10.3390/agriculture15151582 - 23 Jul 2025
Viewed by 284
Abstract
Heavy metal pollution due to mining activities poses a significant threat to agricultural production, ecosystem health, and food security in South Africa. This review integrates current knowledge on the use of mustard spinach (Brassica juncea (L.) Czern.) for the bioremediation of polluted [...] Read more.
Heavy metal pollution due to mining activities poses a significant threat to agricultural production, ecosystem health, and food security in South Africa. This review integrates current knowledge on the use of mustard spinach (Brassica juncea (L.) Czern.) for the bioremediation of polluted water and soil, focusing on enhancing phytoremediation efficiency through the use of silicon-based biostimulant treatments. Mustard spinach is known for its capacity to accumulate and tolerate high levels of toxic metals, such as Pb, Cd, and Hg, owing to its strong physiological and biochemical defense mechanisms, including metal chelation, antioxidant activity, and osmotic adjustment. However, phytoremediation potential is often constrained by the negative impact of heavy metal stress on plant growth. Recent studies have shown that silicon-based biostimulants can alleviate metal toxicity by reducing metal bioavailability, increasing metal immobilization, and improving the antioxidative capacity and growth of plants. Combining silicon amendments with mustard spinach cultivation is a promising, eco-friendly approach to the remediation of mining-impacted soils and waters, potentially restoring agricultural productivity and reducing health risks to the resident populations. This review elucidates the multifaceted mechanisms by which silicon-enhanced phytoremediation operates, including soil chemistry modification, metal sequestration, antioxidant defense, and physiological resilience, while highlighting the practical, field-applicable benefits of this combined approach. Furthermore, it identifies urgent research priorities, such as field validation and the optimization of silicon application methods. Full article
(This article belongs to the Special Issue The Role of Silicon in Improving Crop Growth Under Abiotic Stress)
Show Figures

