Advances in Langevin Piezoelectric Transducer Designs for Broadband Ultrasonic Transmitter Applications
Abstract
1. Introduction
2. Head Mass Designs
2.1. Flexural Mode of a Tappered Head Mass
2.2. Hole, Cavity, and Filling Materials Inside the Head Mass
2.3. Combined Effects with a Piezoelectric Composite Drive Section
3. Piezoelectric Drive Stack and Middle Mass
3.1. Piezoelectric Composite Drive Stacks
3.2. Additional Masses in the Middle
4. Tail Mass Designs
4.1. Rear-Mounted Tail Mass Designs for Low-Frequency Resonance
4.2. Wedge-Shaped, Shared Tail Mass Block for Tonpilz Array Elements
4.3. Multi-Cavity Janus–Helmholtz Transducer
5. Summary and Future Perspectives
5.1. Discussion
5.2. Applications of Broadband Langevin Transducer and Future Perspectives
5.3. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, S. Study on the Multifrequency Langevin Ultrasonic Transducer. Ultrasonics 1995, 33, 445–448. [Google Scholar] [CrossRef]
- Escoffre, J.-M.; Bouakaz, A. (Eds.) Therapeutic Ultrasound; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-22535-7. [Google Scholar]
- Su, S.; Wang, Y.; Zheng, L.; Sun, M.; Tang, Q.; Huang, H. Study on the Cooling Performance of a Focused Ultrasonic Radiator for Electrical Heating Elements. Micromachines 2024, 15, 116. [Google Scholar] [CrossRef] [PubMed]
- Safari, A.; Akdogan, E.K. Piezoelectric Transducers and Acoustic Materials for Transducer Aplications; Springer Science & Business Media: New York, NY, USA, 2008; ISBN 978-0-387-76538-9. [Google Scholar]
- Alvarez, N.P.; Cardoni, A.; Cerisola, N.; Riera, E.; Andrade, M.A.; Adamowski, J.C. Nonlinear Dynamic Modeling of Langevin-Type Piezoelectric Transducers. Actuators 2015, 4, 255–266. [Google Scholar] [CrossRef]
- Mieczkowski, G.; Borawski, A.; Szpica, D. Static Electromechanical Characteristic of a Three-Layer Circular Piezoelectric Transducer. Sensors 2020, 20, 222. [Google Scholar] [CrossRef] [PubMed]
- Mieczkowski, G. Optimization and Prediction of Durability and Utility Features of Three-Layer Piezoelectric Transducers. Mechanika 2018, 24, 335–342. [Google Scholar] [CrossRef]
- Sherman, C.H.; Butler, J.L. Transducers and Arrays for Underwater Sound; Springer: New York, NY, USA, 2007; ISBN 0387329404. [Google Scholar]
- Kim, J.; Kim, H.; Roh, Y. Design and Fabrication of Multi-Mode Wideband Tonpilz Transducers. J. Acoust. Soc. Korea 2013, 32, 191–198. [Google Scholar] [CrossRef]
- Wei, Y.; Yang, X.; Chen, Y.; Zhang, Z.; Zheng, H. Modeling of High-Power Tonpilz Terfenol-D Transducer Using Complex Material Parameters. Sensors 2022, 22, 3781. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Roh, Y. Modeling and Design of a Rear-Mounted Underwater Projector Using Equivalent Circuits. Sensors 2020, 20. [Google Scholar] [CrossRef] [PubMed]
- Butler, S.C. Triple-Resonant Transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2012, 59, 1292–1300. [Google Scholar] [CrossRef] [PubMed]
- Pyun, J.Y.; Kim, Y.H.; Park, K.K. Design of Piezoelectric Acoustic Transducers for Underwater Applications. Sensors 2023, 23, 1821. [Google Scholar] [CrossRef] [PubMed]
- Kinsler, L.E.; Frey, A.R.; Coppens, A.B.; Snaders, J.V. Fundamentals of Acoustics, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Kasoji, S.K.; Pattenden, S.G.; Malc, E.P.; Jayakody, C.N.; Tsuruta, J.K.; Mieczkowski, P.A.; Janzen, W.P.; Dayton, P.A. Cavitation Enhancing Nanodroplets Mediate Efficient DNA Fragmentation in a Bench Top Ultrasonic Water Bath. PLoS ONE 2015, 10, e0133014. [Google Scholar] [CrossRef] [PubMed]
- ODaly, B.J.; Morris, E.; Gavin, G.P.; O' Byrne, J.M.; McGuinness, G.B. High-Power Low-Frequency Ultrasound: A Review of Tissue Dissection and Ablation in Medicine and Surgery. J. Mater. Process. Technol. 2008, 200, 38–58. [Google Scholar] [CrossRef]
