Heavy Metals in Leafy Vegetables and Soft Fruits from Allotment Gardens in the Warsaw Agglomeration: Health Risk Assessment
Abstract
1. Introduction
2. Materials and Methods
HM | LOD | Units |
Pb | 0.01–0.1 | µg L−1 lub µg kg−1 DM |
Cd | 0.001–0.01 | µg L−1 lub µg kg−1 DM |
Zn | 0.05–0.5 | µg L−1 lub µg kg−1 DM |
Cu | 0.01–0.1 | µg L−1 lub µg kg−1 DM |
- D—dose taken;
- C—concentration of the element in the sample of the vegetable/fruit (mg kg−1);
- K—mass of the consumed vegetable/fruit (kg day−1) (The Statistical Yearbook of 2023);
- MC—body weight of the exposed individual (assumed to be an adult—70 kg).
- HQ—hazard quotient;
- RfD—reference dose.
- D—the exposure dose to a substance is expressed in units of mg kg−1 day−1;
- CR—cancer risk.
3. Results and Discussion
Human Health Risk Assessment
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Teng, Y.; Lu, S.; Wang, Y.; Wang, J. Contamination features and health risk of soil heavy metals in China. Sci. Total Environ. 2015, 512, 143–153. [Google Scholar] [CrossRef]
- Jomova, K.; Alomar, S.Y.; Nepovimova, E.; Kuca, K.; Valko, M. Heavy metals: Toxicity and human health effects. Arch. Toxicol. 2025, 99, 153–209. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Ha, E.H.; Park, H.; Ha, M.; Kim, Y.; Hong, Y.C.; Kim, B.N. Prenatal lead and cadmium co-exposure and infant neurodevelopment at 6 months of age: The Mothers and Children’s Environmental Health (MOCEH) study. Neurotoxicology 2013, 35, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Brevik, E.C.; Slaughter, L.; Singh, B.R.; Steffan, J.J.; Collier, D.; Barnhart, P.; Pereira, P. Soil and human health: Current status and future needs. Air Soil Water Res. 2020, 13, 1178622120934441. [Google Scholar] [CrossRef]
- An, Y.; Li, S.; Huang, X.; Chen, X.; Shan, H.; Zhang, M. The Role of Copper Homeostasis in Brain Disease. Int. J. Mol. Sci. 2022, 23, 13850. [Google Scholar] [CrossRef]
- Mawari, G.; Kumar, N.; Sarkar, S.; Daga, M.K.; Singh, M.M.; Joshi, T.K.; Khan, N.A. Heavy metal accumulation in fruits and vegetables and human health risk assessment: Findings from Maharashtra, India. Environ. Health Insights 2022, 16, 11786302221119151. [Google Scholar] [CrossRef]
- Li, Z.; Ma, Z.; Kuijp, T.J.; Yuan, Z.; Huang, L. A review of soil heavy metal pollution from mines in China: Pollution and health risk assessment. Sci. Total Environ. 2014, 468–469, 843–853. [Google Scholar] [CrossRef]
- Valko, M.; Morris, H.; Cronin, M.T. Metals, toxicity and oxidative stress. Curr. Med. Chem. 2005, 12, 1161–1208. [Google Scholar] [CrossRef]
- Dziubanek, G.; Baranowska, R.; Ćwieląg-Drabek, M.; Spychała, A.; Piekut, A.; Rusin, M.; Hajok, I. Cadmium in edible plants from Silesia, Poland, and its implications for health risk in populations. Ecotoxicol. Environ. Saf. 2017, 142, 8–13. [Google Scholar] [CrossRef]
- Collin, M.S.; Venkatraman, S.K.; Vijayakumar, N.; Kanimozhi, V.; Arbaaz, S.M.; Stacey, R.S.; Swamiappan, S. Bioaccumulation of lead (Pb) and its effects on human: A review. J. Hazard. Mater. Adv. 2022, 7, 100094. [Google Scholar] [CrossRef]
- Gandhi, D.; Rudrashetti, A.P.; Rajasekaran, S. The impact of environmental and occupational exposures of manganese on pulmonary, hepatic, and renal functions. J. Appl. Toxicol. 2022, 42, 103–129. [Google Scholar] [CrossRef] [PubMed]
