Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (338)

Search Parameters:
Keywords = PIEZO-electric drive

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1350 KiB  
Review
Advances in Langevin Piezoelectric Transducer Designs for Broadband Ultrasonic Transmitter Applications
by Jinwook Kim, Jinwoo Kim and Juwon Kang
Actuators 2025, 14(7), 355; https://doi.org/10.3390/act14070355 - 19 Jul 2025
Viewed by 266
Abstract
Langevin ultrasonic transducers, also known as Tonpilz transducers, are widely used in high-power ultrasonic applications, including underwater sonar arrays, ultrasonic cleaning, and sonication devices. Traditionally designed for narrowband operation centered on a fundamental longitudinal resonance mode, their performance has been limited by structural [...] Read more.
Langevin ultrasonic transducers, also known as Tonpilz transducers, are widely used in high-power ultrasonic applications, including underwater sonar arrays, ultrasonic cleaning, and sonication devices. Traditionally designed for narrowband operation centered on a fundamental longitudinal resonance mode, their performance has been limited by structural constraints that tie resonance frequency to overall transducer length and mass. However, technical demands in biomedical, industrial, and underwater technologies have driven the development of broadband Langevin transducers capable of operating over wider frequency ranges. Lower frequencies are desirable for deep penetration and cavitation effects, while higher frequencies offer improved resolution and directivity. Recent design innovations have focused on modifications to the three key components of the transducer: the head mass, piezoelectric drive stack, and tail mass. Techniques such as integrating flexural or edge-resonance modes, adopting piezocomposite stacks, and tailoring structural geometry have shown promising improvements in bandwidth and transmitting efficiency. This review examines broadband Langevin transducer designs over the past three decades, offering detailed insights into design strategies for future development of high-power broadband ultrasonic transducers. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

13 pages, 2818 KiB  
Article
Leveling Method of Working Platform Based on PZT Electromechanical Coupling Effect
by Aiqun Xu, Jianhui Yuan and Jinxuan Gao
Micromachines 2025, 16(7), 796; https://doi.org/10.3390/mi16070796 - 8 Jul 2025
Viewed by 294
Abstract
Lead zirconate titanate (PZT) piezoelectric ceramics are widely used functional materials due to their strong and stable piezoelectric properties. A leveling method based on lead zirconate titanate piezoelectric ceramics is proposed for the high level of accuracy required in microelectromechanical fields such as [...] Read more.
Lead zirconate titanate (PZT) piezoelectric ceramics are widely used functional materials due to their strong and stable piezoelectric properties. A leveling method based on lead zirconate titanate piezoelectric ceramics is proposed for the high level of accuracy required in microelectromechanical fields such as aerospace, industrial robotics, biomedical, and photolithography. A leveling mechanism consisting of core components such as piezoelectric ceramic actuators and sensors is designed. The closed-loop leveling of the working platform is performed using the electromechanical coupling effect of the PZT piezoelectric material. Combined with the theory of the dielectric inverse piezoelectric effect in electric fields, a simulation is used to analyze the four force and deformation cases generated by the drive legs when the load is attached at different positions of the working platform, and the leveling is realized by applying the drive voltage to generate micro-motion displacement. Simulation and calculation results show that the leveling method can reduce the tilt angle of the working platform by 60% when the driving voltage is in the range of 10~150 V. The feasibility of the leveling method and the uniformity of the theoretical calculation and simulation are verified. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