Figure 1

17 pages, 309 KiB  
Article
Heavy Metals in Leafy Vegetables and Soft Fruits from Allotment Gardens in the Warsaw Agglomeration: Health Risk Assessment
by Jarosław Chmielewski, Elżbieta Wszelaczyńska, Jarosław Pobereżny, Magdalena Florek-Łuszczki and Barbara Gworek
Sustainability 2025, 17(15), 6666; https://doi.org/10.3390/su17156666 - 22 Jul 2025
Viewed by 424
Abstract
Vegetables and fruits grown in urban areas pose a potential threat to human health due to contamination with heavy metals (HMs). This study aimed to identify and quantify the concentrations of heavy metals (Fe, Mn, Zn, Cu, Pb, Cd) in tomatoes, leafy vegetables, [...] Read more.
Vegetables and fruits grown in urban areas pose a potential threat to human health due to contamination with heavy metals (HMs). This study aimed to identify and quantify the concentrations of heavy metals (Fe, Mn, Zn, Cu, Pb, Cd) in tomatoes, leafy vegetables, and fruits collected from 16 allotment gardens (AGs) located in Warsaw. A total of 112 samples were analyzed (72 vegetable and 40 fruit samples). Vegetables from AGs accumulated significantly higher levels of HMs than fruits. Leafy vegetables, particularly those cultivated near high-traffic roads, exhibited markedly elevated levels of Pb, Cd, and Zn compared to those grown in peripheral areas. Lead concentrations exceeded permissible limits by six to twelve times, cadmium by one to thirteen times, and zinc by 0.7 to 2.4 times. Due to high levels of Pb and Cd, tomatoes should not be cultivated in urban environments. Regardless of location, only trace amounts of HMs were detected in fruits. The greatest health risk is associated with the consumption of leafy vegetables. Lettuce should be considered an indicator plant for assessing environmental contamination. The obtained Hazard Index (HI) values indicate that only the tested fruits are safe for consumption. Meanwhile, the values of the Hazard Quotient (HQ) indicate no health risk associated with the consumption of lettuce, cherries, and red currants. Among the analyzed elements, Pb showed a higher potential health risk than other metals. This study emphasizes the need for continuous monitoring of HM levels in urban soils and the establishment of baseline values for public health purposes. Remediation of contaminated soils and the implementation of safer agricultural practices are recommended to reduce the exposure of urban populations to the risks associated with the consumption of contaminated produce. In addition, the safety of fruits and vegetables grown in urban areas is influenced by the location of the AGs and the level of industrialization of the agglomeration. Therefore, the safety assessment of plant products derived from AGs should be monitored on a continuous basis, especially in vegetables. Full article
(This article belongs to the Special Issue Soil Microorganisms, Plant Ecology and Sustainable Restoration)
24 pages, 5241 KiB  
Review
Global Environmental Geochemistry and Molecular Speciation of Heavy Metals in Soils and Groundwater from Abandoned Smelting Sites: Analysis of the Contamination Dynamics and Remediation Alternatives in Karst Settings
by Hang Xu, Qiao Han, Muhammad Adnan, Mengfei Li, Mingshi Wang, Mingya Wang, Fengcheng Jiang and Xixi Feng
Toxics 2025, 13(7), 608; https://doi.org/10.3390/toxics13070608 - 21 Jul 2025
Viewed by 520
Abstract
Abandoned smelting sites in karst terrain pose a serious environmental problem due to the complex relationship between specific hydrogeological elements and heavy metal contamination. This review combines work from across the globe to consider how karst-specific features (i.e., rapid underground drainage, high permeability, [...] Read more.
Abandoned smelting sites in karst terrain pose a serious environmental problem due to the complex relationship between specific hydrogeological elements and heavy metal contamination. This review combines work from across the globe to consider how karst-specific features (i.e., rapid underground drainage, high permeability, and carbonate mineralogy) influence the mobility, speciation, and bioavailability of “metallic” pollutants, such as Pb, Cd, Zn, and As. In some areas, such as Guizhou (China), the Cd content in the surface soil is as high as 23.36 mg/kg, indicating a regional risk. Molecular-scale analysis, such as synchrotron-based XAS, can elucidate the speciation forms that underlie toxicity and remediation potential. Additionally, we emphasize discrepancies between karst in Asia, Europe, and North America and synthesize cross-regional contamination events. The risk evaluation is complicated, particularly when dynamic flow systems and spatial heterogeneity are permanent, and deep models like DI-NCPI are required as a matter of course. The remediation is still dependent on the site; however, some technologies, such as phytoremediation, biosorption, and bioremediation, are promising if suitable geochemical and microbial conditions are present. This review presents a framework for integrating molecular data and hydrogeological concepts to inform the management of risk and sustainable remediation of legacy metal pollution in karst. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

16 pages, 992 KiB  
Article
Relative Growth Rate and Specific Absorption Rate of Nutrients in Lactuca sativa L. Under Secondary Paper Sludge Application and Soil Contamination with Lead
by Elena Ikkonen and Marija Yurkevich
Agriculture 2025, 15(14), 1541; https://doi.org/10.3390/agriculture15141541 - 17 Jul 2025
Viewed by 235
Abstract
Cost-effective methods for improving soil fertility and mitigating the negative impact of heavy metal contamination in agricultural soils are currently under investigation. This study aimed to evaluate the impact of soil lead (Pb) contamination and the application of secondary pulp and paper mill [...] Read more.
Cost-effective methods for improving soil fertility and mitigating the negative impact of heavy metal contamination in agricultural soils are currently under investigation. This study aimed to evaluate the impact of soil lead (Pb) contamination and the application of secondary pulp and paper mill sludge on the relative growth rate (RGR) and its determinants, as well as the specific absorption rate (SAR) of nutrients of Lactuca sativa L. For the 46-day pot experiment, which was carried out in 2022 under controlled conditions at the Karelian Research Centre of RAS, sandy loam soil was used, to which Pb was added at rates of 0, 50, and 250 mg Pb(NO3)2 kg−1. Secondary sludge was applied with each watering at concentrations of 0%, 20%, and 40%. RGR values varied significantly, primarily due to changes in net assimilation rate (NAR) rather than specific leaf area. Positive relationships were found between RGR and NAR, and RGR and SAR of nitrogen and phosphorus, but not potassium. Sludge applications can stimulate NAR at early stages of plant growth. For plants grown on soil with the highest Pb concentration studied, secondary sludge reduced root lead content by an average of 35%. Soil contamination with lead increased nutrient SAR by 79 and 39% when applied as 20 and 40% sludge, respectively, while 40% sludge increased nitrogen SAR by 51% but did not change phosphorus and potassium SAR. A sludge-mediated reduction in root Pb content and an increase in NAR suggest that secondary paper sludge may contribute to the remediation of Pb-contaminated soils and reduce the toxicity of heavy metals to plants. The results may help in finding new ways to manage soil fertility, especially for contaminated soils. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