- Dettwiler, M.; Flynn, A.C.; Rigutto-Farebrother, J. Effects of non-essential “toxic” trace elements on pregnancy outcomes: A narrative overview of recent literature syntheses. Int. J. Environ. Res. Public Health 2023, 20, 5536. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Gong, W.; Li, B.; Zuo, J.; Pan, L.; Liu, X. Analysis of Heavy Metals in Foodstuffs and an Assessment of the Health Risks to the General Public via Consumption in Beijing, China. J. Environ. Res. Public Health 2019, 16, 909. [Google Scholar] [CrossRef]
- Ochwanowska, E.; Czarny-Dzialak, M.; Zeber-Dzikowska, I.; Wojtowicz, B.; Gworek, B.; Król, H.; Chmielewski, J. Chemicals in food as a health threat. Przem. Chem. 2019, 98, 1614–1618. [Google Scholar] [CrossRef]
- Lin, J.; Wang, L.; Huang, M.; Xu, G.; Yang, M. Metabolic changes induced by heavy metal copper exposure in human ovarian granulosa cells. Ecotoxicol. Environ. 2024, 285, 117078. [Google Scholar] [CrossRef]
- Totten, M.S.; Davenport, T.S.; Edwards, L.F.; Howell, J.M. Trace Minerals and Anxiety: A Review of Zinc, Copper, Iron, and Selenium. Dietetics 2023, 2, 83–103. [Google Scholar] [CrossRef]
- Schoofs, H.; Schmit, J.; Rink, L. Zinc Toxicity: Understanding the Limits. Molecules 2024, 29, 3130. [Google Scholar] [CrossRef]
- Guo, F.; Lin, Y.; Meng, L.; Peng, L.; Zhang, H.; Zhang, X.; Chen, K. Association of copper exposure with prevalence of chronic kidney disease in older adults. Clin. Nutr. 2022, 41, 2720–2728. [Google Scholar] [CrossRef]
- Takeda, A. Manganese action in brain function. Brain Res. Rev. 2003, 41, 79–87. [Google Scholar] [CrossRef]
- Crossgrove, J.; Zheng, W. Manganese toxicity upon overexposure. NMR Biomed. 2004, 17, 544–553. [Google Scholar] [CrossRef]
- Jiang, Y.M.; Mo, X.A.; Du, F.Q.; Fu, X.; Zhu, X.Y.; Gao, H.Y.; Zheng, W. Effective treatment of manganese-induced occupational Parkinsonism with p-aminosalicylic acid: A case of 17-year follow-up study. J. Occup. Environ. Med. 2006, 48, 644–649. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.M.H.; Chan, K.Y.; Lo, K. Manganese Exposure and Metabolic Syndrome: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 825. [Google Scholar] [CrossRef]
- Malesza, I.J.; Bartkowiak-Wieczorek, J.; Winkler-Galicki, J.; Nowicka, A.; Dzięciołowska, D.; Błaszczyk, M.; Gajniak, P.; Słowińska, K.; Niepolski, L.; Walkowiak, J.; et al. The Dark Side of Iron: The Relationship between Iron, Inflammation and Gut Microbiota in Selected Diseases Associated with Iron Deficiency Anaemia—A Narrative Review. Nutrients 2022, 14, 3478. [Google Scholar] [CrossRef] [PubMed]
- Ferré-Huguet, N.; Martí-Cid, R.; Schuhmacher, M.; Domingo, J.L. Risk assessment of metals from consuming vegetables, fruits and rice grown on soils irrigated with waters of the Ebro River in Catalonia, Spain. Biol. Trace Elem. Res. 2008, 123, 66–79. [Google Scholar] [CrossRef] [PubMed]
- Awino, F.B.; Maher, W.; Lynch, A.J.J.; Asanga Fai, P.B.; Otim, O. Comparison of metal bioaccumulation in crop types and consumable parts between two growth periods. Integr. Environ. Assess. Manag. 2021, 18, 1056–1071. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, H. Accumulation of Heavy Metals in Roadside Soil in Urban Area and the Related Impacting Factors. Int. J. Environ. Res. Public Health 2018, 15, 1064. [Google Scholar] [CrossRef]