15 pages, 3418 KiB  
Article
Investigation of Hysteresis Phenomena and Compensation in Piezoelectric Stacks for Active Rotor
by Xiancheng Gu, Weidong Yang, Linghua Dong and Jinlong Zhou
Actuators 2025, 14(7), 327; https://doi.org/10.3390/act14070327 - 1 Jul 2025
Viewed by 225
Abstract
An active rotor with trailing edge flaps (TEFs) is an effective method for helicopter vibration elimination. The nonlinear hysteresis of piezoelectric actuators used to drive TEFs can adversely affect helicopter vibration control performance. In this paper, a hysteresis modeling and compensation study is [...] Read more.
An active rotor with trailing edge flaps (TEFs) is an effective method for helicopter vibration elimination. The nonlinear hysteresis of piezoelectric actuators used to drive TEFs can adversely affect helicopter vibration control performance. In this paper, a hysteresis modeling and compensation study is performed for piezoelectric actuators used in TEFs. Firstly, the hysteresis characteristics of a rhombic frame actuator with input voltages at different frequencies are investigated by bench-top tests. Subsequently, the Bouc–Wen model is adopted to establish the hysteresis model of the piezoelectric actuator, with its parameters identified through the particle swarm optimization (PSO) algorithm. Experimental results demonstrate that the proposed model is capable of accurately capturing the hysteresis phenomenon of the piezoelectric actuator within the frequency range of 10–60 Hz. Finally, a compound control regime is established by integrating inverse Bouc–Wen model control with fuzzy PID feedback control. The experimental results indicate that the developed compound control regime can significantly suppress the piezoelectric actuator hysteresis of TEFs within the frequency bandwidth of 10–60 Hz, which lays the foundation for improving the vibration control performance of the active rotor with TEFs in the future. Full article
(This article belongs to the Section Aerospace Actuators)
Show Figures

Figure 1

24 pages, 5108 KiB  
Article
Research on the Defect Detection Method of Steel-Reinforced Concrete Based on Piezoelectric Technology and Weight Analysis
by Yilong Yu, Yulin Dong, Yulong Jiang, Fan Wang, Qianfan Zhou and Panfeng Ba
Sensors 2025, 25(13), 3844; https://doi.org/10.3390/s25133844 - 20 Jun 2025
Viewed by 344
Abstract
Aiming at the complex internal working conditions of steel-reinforced concrete structures, this paper proposes an active detection method for the internal hollow defects of steel-reinforced concrete based on wave analysis by using the driving and sensing functions of piezoelectric ceramic materials. The feasibility [...] Read more.
Aiming at the complex internal working conditions of steel-reinforced concrete structures, this paper proposes an active detection method for the internal hollow defects of steel-reinforced concrete based on wave analysis by using the driving and sensing functions of piezoelectric ceramic materials. The feasibility was verified through the single-condition detection test, revealing the propagation and attenuation characteristics of the stress wave signal under various detection conditions, and it was applied to the damage identification of steel-reinforced concrete rectangular section columns. Combined with the wavelet packet energy theory, the data processing of the original detection signal is carried out based on composite weighting by energy distribution entropy. Finally, the analytic hierarchy process (AHP) was introduced to study the weight vectors of different damage metrics on the detection signal, and a linear regression model based on different damage metrics was proposed as the comprehensive defect evaluation index. The research results show that the detection of internal defects in steel-reinforced concrete structures based on piezoelectric technology is applicable to concrete of different strength grades. With the increase of the detection distance and the degree of damage, the energy of the stress wave signal decreases. For example, under defect-free conditions, the energy value of the stress wave signal with a detection distance of 400 mm decreases by 92.94% compared to that with a detection distance of 100 mm. Meanwhile, it can be known from the defect detection test results of steel-reinforced concrete columns that the wavelet packet energy value under the defect condition with three obstacles decreased by 85.42% compared with the barrier-free condition, and the defect evaluation index (DI) gradually increased from 0 to 0.859. The comprehensive application of piezoelectric technology and weight analysis methods has achieved qualitative and quantitative analysis of defects, providing reference value for the maintenance and repair of steel-reinforced concrete structures. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