19 pages, 2991 KiB  
Article
Reassessment of Heavy Metal Adsorption Performance in Halloysite Clay Nanotubes: Geographical Variation and Structure–Activity Relationship
by Ying Li, Xingzhong Yuan, Xiuying Wei and Yao Long
Minerals 2025, 15(7), 739; https://doi.org/10.3390/min15070739 - 15 Jul 2025
Viewed by 318
Abstract
Halloysite nanotubes, a naturally occurring nanomaterial with a unique tubular morphology, have shown considerable potential for heavy metal remediation. However, significant inconsistencies in the reported maximum adsorption capacities (qmax) for heavy metal ions—such as Pb2+, which ranges from [...] Read more.
Halloysite nanotubes, a naturally occurring nanomaterial with a unique tubular morphology, have shown considerable potential for heavy metal remediation. However, significant inconsistencies in the reported maximum adsorption capacities (qmax) for heavy metal ions—such as Pb2+, which ranges from 7.5 to 84.0 mg/g with a coefficient of variation (CV) of 68%—have severely hindered both scientific understanding and practical application of this promising material. To address this critical knowledge gap, we conducted a reassessment using carefully selected halloysite specimens from three geologically distinct deposits (Utah, USA; Henan and Yunnan, China). Under rigorously controlled experimental conditions, we precisely quantified the adsorption capacities of halloysite for Cd2+, Zn2+, and Pb2+. Through an integrated multi-technique characterization approach involving XRF, XRD, FTIR, TEM, and BET analyses, we identified two fundamental crystallochemical parameters that govern the adsorption performance of halloysite: the degree of lattice substitution and the density of surface hydroxyl groups. Our findings reveal that optimal heavy metal adsorption occurs in halloysite with lower lattice substitution and higher surface hydroxyl density. This work not only provides a reliable range of adsorption capacities for halloysite but, more importantly, establishes a scientific foundation for optimizing the application of halloysite in heavy metal remediation. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Figure 1

18 pages, 1044 KiB  
Article
Remediation of Cd, Cu, and Zn Metals in Soil Amended with Biochar and Animal Manure Using a Hyperaccumulator
by George F. Antonious, Anjan Nepal and Basanta Neupane
Pollutants 2025, 5(3), 22; https://doi.org/10.3390/pollutants5030022 - 14 Jul 2025
Viewed by 266
Abstract
The application of animal manure and organic soil amendments as an alternative to expensive inorganic fertilizers is becoming more prevalent in the USA and worldwide. A field experiment was conducted on Bluegrass–Maury silty loam soil at the Kentucky State University Research Farm using [...] Read more.
The application of animal manure and organic soil amendments as an alternative to expensive inorganic fertilizers is becoming more prevalent in the USA and worldwide. A field experiment was conducted on Bluegrass–Maury silty loam soil at the Kentucky State University Research Farm using the Kennebec variety of white potato (Solanum tuberosum) under Kentucky climatic conditions. The study involved 12 soil treatments in a randomized complete block design. The treatments included four types of animal manures (cow manure, chicken manure, vermicompost, and sewage sludge), biochar at three application rates (5%, 10%, and 20%), and native soil as control plots. Additionally, animal manures were supplemented with 10% biochar to assess the influence of combining biochar with animal manure on the accumulation of heavy metals in potato tubers. The study aimed to (1) determine the concentration of seven heavy metals (Cd, Cr, Ni, Pb, Mn, Zn, Cu) and two essential nutrients (K and Mg) in soils treated with biochar and animal manure, and (2) assess metal mobility from soil to potato tubers at harvest by determining the bioaccumulation factor (BAF). The results revealed that Cd, Pb, Ni, Cr, and Mn concentrations in potato tubers exceeded the FAO/WHO allowable limits. Whereas the BAF values varied among the soil treatments, with Cd, Cu, and Zn having high BAF values (>1), and Pb, Ni, Cr, and Mn having low BAF values (<1). This observation demonstrates that potato tubers can remediate Cd, Cu, and Zn when grown under the soil amended with biochar and animal manure. Full article
(This article belongs to the Section Food Pollution)
Show Figures