- Karim, Z.; Qureshi, A.B.; Mumtaz, M.; Qureshi, S. Heavy metal content in urban soils as an indicator of anthropogenic and natural influences on landscape of Karachi—A multivariate spatio-temporal analysis. Ecol. Indic. 2014, 42, 20–31. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, Z.; Zhang, Y.; Ding, M.; Li, L. Identification of traffic-related metals and the effects of different environments on their enrichment in roadside soils along the Qinghai–Tibet highway. Sci. Total Environ. 2015, 521–522, 160–172. [Google Scholar] [CrossRef]
- Chen, W.X.; Li, Q.; Wang, Z.; Sun, Z.J. Spatial distribution characteristics and pollution evaluation of heavy metals in arable land soil of China. Huan Jing Ke Xue 2020, 41, 2822–2833. [Google Scholar] [CrossRef]
- Vávra, J.; Daněk, P.; Jehlička, P. What is the contribution of food self-provisioning towards environmental sustainability? A case study of active gardeners. J. Clean. Prod. 2018, 185, 1015–1023. [Google Scholar] [CrossRef]
- Suomalainen, M.; Hohenthal, J.; Pyysiäinen, J.; Ruuska, T.; Rinkinen, J.; Heikkurinen, P. Food self-provisioning: A review of health and climate implications. Glob. Sustain. 2023, 6, e7. [Google Scholar] [CrossRef]
- Pulighe, G.; Lupia, F. Multitemporal geospatial evaluation of urban agriculture and (non)-sustainable food self-provisioning in Milan, Italy. Sustainability 2019, 11, 1846. [Google Scholar] [CrossRef]
- Cohen, N.; Reynolds, K. Resource Needs for a Socially Just and Sustainable Urban Agriculture System: Lessons from New York City. Renew. Agric. Food Syst. 2015, 30, 103–114. [Google Scholar] [CrossRef]
- Perez-Neira, D.; Grollmus-Venegas, A. Life-cycle energy assessment and carbon footprint of peri-urban horticulture. A comparative case study of local food systems in Spain. Landsc. Urban Plan. 2018, 172, 60–68. [Google Scholar] [CrossRef]
- Reynolds, K. Disparity despite diversity: Social injustice in New York City’s urban agriculture system. Antipode 2015, 47, 240–259. [Google Scholar] [CrossRef]
- Eigenbrod, C.; Gruda, N. Urban vegetable for food security in cities. A review. Agron. Sustain. Dev. 2015, 35, 483–498. [Google Scholar] [CrossRef]
- Olsson, E.G.A. Urban food systems as vehicles for sustainability transitions. Bull. Geogr. Socio-Econ. Ser. 2018, 40, 133–144. [Google Scholar] [CrossRef]
- Chmielewski, J.; Gworek, B.; Florek-Łuszczki, M.; Nowak-Starz, G.; Wójtowicz, B.; Wójcik, T.; Szpringer, M. Heavy metals in the environment and their impact on human health. Przem. Chem. 2020, 99, 50–57. [Google Scholar] [CrossRef]
- Lange, C.N.; Freire, B.M.; Monteiro, L.R.; Cotrim, M.E.B.; Batista, B.L. Potentially Toxic Elements in Urban-Grown Lettuce: Effectiveness of Washing Procedures, Risk Assessment, and Isotopic Fingerprint. Plants 2024, 13, 2807. [Google Scholar] [CrossRef]
- Muthusaravanan, S.; Sivarajasekar, N.; Vivek, J.S.; Paramasivan, T.; Naushad, M.; Prakashmaran, J.; Gayathri, V.; Al-Duaij, O.K. Phytoremediation of heavy metals: Mechanisms, methods and enhancements. Environ. Chem. Lett. 2018, 16, 1339–1359. [Google Scholar] [CrossRef]
- Hangan, A.M.R.; Cojocaru, A.; Teliban, G.C.; Vîntu, V.; Stoleru, V. Urban and peri-urban vegetable gardens composition. Sci. Pap. Ser. B Hortic. 2021, 65, 465–472. [Google Scholar] [CrossRef]
- Santos, L.; Wall, P. Guam Enabled Gardening: Adaptive Gardening Series: Types of Gardens. 2023. Available online: https://www.uog.edu/_resources/files/extension/publications/04_Enabled_Gardening_Garden_Type (accessed on 14 May 2025).