83 pages, 24821 KiB  
Review
A Review of Research on Precision Rotary Motion Systems and Driving Methods
by Xuecheng Luan, Hanwen Yu, Chunxiao Ding, Ying Zhang, Mingxuan He, Jinglei Zhou and Yandong Liu
Appl. Sci. 2025, 15(12), 6745; https://doi.org/10.3390/app15126745 - 16 Jun 2025
Viewed by 1393
Abstract
As the core component of modern mechanical transmission, the precision rotary motion mechanism and its drive system have wide applications in aerospace, robotics, and other fields. This article systematically reviews the design principles, performance characteristics, and research progress of various rotational motion mechanisms [...] Read more.
As the core component of modern mechanical transmission, the precision rotary motion mechanism and its drive system have wide applications in aerospace, robotics, and other fields. This article systematically reviews the design principles, performance characteristics, and research progress of various rotational motion mechanisms and their driving technologies. The working principles, advantages, disadvantages, and applicable scenarios of gears, drive belts, sprockets, camshafts, ratchet claw mechanisms, and linkage mechanisms were analyzed in terms of traditional mechanisms. In terms of new mechanisms, we focused on exploring the innovative design and application potential of intermittent indexing mechanisms, magnetic gears, 3D-printed spherical gears, and multi-link mechanisms. In addition, the paper compared the performance differences of electric, hydraulic, pneumatic, and piezoelectric drive methods. Research has shown that through material innovation, structural optimization, and intelligent control, there is still significant room for improvement in the load capacity, accuracy, and reliability of precision rotary motion mechanisms, providing theoretical support and practical reference for innovative design and engineering applications of future mechanical transmission technologies. Full article
Show Figures

Figure 1

16 pages, 4713 KiB  
Article
Cutting-Edge Vibration Sensor Morphologically Configured by Mimicking a Tactile Cutaneous Receptor Using Magnetic-Responsive Hybrid Fluid (HF)
by Kunio Shimada
Sensors 2025, 25(11), 3366; https://doi.org/10.3390/s25113366 - 27 May 2025
Viewed by 415
Abstract
Vibration sensors are important in many engineering fields, including industry, surgery, space, and mechanics, such as for remote and autonomous driving. We propose a novel, cutting-edge vibratory sensor that mimics human tactile receptors, with a configuration different from current sensors such as strain [...] Read more.
Vibration sensors are important in many engineering fields, including industry, surgery, space, and mechanics, such as for remote and autonomous driving. We propose a novel, cutting-edge vibratory sensor that mimics human tactile receptors, with a configuration different from current sensors such as strain gauges and piezo materials. The basic principle involves the perception of vibration via touch, with a cutaneous mechanoreceptor that is sensitive to vibration. We investigated the characteristics of the proposed vibratory sensor, in which the mechanoreceptor was covered either in hard rubber (such as silicon oil) or soft rubber (such as urethane), for both low- and high-frequency ranges. The fabricated sensor is based on piezoelectricity with a built-in voltage. It senses applied vibration by means of hairs in the sensor and the hardness of the outer cover. We also investigated two proposed parameters: the sensor response time to stimuli to the vibration aiding the equivalent firing rate (e.f.r.) and the gauge factor (GF,pe) proposed as treated in piezo-resistivity. The evaluation with the parameters was effective in designing a sensor based on piezoelectricity. These parameters were enhanced by the hairs in the sensor and the hardness of the outer cover. Our results were helpful for designing the present novel vibratory sensor. Full article
(This article belongs to the Special Issue Advancements and Applications of Biomimetic Sensors Technologies)
Show Figures

Figure 1

14 pages, 1854 KiB  
Article
Design and Optimization of a Piezoelectric Stick-Slip Actuator with Distributed Compliance
by Tingting Ye, Zhao Feng and Yangmin Li
Machines 2025, 13(6), 460; https://doi.org/10.3390/machines13060460 - 27 May 2025
Viewed by 480
Abstract
With increasing demand for high-precision motion control systems, high operational speed and load capacity are imposed with piezoelectric stick-slip actuators based on compliant mechanisms, yet their performances are often constrained by the step size and move speed. In this paper, a novel piezoelectric [...] Read more.
With increasing demand for high-precision motion control systems, high operational speed and load capacity are imposed with piezoelectric stick-slip actuators based on compliant mechanisms, yet their performances are often constrained by the step size and move speed. In this paper, a novel piezoelectric stick-slip actuator featuring flexure beams and a trapezoidal driving foot is proposed for high dynamic performance and load requirements. The trapezoidal structure consists of a trapezoidal driving foot to differentiate the friction in the stick and slip phases, four flexure beams for the high resonant frequency due to distributed compliance and the high load capacity due to structural geometry, and a rigid rod for motion transmission. At first, the mechanism design and the working principle are described in detail. Then, its dominant performances are predicted through finite element analysis, including the step size and the first natural frequency. On this basis, the structural parameters are optimized through the genetic algorithm. As a result, the forward displacement in the stick phase can be obtained as 4.8 μm through FEA simulations, where the first natural frequency can be observed as 627 Hz. Full article
(This article belongs to the Special Issue Optimization and Design of Compliant Mechanisms)
Show Figures