- Wu, H.; Hossain, M.M.; Kim, H.; Gallippi, C.M.; Jiang, X. A 1.5-D Array for Acoustic Radiation Force (ARF)-Induced Peak Displacement-Based Tissue Anisotropy Assessment with a Row-Column Excitation Method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021, 68, 1278–1287. [Google Scholar] [CrossRef] [PubMed]
- Kurusingal, V. Tonpilz Transducer Array for Wideband Sonar Applications. In Proceedings of the 2019 IEEE International Ultrasonics Symposium (IUS), Scotland, UK, 6–9 October 2019; pp. 1750–1752. [Google Scholar]
- Noh, E.; Lee, H.; Chun, W.; Ohm, W.-S.; Been, K.; Moon, W.; Chang, W.; Yoon, H. Iterative Solutions of the Array Equations for Rapid Design and Analysis of Large Projector Arrays. J. Acoust. Soc. Am. 2018, 144, 2434–2446. [Google Scholar] [CrossRef] [PubMed]
- Yao, Q.; Bjorno, L. Broadband Tonpilz Underwater Acoustic Transducers Based on Multimode Optimization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1997, 44, 1060–1066. [Google Scholar] [CrossRef]
- VanCrombrugge, M.; Thompson Jr., W. Optimization of the Transmitting Characteristics of a Tonpilz-type Transducer by Proper Choice of Impedance Matching Layers. J. Acoust. Soc. Am. 2005, 75, S16. [Google Scholar] [CrossRef]
- Hawkins, D.W.; Gough, P.T. Multiresonance Design of a Tonpilz Transducer Using the Finite Element Method. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1996, 43, 782–790. [Google Scholar] [CrossRef]
- Pei, D.L.; Roh, Y. Design of an Underwater Tonpilz Transducer with 1–3 Piezocomposite Materials. Jpn. J. Appl. Phys. 2008, 47, 4003. [Google Scholar] [CrossRef]
- Kim, J.; Roh, Y. Equivalent Properties of 1–3 Piezocomposites of PMN-PT Single Crystals for Transducers. In Proceedings of the SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring; 2011; Volume 7978, pp. 797826–797828. [Google Scholar]
- Sun, K.; Cui, W.; Chen, C. Review of Underwater Sensing Technologies and Applications. Sensors 2021, 21, 7849. [Google Scholar] [CrossRef] [PubMed]
- Roh, Y.; Afzal, M.S.; Kwon, S.R. Analysis of the Effect of Radiating Surface Geometry on the Beam Pattern of Underwater Acoustic Transducers. Sensors Actuators A Phys. 2021, 330, 112843. [Google Scholar] [CrossRef]
- Butler, J.L.; Cipolla, J.R.; Brown, W.D. Radiating Head Flexure and Its Effect on Transducer Performance. J. Acoust. Soc. Am. 1981, 70, 500–503. [Google Scholar] [CrossRef]
- Douglas, G.R.; Wilson, C.R. Tonpilz Head Mass Studies. J. Acoust. Soc. Am. 1982, 72, S9. [Google Scholar] [CrossRef]
- Chhith, S.; Roh, Y. Wideband Tonpilz Transducer with a Cavity inside a Head Mass. Jpn. J. Appl. Phys. 2010, 49. [Google Scholar] [CrossRef]
- He, X.; Zhu, X.; Wu, Z.; Kang, X.; Wang, Y. A Wideband Tonpilz Transducer with a Transverse Through-Hole in the Radiating Head. J. Acoust. Soc. Am. 2021, 150, 2655–2663. [Google Scholar] [CrossRef] [PubMed]
- Saijyou, K.; Okuyama, T. Design Optimization of Wide-Band Tonpilz Piezoelectric Transducer with a Bending Piezoelectric Disk on the Radiation Surface. J. Acoust. Soc. Am. 2010, 127, 2836–2846. [Google Scholar] [CrossRef] [PubMed]
- Gou, Y.; Ye, S.; Fu, X.; Zheng, F.; Zha, X.; Li, C. Optimizing Tonpilz Transducer Transmission Through Impedance Matching and Head Mass Structure. Micromachines 2025, 16, 352. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, M. Acoustic Characteristic Analysis of a Langevin Transducer Attached with a Circular Plate Supported on a Concentric Circle. Jpn. J. Appl. Phys. 2025, 64, 28006. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, G.; Zhang, X. A Low-Frequency Longitudinal Vibration Transducer with a Helical Slot Structure. J. Acoust. Soc. Am. 2019, 145, 2948–2954. [Google Scholar] [CrossRef] [PubMed]