- Collado-López, S.; Betanzos-Robledo, L.; Téllez-Rojo, M.M.; Lamadrid-Figueroa, H.; Reyes, M.; Ríos, C.; Cantoral, A. Heavy Metals in Unprocessed or Minimally Processed Foods Consumed by Humans Worldwide: A Scoping Review. Int. J. Environ. Res. Public Health 2022, 19, 8651. [Google Scholar] [CrossRef] [PubMed]
- Paltseva, A.; Cheng, Z.; Deeb, M.; Groffman, P.M.; Shaw, R.K.; Maddaloni, M. Accumulation of arsenic and lead in garden-grown vegetables: Factors and mitigation strategies. Sci. Total Environ. 2018, 640–641, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Rossini-Oliva, S.; López-Núñez, R. Potential Toxic Elements Accumulation in Several Food Species Grown in Urban and Rural Gardens Subjected to Different Conditions. Agronomy 2021, 11, 2151. [Google Scholar] [CrossRef]
- Gruszecka-Kosowska, A. Potentially Harmful Element Concentrations in the Vegetables Cultivated on Arable Soils, with Human Health-Risk Implications. Int. J. Environ. Res. Public Health 2019, 16, 4053. [Google Scholar] [CrossRef]
- Bahloul, M. Pollution characteristics and health risk assessment of heavy metals in dry atmospheric deposits from Sfax solar saltern area in southeast of Tunisia. J. Environ. Health Sci. Eng. 2020, 17, 1085–1105. [Google Scholar] [CrossRef]
- PN-R-04031:1997; Agrochemical Soil Analyses-Sampling. Polish Committee for Standardization: Warsaw, Poland, 1997.
- Marcelis, L.F.M.; Gijzen, H.; Heuvelink, E. Determination of dry matter content of fruit vegetables for calibration and validation of crop growth models. In ISHS/SUAS Int. Workshop on Greenhouse Crop Models–Alnarp, Sweden 1995; Staff Publications: Chemnitz, Germany, 1995. [Google Scholar]
- EPA. Method 6020B: Inductively Coupled Plasma-Mass Spectrometry. Revision 2. 1998. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/6020b.pdf (accessed on 14 May 2025).
- Chen, Z.; Muhammad, I.; Zhang, Y.; Hu, W.; Lu, Q.; Wang, W.; Biao, H.; Hao, M. Transfer of heavy metals in fruits and vegetables grown in greenhouse cultivation systems and their health risks in Northwest China. Sci. Total Environ. 2021, 766, 142663. [Google Scholar] [CrossRef]
- Kooner, R.; Mahajan, B.V.C.; Dhillon, W.S. Heavy Metal Contamination in Vegetables, Fruits, Soil and Water—A Critical Review. Int. J. Agric. Environ Biot. 2014, 7, 603. [Google Scholar] [CrossRef]
- Antoine, J.M.R.; Fung, L.A.H.; Grant, C.N. Assessment of the potential health risks associated with the aluminium, arsenic, cadmium and lead content in selected fruits and vegetables grown in Jamaica. Toxicol. Rep. 2017, 29, 181–187. [Google Scholar] [CrossRef]
- Roba, C.; Roşu, C.; Piştea, I.; Ozunu, A.; Baciu, C. Heavy metal content in vegetables and fruits cultivated in Baia Mare mining area (Romania) and health risk assessment. Environ. Sci. Pollut. Res. 2016, 23, 6062–6073. [Google Scholar] [CrossRef]
- Luo, C.; Liu, C.; Wang, Y.; Liu, X.; Li, F.; Zhang, G.; Li, X. Heavy metal contamination in soils and vegetables near an e-waste processing site, South China. J. Hazard. Mater. 2011, 186, 481–490. [Google Scholar] [CrossRef]