Graphical abstract

22 pages, 2726 KiB  
Article
Eucalyptus-Biochar Application for Mitigating the Combined Effects of Metal Toxicity and Osmotic-Induced Drought in Casuarina glauca Seedlings
by Oumaima Ayadi, Khawla Tlili, Sylvain Bourgerie and Zoubeir Bejaoui
Land 2025, 14(7), 1423; https://doi.org/10.3390/land14071423 - 7 Jul 2025
Viewed by 336
Abstract
Land degradation from trace metal pollution in North Africa severely compromises soil fertility. This study investigates the synergistic remediation potential of Eucalyptus biochar (EuB) and Casuarina glauca in iron mine soil contaminated with Fe, Zn, Mn, Pb, Cd, and As. Seedlings were grown [...] Read more.
Land degradation from trace metal pollution in North Africa severely compromises soil fertility. This study investigates the synergistic remediation potential of Eucalyptus biochar (EuB) and Casuarina glauca in iron mine soil contaminated with Fe, Zn, Mn, Pb, Cd, and As. Seedlings were grown for six months in: non-mining soil (NMS), contaminated soil (CS), and CS amended with 5% EuB (CS + EuB). Comprehensive ecophysiological assessments evaluated growth, water relations, gas exchange, chlorophyll fluorescence, oxidative stress, and metal accumulation. EuB significantly enhanced C. glauca tolerance to multi-trace metal stress. Compared to CS, CS + EuB increased total dry biomass by 14% and net photosynthetic rate by 22%, while improving predawn water potential (from −1.8 to −1.3 MPa) and water-use efficiency (18%). Oxidative damage was mitigated. EuB reduced soluble Fe by 71% but increased Zn, Mn, Pb, and Cd mobility. C. glauca exhibited hyperaccumulation of Fe, Zn, As, Pb, and Cd across treatments, with pronounced Fe accumulation under CS + EuB. EuB enhanced nodule development and amplified trace metals sequestration within nodules (Zn: +1.4×, Mn: +2.4×, Pb: +1.5×, Cd: +2.0×). The EuB-C. glauca synergy enhances stress resilience, optimizes rhizosphere trace metals bioavailability, and leverages nodule-mediated accumulation, establishing a sustainable platform for restoring contaminated lands. Full article
Show Figures

Figure 1

18 pages, 2180 KiB  
Article
Novel Magnetically Recoverable Amino-Functionalized MIL-101(Fe) Composite with Enhanced Adsorption Capacity for Pb(II) and Cd(II) Ions
by Claudia Maria Simonescu, Daniela C. Culita, Gabriela Marinescu, Irina Atkinson, Virgil Marinescu, Ovidiu Oprea and Nicolae Stanica
Molecules 2025, 30(13), 2879; https://doi.org/10.3390/molecules30132879 - 7 Jul 2025
Viewed by 331
Abstract
In this study, we report the synthesis and characterization of a novel NH2-MIL-101(Fe) magnetic composite, developed via in situ formation of NH2-MIL-101(Fe) in the presence of Fe3O4 nanoparticles embedded within a chloropropyl-modified mesoporous silica layer. This [...] Read more.
In this study, we report the synthesis and characterization of a novel NH2-MIL-101(Fe) magnetic composite, developed via in situ formation of NH2-MIL-101(Fe) in the presence of Fe3O4 nanoparticles embedded within a chloropropyl-modified mesoporous silica layer. This hybrid composite retains the high adsorption capacity of NH2-MIL-101(Fe) while benefiting from the easy magnetic separation enabled by Fe3O4 nanoparticles. The mesoporous silica forms a protective porous coating around the magnetic nanoparticles, significantly enhancing its chemical stability and preventing clumping. Beyond protection, the mesoporous silica layer provides a high-surface-area scaffold that promotes the uniform in situ growth of NH2-MIL-101(Fe). Functionalization of the silica surface with chloride groups enables strong electrostatic interactions between the magnetic component and metal organic framework (MOF), ensuring a homogeneous and stable hybrid structure. The new composite’s capacity to remove Pb(II) and Cd(II) ions from aqueous solutions was systematically investigated. The adsorption data showed a good fit with the Langmuir isotherm model for both ions, the maximum adsorption capacities calculated being 214.6 mg g−1 for Pb(II) and 181.6 mg g−1 Cd(II). Furthermore, the kinetic behavior of the adsorption process was accurately described by the pseudo-second-order model. These findings confirm the effectiveness of this composite for the removal of Pb(II) and Cd(II) ions from aqueous solutions, demonstrating its potential as an efficient material for environmental remediation. The combination of magnetic recovery, high adsorption capacity, and stability makes this novel composite a promising candidate for heavy metal removal applications in water treatment processes. Full article
Show Figures