Figure 1

14 pages, 2569 KiB  
Article
Simulation Study of Ink Droplet Spraying Based on Sand 3D Printing
by Hailong Song, Ran Yan, Lei Xia, Qing Zhao and Qing Qiu
Micromachines 2025, 16(6), 621; https://doi.org/10.3390/mi16060621 - 25 May 2025
Viewed by 416
Abstract
To address the challenge of imprecise micro-droplet formation control in piezoelectric jetting devices used in sand mold 3D printing and apply on-demand inkjet printing technology to sand mold manufacturing, this study first explains the working principle of a piezoelectric shear-mode printhead. A mathematical [...] Read more.
To address the challenge of imprecise micro-droplet formation control in piezoelectric jetting devices used in sand mold 3D printing and apply on-demand inkjet printing technology to sand mold manufacturing, this study first explains the working principle of a piezoelectric shear-mode printhead. A mathematical model of the droplet ejection process is then established based on Computational Fluid Dynamics (CFD). Building upon this model, numerical simulations of droplet generation, breakup, and flight are conducted by using the Volume of Fluid (VOF) model within the Fluent module of the Workbench 2020 R2 platform. Finally, under consistent driving conditions, the effects of key parameters—viscosity, surface tension, and inlet velocity—on the ejection process are investigated through simulation. Based on the results, appropriate ranges and recommended values for ink properties are determined. This study provides significant engineering value for improving the stability and precision of droplet formation in industrial sand mold 3D printing. Full article
(This article belongs to the Section D3: 3D Printing and Additive Manufacturing)
Show Figures

Figure 1

26 pages, 4583 KiB  
Article
Mathematical Modeling and Finite Element Simulation of the M8514-P2 Composite Piezoelectric Transducer for Energy Harvesting
by Demeke Girma Wakshume and Marek Łukasz Płaczek
Sensors 2025, 25(10), 3071; https://doi.org/10.3390/s25103071 - 13 May 2025
Viewed by 3434
Abstract
This paper focuses on the mathematical and numerical modeling of a non-classical macro fiber composite (MFC) piezoelectric transducer, MFC-P2, integrated with an aluminum cantilever beam for energy harvesting applications. It seeks to harness the transverse vibration energy in the environment to power small [...] Read more.
This paper focuses on the mathematical and numerical modeling of a non-classical macro fiber composite (MFC) piezoelectric transducer, MFC-P2, integrated with an aluminum cantilever beam for energy harvesting applications. It seeks to harness the transverse vibration energy in the environment to power small electronic devices, such as wireless sensors, where conventional power sources are inconvenient. The P2-type macro fiber composites (MFC-P2) are specifically designed for transverse energy harvesting applications. They offer high electric source capacitance and improved electric charge generation due to the strain developed perpendicularly to the voltage produced. The system is modeled analytically using Euler–Bernoulli beam theory and piezoelectric constitutive equations, capturing the electromechanical coupling in the d31 mode. Numerical simulations are conducted using COMSOL Multiphysics 6.29 to reduce the complexity of the mathematical model and analyze the effects of material properties, geometric configurations, and excitation conditions. The theoretical model is based on the transverse vibrations of a cantilevered beam using Euler–Bernoulli theory. The natural frequencies and mode shapes for the first four are determined. Depending on these, the resonance frequency, voltage, and power outputs are evaluated across a 12 kΩ resistive load. The results demonstrate that the energy harvester effectively operates near its fundamental resonant frequency of 10.78 Hz, achieving the highest output voltage of approximately 0.1952 V and a maximum power output of 0.0031 mW. The generated power is sufficient to drive ultra-low-power devices, validating the viability of MFC-based cantilever structures for autonomous energy harvesting systems. The application of piezoelectric phenomena and obtaining electrical energy from mechanical vibrations can be powerful solutions in such systems. The application of piezoelectric phenomena to convert mechanical vibrations into electrical energy presents a promising solution for self-powered mechatronic systems, enabling energy autonomy in embedded sensors, as well as being used for structural health monitoring applications. Full article
(This article belongs to the Special Issue Smart Sensors Based on Optoelectronic and Piezoelectric Materials)
Show Figures