- Sultana, R.; Tanvir, R.U.; Hussain, K.A.; Chamon, A.S.; Mondol, M.N. Heavy metals in commonly consumed root and leafy vegetables in Dhaka city, Bangladesh, and assessment of associated public health risks. Environ. Syst. Res. 2022, 11, 15. [Google Scholar] [CrossRef]
- Chen, X.; Xia, X.; Zhao, Y.; Zhang, P. Heavy metal concentrations in roadside soils and correlation with urban traffic in Beijing, China. J. Hazard. Mater. 2010, 181, 640–646. [Google Scholar] [CrossRef]
- Boahen, E. Heavy metal contamination in urban roadside vegetables: Origins, exposure pathways, and health implications. Discov. Environ. 2024, 2, 145. [Google Scholar] [CrossRef]
- Kotuła, M.; Kapusta-Duch, J.; Smoleń, S. Evaluation of Selected Heavy Metals Contaminants in the Fruits and Leaves of Organic, Conventional and Wild Raspberry (Rubus idaeus L.). Appl. Sci. 2022, 12, 7610. [Google Scholar] [CrossRef]
- Atero-Calvo, S.; Magro, F.; Masetti, G.; Izquierdo-Ramos, M.S.; Navarro-León, E.; Ruiz, J.M. Humic Substances Enhance Cadmium Tolerance in Lettuce by Enhancing Antioxidant Activity and Photosynthesis Performance. J. Soil Sci. Plant Nutr. 2025, 25, 2627–2641. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, W.-T.; Zhou, X.; Liu, L.; Gu, J.-F.; Wang, W.-L.; Zou, J.-L.; Tian, T.; Peng, P.-Q.; Liao, B.-H. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment. Int. J. Environ. Res. Public Health 2016, 13, 289. [Google Scholar] [CrossRef]
- Huang, L.; Wang, Q.; Zhou, Q.; Ma, L.; Wu, Y.; Liu, Q.; Wang, S.; Feng, Y. Cadmium uptake from soil and transport by leafy vegetables: A meta-analysis. Environ. Pollut. 2020, 264, 114677. [Google Scholar] [CrossRef]
- Mahdavian, S.E.; Somashekar, R.K. Heavy metal contamination of vegetables and fruits from Bangalore city. Nat. Environ. Pollut. Technol. 2009, 8, 829–834. [Google Scholar]
- Patorczyk-Pytlik, B.; Skoczylinski, M. The contents of some Micronutrients in Green Growth of Grassland in the Environs of Wrocław. Part II Fe and Mn Contents. Zesz. Probl. Postęp. Nauk Rol. 2004, 502, 603–609. [Google Scholar]
- Du Laing, G.; Vanthuyne, D.R.J.; Vandecasteele, B.; Tack, F.M.G.; Verloo, M.G. Influence of hydrological regime on pore water metal concentrations in a contaminated sediment-derived soil. Environ. Pollut. 2007, 147, 615–625. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Ru, X.; Gu, Y.; Liu, W.; Wang, K.; Li, B.; Guo, Y.; Han, J. Pollution Characteristics, Spatial Distribution, and Evaluation of Heavy Metal(loid)s in Farmland Soils in a Typical Mountainous Hilly Area in China. Foods 2023, 12, 681. [Google Scholar] [CrossRef]
- Singh, N.M.; Singh, N.R. A quantitative analysis of heavy metals in vegetables grown at Kakching-Wabagai area, Thoubal District Manipur. Indian J. Sci. Res. 2014, 3, 1–3. [Google Scholar]
- Śmiechowska, M.; Florek, A. Content of heavy metals in selected vegetables from conventional, organic and allotment cultivation. J. Res. Appl. Agric. Eng. 2011, 56, 152–156. [Google Scholar]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar] [CrossRef]