Figure 1

17 pages, 2835 KiB  
Article
Effects of Aged Biochar on Remediation of Cd-Contaminated Soil and Greenhouse Gas Emission in Chinese Cabbage (Brassica chinensis L.) Growth
by Yanyan Lu, Xiaoyi Zhao, Yuxuan Li, Guanlin Li, Guizhu Wu, Qianwu Wang, Jian Li and Daolin Du
Horticulturae 2025, 11(7), 800; https://doi.org/10.3390/horticulturae11070800 - 5 Jul 2025
Viewed by 385
Abstract
Biochar has demonstrated effectiveness in environmental remediation. However, the physicochemical properties of biochar change with natural aging, which potentially impacts its efficacy. This study was designed to evaluate the effects of aged biochar (at 1% and 5% rates) on the growth of Chinese [...] Read more.
Biochar has demonstrated effectiveness in environmental remediation. However, the physicochemical properties of biochar change with natural aging, which potentially impacts its efficacy. This study was designed to evaluate the effects of aged biochar (at 1% and 5% rates) on the growth of Chinese cabbage, greenhouse gas emission, and Cd remediation in soils. Canada goldenrod (Solidago canadensis L.) feedstock biochar was subjected to three artificial aging processes (freeze–thaw cycle, dry–wet cycle, and hydrogen peroxide oxidation) to prepare aged biochar. Results showed that aging significantly altered properties and structure of biochar. Biochar addition had no effect on CH4 emissions, but it decreased cumulative N2O emission (all treatments) and increased cumulative CO2 emission (only the pristine biochar at 5% application rate). Aged biochar showed no effect on microbial life strategy and Shannon index. However, PB-5% application shifted the life history strategies of A-strategists (resource acquisition microbe) towards Y-strategists (high-yield microbe) such as Proteobacteria, Gemmatimonadota, Bacteroidota, Firmicutes and Actinobacteriota, which partially attributed to the enhanced soil CO2 emission. Aged biochar reduced plant uptake Cd and soil available Cd concentrations by up to 36.6% and 34.0%, respectively, ascribing to improved soil physicochemical properties and functional bacterial abundance. Full article
Show Figures