Figure 1

10 pages, 3221 KiB  
Article
Research on a Miniature Underwater Vehicle Based on a Multi-Unit Underwater Coupled Jet Drive
by Dong Zhang, Xingming Ma, Xue Zhang, Peng Gao and Kai Li
Actuators 2025, 14(5), 244; https://doi.org/10.3390/act14050244 - 13 May 2025
Viewed by 458
Abstract
The underwater unstructured environment poses new challenges for the miniaturization and flexibility of underwater vehicles. This paper proposes a method of using micrometer-scale vibrations of piezoelectric vibrators to drive macroscopic jets. Then, we use two coupled piezoelectric jet driving units to construct a [...] Read more.
The underwater unstructured environment poses new challenges for the miniaturization and flexibility of underwater vehicles. This paper proposes a method of using micrometer-scale vibrations of piezoelectric vibrators to drive macroscopic jets. Then, we use two coupled piezoelectric jet driving units to construct a miniature underwater vehicle. Numerical simulation is used to investigate the flow field characteristics of coupled jets. Finally, the impact of the angle between the two piezoelectric jet drive units on the propulsion force is analyzed. The miniature underwater vehicle measures 77.8 mm in length and 87 mm in width. While achieving miniaturization, it maintains high flexibility, maneuverability, and controllability. By adjusting the input signals to the two piezoelectric jet drive units, the miniature underwater vehicle can move in a straight line, turn, and rotate. Its maximum linear velocity reaches 54.23 mm/s. Its outstanding motion ability and environmental adaptability allow it to perform various tasks in unknown and complex environments. It also has broad application prospects. Full article
(This article belongs to the Special Issue Piezoelectric Ultrasonic Actuators and Motors)
Show Figures

Figure 1

27 pages, 11054 KiB  
Article
Preliminary Design and Simulation Analysis of a Novel Large-Stroke 3-DOF Parallel Micro-Positioning Platform
by Chunyu Li and Shengzheng Kang
Machines 2025, 13(5), 404; https://doi.org/10.3390/machines13050404 - 12 May 2025
Viewed by 437
Abstract
Due to the various application scenarios of micro-positioning platforms, designing the structure of a micro-positioning platform that accommodates performance specifications for specific real-world applications presents significant challenges. Piezoelectric actuators, known for their high-precision driving capabilities, are widely used in micro-positioning platforms. However, their [...] Read more.
Due to the various application scenarios of micro-positioning platforms, designing the structure of a micro-positioning platform that accommodates performance specifications for specific real-world applications presents significant challenges. Piezoelectric actuators, known for their high-precision driving capabilities, are widely used in micro-positioning platforms. However, their limited output displacement restricts the platform’s operational workspace. To simplify the complexity of traditional coarse–fine composite systems and avoid the interference and cost burden introduced by coarse adjustment systems, a novel large-range parallel micro-positioning platform is proposed in this paper. Through a modular configuration, lever-type, Z-shaped, and L-shaped three-stage amplification mechanisms are connected in series to achieve large-stroke motion with three degrees of freedom (DOFs), effectively compensating for the limited output displacement of the piezoelectric actuators. The structure employs three symmetric support branches in parallel to the end-effector, significantly enhancing the system’s structural symmetry, thereby improving the stability and precision of the operation. Furthermore, based on the pseudo-rigid-body model theory and the Lagrangian method, the kinematic and dynamic models of the micro-positioning platform are established. Finite element simulations are conducted to validate performance parameters such as the single-branch amplification ratio, parallel amplification ratio, and natural frequency. In addition, the platform’s operational workspace is also calculated and analyzed. The results indicate that the designed micro-positioning platform achieves a high amplification ratio of 17.5, with output motions approximately decoupled (coupling ratio less than 1.25%) in each DOF, and the operational workspace is significantly improved. Full article
(This article belongs to the Special Issue Optimization and Design of Compliant Mechanisms)
Show Figures