- White, P.J.; Pongrac, P.; Sneddon, C.C.; Thompson, J.A.; Wright, G. Limits to the Biofortification of Leafy Brassicas with Zinc. Agriculture 2018, 8, 32. [Google Scholar] [CrossRef]
- Hamzah Saleem, M.; Usman, K.; Rizwan, M.; Al Jabri, H.; Alsafran, M. Functions and strategies for enhancing zinc availability in plants for sustainable agriculture. Front. Plant Sci. 2022, 13, 1033092. [Google Scholar] [CrossRef]
- Boniecki, P.; Świerczyński, K.; Koszela, K. Neural computer system “RENZIAR 1.0” in the process of classification of wheat grains. J. Res. Appl. Agric. Eng. 2011, 56, 14–18. [Google Scholar]
- Kucharczyk, E.; Moryl, A. Zawartość metali w roślinach uprawnych pochodzących z rejonu zgorzelecko-bogatyńskiego. Ochr. Sr. I Zasobów Nat. Environ. Protec. Natural Res. 2010, 43, 7–16. [Google Scholar]
- Kleiber, T.; Szablewski, T.; Stuper-Szablewska, K.; Cegielska-Radziejewska, R. Determination of correlations between content of manganese in nutrient solution and concentration of trace elements in tomato fruits (Lycopersicon esculentum Mill.). Żywność Nauka Technol. Jakość 2014, 6, 81–91. [Google Scholar] [CrossRef]
- Grochowska-Niedworok, E.; Niec, J.; Baranowska, R. Assessment of cadmium and lead content in tomatoes and tomato products. Rocz. Państw. Zakł. Hig. 2020, 71, 313–319. [Google Scholar] [CrossRef]
- Commission Regulation (EU). 2015/1005 of 25 June 2015 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels of Lead in Certain Foodstuffs. 2015. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R1005&from=EN (accessed on 14 May 2025).
- Komarnicki, G.J.K. Lead and cadmium in indoor air and the urban environment. Environ. Pollut. 2005, 136, 47–61. [Google Scholar] [CrossRef]
- Pająk, M.; Woźniak, K.M.; Gut, K. Exposure to Cd, Pb and Hg of vegetables consumers purchased in retail chain stores in the province Silesian. Med. Sr.–Environ. Med. 2018, 21, 24–30. [Google Scholar] [CrossRef]
- Engender, S.P.; Li, E.; He, E.; Cheng, Z.; Spliethoff, H.M.; Shayler, H.A.; Russell-Anelli, J.; King, T.; McBride, M.B. Effectiveness of washing in reducing lead concentrations of lettuce grown in urban garden soils. J. Environ. Qual. 2022, 51, 755–764. [Google Scholar] [CrossRef] [PubMed]
- Augustsson, A.; Lundgren, M.; Qvarforth, A.; Hough, R.; Engström, E.; Paulukat, C.; Rodushkin, I. Managing health risks in urban agriculture: The effect of vegetable washing for reducing exposure to metal contaminants. Sci. Total Environ. 2023, 863, 160996. [Google Scholar] [CrossRef] [PubMed]
- Gut, K.; Rogala, D.; Marchwińska-Wyrwał, E. Exposure to cadmium among consumers of root vegetables cultivated in contaminated soils in Upper Silesia, Poland. Med. Ogólna Nauki Zdr. 2017, 23, 245. [Google Scholar] [CrossRef]
- Ain, S.N.U.; Abbasi, A.M.; Ajab, H.; Khan, S.; Yaqub, A. Assessment of Arsenic in Mangifera indica (Mango) Contaminated by Artificial Ripening Agent: Target Hazard Quotient (THQ), Health Risk Index (HRI) and Estimated Daily Intake (EDI). Food Chem. Adv. 2023, 3, 100468. [Google Scholar] [CrossRef]