- Xiping, H.; Jing, H. Study on the Broadband Tonpilz Transducer with a Single Hole. Ultrasonics 2009, 49, 419–423. [Google Scholar] [CrossRef] [PubMed]
- Afzal, M.S.; Lim, Y.; Lee, S.; Yoon, H.; Roh, Y. Optimization and Characterization of a Wideband Multimode Tonpilz Transducer for Underwater Acoustical Arrays. Sensors Actuators A Phys. 2020, 307, 112001. [Google Scholar] [CrossRef]
- Kim, H.; Roh, Y. Design and Fabrication of a Wideband Tonpilz Transducer with a Void Head Mass. Sensors Actuators A Phys. 2016, 239, 137–143. [Google Scholar] [CrossRef]
- Pyo, S.; Lim, Y.; Roh, Y. Analysis of the Transmitting Characteristics of an Acoustic Conformal Array of Multimode Tonpilz Transducers by the Equivalent Circuit Method. Sensors Actuators A Phys. 2021, 318, 112507. [Google Scholar] [CrossRef]
- Kurt, P.; Şansal, M.; Tatar, İ.; Duran, C.; Orhan, S. Vibro-Acoustic Design, Manufacturing and Characterization of a Tonpilz-Type Transducer. Appl. Acoust. 2019, 150, 27–35. [Google Scholar] [CrossRef]
- Abdullah, Z.; Naz, S.; Raja, M.A.Z.; Zameer, A. Design of Wideband Tonpilz Transducers for Underwater SONAR Applications with Finite Element Model. Appl. Acoust. 2021, 183, 108293. [Google Scholar] [CrossRef]
- Lin, S. Analysis of Multifrequency Langevin Composite Ultrasonic Transducers. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 1990–1998. [Google Scholar] [CrossRef] [PubMed]
- Yalcin, E.; Merve, A.; Sena M., S.; H. Ibrahim, T.K.; Sueda, K.; Sedat, A.; Aykut, A.; Muhammet, B.; Ecem, A.; Namik K., G.; et al. Comparison of the Performance Characteristics of the Tonpilz Transducers Fabricated from 0.60PMN-0.40PT & PZT Piezoceramics. Ferroelectrics 2021, 586, 82–92. [Google Scholar] [CrossRef]
- Zhou, W.; Li, H.; Yuan, F. Guided Wave Generation, Sensing and Damage Detection Using in-Plane Shear Piezoelectric Wafers. Smart Mater. Struct. 2014, 23, 015014. [Google Scholar] [CrossRef]
- Gururaja, T.R.; Schulze, W.A.; Cross, L.E.; Newnham, R.E.; Auld, B.A.; Wang, Y.J. Piezoelectric Composite Materials for Ultrasonic Transducer Applications. Part I: Resonant Rod-Polymer Composites. IEEE Trans. Sonics Ultrason. 1985, SU-32, 481–498. [Google Scholar] [CrossRef]
- Li, X.; Ma, T.; Tian, J.; Han, P.; Zhou, Q.; Shung, K.K. Micromachined PIN-PMN-PT Crystal Composite Transducer for High-Frequency Intravascular Ultrasound (IVUS) Imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2014, 61, 1171–1178. [Google Scholar] [CrossRef] [PubMed]
- Roh, Y.; Lu, X. Design of an Underwater Tonpilz Transducer with 2–2 Mode Piezocomposite Materials. J. Acoust. Soc. Am. 2006, 119, 3734–3740. [Google Scholar] [CrossRef]
- Ji, B.; Hong, L.; Lan, Y. Influences of Length and Position of Drive-Stacks on the Transmitting-Voltage-Response of the Broadband Tonpilz Transducer. J. Acoust. Soc. Am. 2021, 150, 4140–4150. [Google Scholar] [CrossRef] [PubMed]
- Ji, B.; Lan, Y.; Qiao, G.; Wang, M. Bandwidth Extension of the Tonpilz Transducer Using High-Order Longitudinal Vibrations. J. Acoust. Soc. Am. 2023, 154, 3709–3725. [Google Scholar] [CrossRef] [PubMed]
- Pyo, S.; Afzal, M.S.; Lim, Y.; Lee, S.; Roh, Y. Design of a Wideband Tonpilz Transducer Comprising Non-Uniform Piezoceramic Stacks with Equivalent Circuits. Sensors 2021, 21, 2680. [Google Scholar] [CrossRef] [PubMed]
- ZHANG, K.; HUANG, D.; CHEN, B.; TANG, Y. Wideband Single Crystal Longitudinal Transducer for Underwater Sound. In Proceedings of the 2019 14th Symposium on Piezoelectrcity, Acoustic Waves and Device Applications (SPAWDA), Shijiazhuang, China, 1–4 November 2019; pp. 1–3. [Google Scholar]