Figure 1

14 pages, 5337 KiB  
Article
Research on Valveless Piezoelectric Pump Based on Coriolis Effect
by Qiufeng Yan, Zhiling Liu, Wanting Sun and Mengyao Jiang
Micromachines 2025, 16(5), 527; https://doi.org/10.3390/mi16050527 - 29 Apr 2025
Viewed by 407
Abstract
In previous studies, a valveless piezoelectric pump with arc-shaped tubes (VPPAST) based on the Coriolis Effect was proposed. To promote the application of VPPAST in the field of navigation and guidance, it is vital to further explore the influences of the layout and [...] Read more.
In previous studies, a valveless piezoelectric pump with arc-shaped tubes (VPPAST) based on the Coriolis Effect was proposed. To promote the application of VPPAST in the field of navigation and guidance, it is vital to further explore the influences of the layout and structural parameters of arc-shaped tubes on the flow rate. Accordingly, in this study, the analysis of flow characteristics of fluid in arc-shaped tubes was conducted, and the velocity difference between the clockwise and counterclockwise flow of the liquid was reduced. Eventually, the flow equations of three layout modes of arc-shaped tubes were established. VPPAST with anomalous-direction arc-shaped tubes, single-arc-shaped tube, and same-direction arc-shaped tubes were produced using 3D printing technology. In addition, the valveless piezoelectric pump with the anomalous-direction arc-shaped tubes (VLPPADA) with different parameter flow tubes were also fabricated. Based on the resultant flow rates of each piezoelectric pump, it was demonstrated that the flow rate of the VLPPADA was the highest under the same driving conditions, and the flow rate can be determined as 1.72 mL/min when the driving voltage was set as 160 V at 14 Hz. It indicated that the pump flow rate of VLPPADA was directly proportional to the base radius and width of the arc-shaped tube. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

15 pages, 7430 KiB  
Article
High-Precision Transdermal Drug Delivery Device with Piezoelectric Mechanism
by Shengyu Liu, Junming Liu, Conghui Wang and Yang Zhan
Actuators 2025, 14(5), 212; https://doi.org/10.3390/act14050212 - 25 Apr 2025
Viewed by 480
Abstract
Piezoelectric (PE) micropumps are distinguished by their high precision, absence of electromagnetic radiation, and straightforward construction principles, making them vital in biomedicine and drug delivery. Integrating PE micropumps with microneedles creates a stable, accurate transdermal drug delivery device capable of finely tuning dosage, [...] Read more.
Piezoelectric (PE) micropumps are distinguished by their high precision, absence of electromagnetic radiation, and straightforward construction principles, making them vital in biomedicine and drug delivery. Integrating PE micropumps with microneedles creates a stable, accurate transdermal drug delivery device capable of finely tuning dosage, rate, and targeting. This paper proposes such a device, combining a PE micropump with a microneedle array. Initially, the internal flow dynamics of the PE micropump and the microneedle forces were analyzed through simulations. Subsequently, the optimal size for the PE micropump was established via parameter optimization experiments. Comprehensive tests were conducted to assess the device’s output performance, including frequency response, voltage characteristics, and flow resistance properties. Key performance indicators evaluated were output flow, pressure, and resolution. Experimental findings revealed that with a constant driving voltage, the PE micropump’s output flow and pressure initially increase and then decrease as the operating frequency rises. Conversely, with a fixed operating frequency, output flow and pressure positively correlate with the driving voltage, showing a near-linear relationship. Under stable working conditions, output pressure and flow are inversely proportional. The PE micropump achieves an output flow of 4.0 mL/min and a pressure of 35.7 kPa at 70 V and 80 Hz. The output flow rate and pressure of the device with the integrated microneedle array are 3.5 mL/min and 30 kPa, the minimum flow resolution is 0.28 μL, exemplifying the potential applications of PE micropumps and microneedles in the field of biomedicine. Full article
(This article belongs to the Section Precision Actuators)
Show Figures