- Nowak, L.; Kucharzewski, A.; Dmowski, Z.; Szymanska-Pulikowska, A. Heavy metal content of fruit in the Lower Silesian Voivodship. Zesz. Probl. Postęp. Nauk Rol. 2003, 492, 257–262. [Google Scholar]
- Mohammadi, A.A.; Zarei, A.; Majidi, S.; Ghaderpoury, A.; Hashempour, Y.; Saghi, M.H.; Alinejad, A.; Yousefi, M.; Hosseingholizadeh, N.; Ghaderpoori, M. Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran. MethodsX 2019, 6, 1642–1651. [Google Scholar] [CrossRef]
- Gebeyehu, H.R.; Bayissa, L.D. Levels of heavy metals in soil and vegetables and associated health risks in Mojo area, Ethiopia. PLoS ONE 2020, 15, e0227883. [Google Scholar] [CrossRef]
- Birghila, S.; Matei, N.; Dobrinas, S.; Popescu, V.; Soceanu, A.; Niculescu, A. Assessment of Heavy Metal Content in Soil and Lycopersicon esculentum (Tomato) and Their Health Implications. Biol. Trace Elem. Res. 2023, 201, 1547–1556. [Google Scholar] [CrossRef]
- Shetty, B.R.; Pai, B.J.; Salmataj, S.A.; Nithesh, N. Assessment of Carcinogenic and non-carcinogenic risk indices of heavy metal exposure in different age groups using Monte Carlo Simulation Approach. Sci. Rep. 2024, 14, 30319. [Google Scholar] [CrossRef]
- Sikakwe, G.U.; Ojo, S.A.; Uzosike, P.C. Assessment of human health risk concerning edible plants contamination with toxic elements around functional and derelict mines. Food Chem. Toxicol. 2024, 189, 114760. [Google Scholar] [CrossRef]
- Pan, L.; Wang, Y.; Ma, J.; Hu, Y.; Su, B.; Fang, G.; Wang, L.; Xiang, B. A review of heavy metal pollution levels and health risk assessment of urban soils in Chinese cities. Environ. Sci. Pollut. Res. Int. 2018, 25, 1055–1069. [Google Scholar] [CrossRef]
- Adenuga, A.A.; Amos, O.D.; Olajide, O.D.; Eludoyin, A.O.; Idowu, O.O. Environmental impact and health risk assessment of potentially toxic metals emanating from different anthropogenic activities related to E-wastes. Heliyon 2022, 8, e10296. [Google Scholar] [CrossRef]
Plant | n | Statistical Parameters | Fe | Mn | Zn | Cu | Pb | Cd |
---|---|---|---|---|---|---|---|---|
Beet greens | 26 | min. | 250 | 28 | 60 | 9.90 | 1.0 | 0.10 |
max. | 1000 | 113 | 254 | 87.4 | 18.0 | 2.40 | ||
average | 400 b | 67 b | 120 a | 22.5 a | 10.0 a | 1.03 b | ||
SD | 174 | 29 | 63 | 16.4 | 4.4 | 0.71 | ||
Lettuce | 33 | min. | 268 | 25 | 23 | 7.90 | 1.0 | 0.10 |
max. | 980 | 154 | 201 | 34.1 | 21.0 | 2.70 | ||
average | 528 a | 67 b | 100 b | 13.3 b | 11.1 a | 1.36 a | ||
SD | 303 | 30 | 39 | 5.40 | 4.9 | 0.82 | ||
Sorrel | 7 | min. | 222 | 10 | 13 | 1.40 | 1.0 | 0.10 |
max. | 360 | 36 | 57 | 18.2 | 21 | 0.80 | ||
average | 284 c | 18c | 37 c | 9.40 c | 7.0 b | 0.18 c | ||
SD | 56 | 12 | 20 | 7.90 | 4.0 | 0.13 | ||
Tomatoes | 6 | min. | 92 | 9 | 7 | 3.90 | 0.1 | 0.01 |
max. | 109 | 12 | 24 | 11.6 | 7.0 | 0.20 | ||
average | 100 de | 10c | 17 d | 8.40 c | 2.5 c | 0.15 c | ||
SD | 6 | 1 | 8 | 3.66 | 2.2 | 0.05 | ||
Control | 12 | min. | 130 | 60 | 30 | 3.50 | 0.2 | LOD |
max. | 180 | 140 | 50 | 5.30 | 0.3 | |||
average | 155 d | 100 a | 40 c | 4.40 d | 0.2 d | |||
SD | 14 | 18 | 3 | 1.25 | 1.5 | |||
Acceptable limit (WHO/FAO) * (mg kg−1 DM) | 450.00 | 500.00 | 50.00 | 10.00 | 0.30 | 0.20 | ||