Figure 1

12 pages, 2664 KiB  
Article
Heavy Metal Immobilization by Phosphate-Solubilizing Fungus and Phosphogypsum Under the Co-Existence of Pb(II) and Cd(II)
by Xu Li, Zhenyu Chao, Haoxuan Li, Jiakai Ji, Xin Sun, Yingxi Chen, Zhengda Li, Zhen Li, Chuanhao Li, Jun Yao and Lan Xiang
Agronomy 2025, 15(7), 1632; https://doi.org/10.3390/agronomy15071632 - 4 Jul 2025
Viewed by 336
Abstract
Globally, phosphogypsum (PG) is the primary by-product of the phosphorus industry. Aspergillus niger (A. niger), one of the most powerful types of phosphate-solubilizing fungi (PSF), can secrete organic acids to dissolve the phosphates in PG. This study investigated heavy metal (HM) [...] Read more.
Globally, phosphogypsum (PG) is the primary by-product of the phosphorus industry. Aspergillus niger (A. niger), one of the most powerful types of phosphate-solubilizing fungi (PSF), can secrete organic acids to dissolve the phosphates in PG. This study investigated heavy metal (HM) remediation by PG and A. niger under the co-existence of Pb and Cd. It demonstrated that 1 mmol/L Pb2+ stimulated the bioactivity of A. niger during incubation, based on the CO2 emission rate. PG successfully functioned as P source for the fungus, and promoted the growth of the fungal cells. Meanwhile, it also provided sulfates to immobilize Pb in the solution. The subsequently generated anglesite was confirmed using SEM imaging. The immobilization rate of Pb reached over 95%. Under co-existence, Pb2+ and 0.01 mmol/L Cd2+ maximized the stimulating effect of A. niger. However, the biotoxicity of Pb2+ and elevated Cd2+ (0.1 mmol/L) counterbalanced the stimulating effect. Finally, 1 mmol/L Cd2+ dramatically reduced the fungal activity. In addition, organic matters from the debris of A. niger could still bind Pb2+ and Cd2+ according to the significantly lowered water-soluble Pb and Cd concentrations. In all treatments with the addition of Cd2+, the relatively high biotoxicity of Cd2+ induced A. niger to absorb more Pb2+ to minimize the sorption of Cd2+ based on the XRD results. The functional group analysis of ATR-IR also confirmed the phenomenon. This pathway maintained the stability of Pb2+ immobilization using the fungus and PG. This study, hence, shed light on the application of A. niger and solid waste PG to remediate the pollution of Pb and Cd. Full article
Show Figures

Figure 1

22 pages, 4877 KiB  
Article
Sponge-like Modified White-Rot Fungi Adsorbent for Rapid Removal of Pb(II) and Cd(II) from Solution: Selective Performance and Mechanistic Insights
by Chunxiao Wang, Zhirong Chen, Nana Wang, Jianqiao Wang, Runshen He, Yu Chen, Haerfosai Nuhu, Hang Chen, Zhixuan Lin, Minqi Fan and Mingdong Chang
Separations 2025, 12(7), 172; https://doi.org/10.3390/separations12070172 - 28 Jun 2025
Viewed by 409
Abstract
Heavy metal pollution, especially from Pb(II) and Cd(II), poses significant risks due to its persistence and bioaccumulation potential. Traditional removal methods face challenges like high costs and secondary pollution. This study developed a novel three-dimensional porous adsorbent XBS, derived from xanthate-modified Phanerochaete sordida [...] Read more.
Heavy metal pollution, especially from Pb(II) and Cd(II), poses significant risks due to its persistence and bioaccumulation potential. Traditional removal methods face challenges like high costs and secondary pollution. This study developed a novel three-dimensional porous adsorbent XBS, derived from xanthate-modified Phanerochaete sordida YK-624 (a white-rot fungus), for the rapid and efficient removal of Pb(II) and Cd(II) from wastewater. Characterization showed that XBS has a sponge-like structure with abundant functional groups, significantly enhancing its adsorption capacity and kinetics. XBS achieved 96% Pb(II) and 32% Cd(II) removal within 1 min at a 0.25 g/L dose, reaching over 95% of the maximum adsorption capacity within 30 min for Pb(II) and 240 min for Cd(II). The maximum capacities were 224.72 mg/g for Pb(II) and 82.99 mg/g for Cd(II). Kinetic and thermodynamic analyses indicated a chemisorption-driven process, which was both endothermic and spontaneous. XBS exhibited high selectivity for Pb(II) over Cd(II) and other metals (Tl(I), Cu(II)), attributed to stronger covalent interactions with sulfur- and nitrogen-containing groups. Mechanistic analyses (XRD, FTIR, and XPS) revealed that removal occurs via ion exchange, complexation, and precipitation, forming stable compounds like PbS/CdS and PbCO3/CdCO3. Given its cost-effectiveness, scalability, and high efficiency, XBS represents a promising adsorbent for heavy metal remediation, particularly in Pb(II)-contaminated wastewater treatment applications. Full article
Show Figures

Graphical abstract

Back to TopTop