Figure 1

27 pages, 16472 KiB  
Review
Recent Research on Structural Design, Performance Optimization, and Applications of Piezoelectric Pumps
by Qiufeng Yan, Zhiling Liu, Le Wang, Wanting Sun and Mengyao Jiang
Micromachines 2025, 16(4), 474; https://doi.org/10.3390/mi16040474 - 16 Apr 2025
Cited by 1 | Viewed by 771
Abstract
With the advantages of simple structure, low power consumption, no electromagnetic interference, and fast response, piezoelectric pumps (PPs) have been widely used in the fields of chip cooling, biomedical applications, chemical applications, and fuel supply applications. In recent decades, scholars have proposed various [...] Read more.
With the advantages of simple structure, low power consumption, no electromagnetic interference, and fast response, piezoelectric pumps (PPs) have been widely used in the fields of chip cooling, biomedical applications, chemical applications, and fuel supply applications. In recent decades, scholars have proposed various PPs, and this article reviews the recent research results. In this review, according to the “valve” structure, PPs are divided into valve-less piezoelectric pumps (VLPPs), valve-based piezoelectric pumps (VBPPs), and piezoelectric pumps with valve and valve-less state transitions (PPVVSTs). Firstly, the design methods of typical structures were discussed, and comparisons were made in terms of driving frequency, driving voltage, output pressure, flow rate, structure materials, and pump size. The advantages and disadvantages of VLPPs, VBPPs, and PPVVSTs were analyzed. Then, we compared the driving parameters, output performance, structure materials, and pump size of single-chamber piezoelectric pumps (SCPs) and multi-chamber piezoelectric pumps (MCPs) and analyzed the advantages and disadvantages of SCPs and MCPs. Optimization methods proposed in recent years have been summarized to address the issues of the cavitation phenomenon, the liquid back-flow problem, and low output performance in PPs. Subsequently, the application research of PPs and the distribution of academic achievements were discussed. Finally, this review was summarized, and future research hot spots for PPs were proposed. The main contribution of this review is to provide piezoelectric pump (PP) researchers with a certain understanding of the structural design, optimization methods, practical applications, and research distribution of PPs, which can provide theoretical guidance for future research. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

50 pages, 18142 KiB  
Review
A Comprehensive Review of Piezoelectric PVDF Polymer Fabrications and Characteristics
by Nadia Ahbab, Sidra Naz, Tian-Bing Xu and Shihai Zhang
Micromachines 2025, 16(4), 386; https://doi.org/10.3390/mi16040386 - 28 Mar 2025
Cited by 6 | Viewed by 5364
Abstract
Polyvinylidene fluoride (PVDF) polymer films, renowned for their exceptional piezoelectric, pyroelectric, and ferroelectric properties, offer a versatile platform for the development of cutting-edge micro-scale functional devices, enabling innovative applications ranging from energy harvesting and sensing to medical diagnostics and actuation. This paper presents [...] Read more.
Polyvinylidene fluoride (PVDF) polymer films, renowned for their exceptional piezoelectric, pyroelectric, and ferroelectric properties, offer a versatile platform for the development of cutting-edge micro-scale functional devices, enabling innovative applications ranging from energy harvesting and sensing to medical diagnostics and actuation. This paper presents an in-depth review of the material properties, fabrication methodologies, and characterization of PVDF films. Initially, a comprehensive description of the physical, mechanical, chemical, thermal, electrical, and electromechanical properties is provided. The unique combination of piezoelectric, pyroelectric, and ferroelectric properties, coupled with its excellent chemical resistance and mechanical strength, makes PVDF a highly valuable material for a wide range of applications. Subsequently, the fabrication techniques, phase transitions and their achievement methods, and copolymerization and composites employed to improve and optimize the PVDF properties were elaborated. Enhancing the phase transition in PVDF films, especially promoting the high-performance β-phase, can be achieved through various processing techniques, leading to significantly enhanced piezoelectric and pyroelectric properties, which are essential for diverse applications. This concludes the discussion of PVDF material characterization and its associated techniques for thermal, crystal structure, mechanical, electrical, ferroelectric, piezoelectric, electromechanical, and pyroelectric properties, which provide crucial insights into the material properties of PVDF films, directly impacting their performance in applications. By understanding these aspects, researchers and engineers can gain valuable insights into optimizing PVDF-based devices for various applications, including energy-harvesting, sensing, and biomedical devices, thereby driving advancements in these fields. Full article
Show Figures

Figure 1

Back to TopTop