Acceptable limit (EU Standard) ** (mg kg−1 DM) | - | - | 200.0 | 100.0 | 60.0 | 1.0 |
Plant | n | Statistical Parameters | Fe | Mn | Zn | Cu | Pb | Cd |
---|---|---|---|---|---|---|---|---|
Cherries | 15 | min. | 27 | 6 | 6 | 8.10 | LOD | LOD |
max. | 60 | 13 | 15 | 18.10 | ||||
average | 44 c | 8 b | 10 b | 5.90 b | ||||
SD | 8 | 1 | 2 | 4.00 | ||||
Gooseberries | 14 | min. | 46 | 7 | 2 | 3.20 | LOD | LOD |
max. | 84 | 19 | 24 | 28.00 | ||||
average | 65 a | 13a | 15a | 10.70 a | ||||
SD | 12 | 3 | 5 | 7.00 | ||||
Red currant | 11 | min. | 38 | 4 | 6 | 2.80 | LOD | LOD |
max. | 82 | 18 | 26 | 12.40 | ||||
average | 53 b | 13 a | 14 a | 5.70 b | ||||
SD | 15 | 4 | 5 | 2.90 | ||||
Control | 9 | min. | 15 | 1 | 2 | 0.20 | LOD | LOD |
max. | 10 | 6 | 5 | 0.50 | ||||
average | 12.5 d | 3.5 c | 4.0 c | 0.35 c | ||||
SD | 3 | 2 | 3 | 0.05 | ||||
Acceptable limit (WHO/FAO) * (mg kg−1 DM) | 450.00 | 500.00 | 50.00 | 10.00 | 0.30 | 0.20 | ||
Acceptable limit (EU Standard) ** (mg kg−1 DM) | - | - | 200.0 | 100.0 | 60.0 | 1.0 |
Sampling Location | Fe | Zn | Cu | Pb | Cd |
---|---|---|---|---|---|
Crops located along the street (n = 22) | 666 ± 171 a | 140 ± 48.6 a | 17.9 ± 0.51 a | 16.0 ± 4.43 a | 2.81 ± 0.72 a |
Crops located in the central part of the AGs (n = 16) | 531 ± 163a b | 85 ± 31.2 b | 11.5 ± 2.54 b | 10.1 ± 2.42 b | 1.03 ± 0.45 b |
Crops located furthest from the street (n = 15) | 387 ± 76.3 b | 74 ± 39.1 b | 10.5 ± 3.52 b | 7.3 ± 3.32 c | 0.25 ± 0.15 c |
Mean | 528 | 100 | 13.3 | 11.1 | 1.36 |
Vegetables/Fruits | HQ | HI | |||
---|---|---|---|---|---|
Cd | Pb | Cu | Zn | ||
Lettuce | 0.0324 | 0.3163 | 0.00016 | 0.00133 | 0.3502 |
Tomatoes | 0.2143 | 4.4643 | 0.060 | 0.00030 | 4.7389 |
Cherries | - | - | 0.018 | 0.00024 | 0.0182 |
Red currant | - | - | 0.00045 | 0.0000017 | 0.000045 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chmielewski, J.; Wszelaczyńska, E.; Pobereżny, J.; Florek-Łuszczki, M.; Gworek, B. Heavy Metals in Leafy Vegetables and Soft Fruits from Allotment Gardens in the Warsaw Agglomeration: Health Risk Assessment. Sustainability 2025, 17, 6666. https://doi.org/10.3390/su17156666
Chmielewski J, Wszelaczyńska E, Pobereżny J, Florek-Łuszczki M, Gworek B. Heavy Metals in Leafy Vegetables and Soft Fruits from Allotment Gardens in the Warsaw Agglomeration: Health Risk Assessment. Sustainability. 2025; 17(15):6666. https://doi.org/10.3390/su17156666
Chicago/Turabian StyleChmielewski, Jarosław, Elżbieta Wszelaczyńska, Jarosław Pobereżny, Magdalena Florek-Łuszczki, and Barbara Gworek. 2025. "Heavy Metals in Leafy Vegetables and Soft Fruits from Allotment Gardens in the Warsaw Agglomeration: Health Risk Assessment" Sustainability 17, no. 15: 6666. https://doi.org/10.3390/su17156666
APA StyleChmielewski, J., Wszelaczyńska, E., Pobereżny, J., Florek-Łuszczki, M., & Gworek, B. (2025). Heavy Metals in Leafy Vegetables and Soft Fruits from Allotment Gardens in the Warsaw Agglomeration: Health Risk Assessment. Sustainability, 17(15), 6666. https://doi.org/10.3390/su17156666