- Thompson, S.C.; Meyer, R.J.; Markley, D.C. Performance of Tonpilz Transducers with Segmented Piezoelectric Stacks Using Materials with High Electromechanical Coupling Coefficient. J. Acoust. Soc. Am. 2014, 135, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.L.W.; Unsworth, J.; Bui, T. Mode Coupling in Modified Lead Titanate/Polymer 1–3 Composites. J. Appl. Phys. 1989, 65, 1754–1758. [Google Scholar] [CrossRef]
- Smith, W.A.; Auld, B.A. Modeling 1–3 Composite Piezoelectrics: Thickness-Mode Oscillations. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1991, 38, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Chan, H.L.W.; Unsworth, J. Simple Model for Piezoelectric Ceramic/Polymer 1–3 Composites Used in Ultrasonic Transducer Applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 1989, 36, 434–441. [Google Scholar] [CrossRef] [PubMed]
- Szpica, D.; Mieczkowski, G.; Borawski, A.; Koten, H. Numerical Evaluation of the Influence of the Outlet Nozzle Diameter of a Piezoelectric Gas Injector on Its Flow Properties. Math. Probl. Eng. 2022, 2022, 2199890. [Google Scholar] [CrossRef]
- Mieczkowski, G.; Szpica, D.; Borawski, A. Analytical and Numerical Modelling of Deflection of Circular Three-Layer Piezoelectric Transducer. Eng. Rural Dev. 2020, 19, 555–564. [Google Scholar] [CrossRef]
- Thompson, S.C.; Hess, S. Preliminary Design Rationale for Tonpilz Transducer Elements. J. Acoust. Soc. Am. 2005, 75, S16. [Google Scholar] [CrossRef]
- Kim, J.-W.; Kim, W.-H.; Joh, C.-Y.; Roh, Y.-R. A Study on the Resonant Characteristics of a Tonpilz Transducer with a Fixed Tail Mass. J. Acoust. Soc. Korea 2010, 29, 439–447. [Google Scholar]
- Kim, J.-W.; Kim, W.-H.; Joh, C.-Y.; Roh, Y.-R. Analysis of the Resonant Characteristics of a Tonpilz Transducer with a Fixed Tail Mass by the Equivalent Circuit Approach. J. Acoust. Soc. Korea 2011, 30, 344–352. [Google Scholar] [CrossRef]
- Lee, D. Improved FOM (Figure of Merit) Performance Characteristics of a Linear Array Underwater Acoustic Transducer with a Gradual Wedge-Shaped Tail Mass Characteristics of a Linear Array Underwater Acoustic Transducer with a Gradual Wedge-Shaped Tail Mass. Korean J. Fish. Aquat. Sci. 2021, 54, 1036–1044. [Google Scholar]
- Liu, W.; Mo, X.; Chai, Y.; Wu, T.; Zhang, X. Broadband Janus-Helmholtz Transducer with Various Liquid Cavity Resonances. Appl. Acoust. 2024, 221, 110032. [Google Scholar] [CrossRef]
- Sheehy, M.J.; Halley, R. Measurement of the Attenuation of Low-Frequency Underwater Sound. J. Acoust. Soc. Am. 1957, 29, 464–469. [Google Scholar] [CrossRef]
- Lee, J.; Seo, I.; Han, S.M. Radiation Power Estimation for Sonar Transducer Arrays Considering Acoustic Interaction. Sensors Actuators A Phys. 2001, 90, 1–6. [Google Scholar] [CrossRef]
- Zhou, Q.; Cha, J.H.; Huang, Y.; Zhang, R.; Cao, W.; Shung, K.K. Alumina/Epoxy Nanocomposite Matching Layers for High-Frequency Ultrasound Transducer Application. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2009, 56, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Zhu, K.; Ma, J.; Qi, X.; Shen, B.; Liu, Y.; Sun, E.; Zhang, R. Enhancement of Ultrasonic Transducer Bandwidth by Acoustic Impedance Gradient Matching Layer. Sensors 2022, 22. [Google Scholar] [CrossRef] [PubMed]
- Rojas, S.S.; Tridandapani, S.; Lindsey, B.D. A Thin Transducer with Integrated Acoustic Metamaterial for Cardiac CT Imaging and Gating. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 1064–1076. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Mo, X.; Chai, Y.; Wu, T.; Pan, R. A Distributed Parameter Model of the Janus–Helmholtz Transducer. J. Acoust. Soc. Am. 2024, 155, 681–694. [Google Scholar] [CrossRef] [PubMed]
- Hadeed, M.; Siddique Bhatti, H.; Afzal, M.S.; Epin, V.; Abdullah, M.; Ali asghar, M. Design and Development of a High-Power Wideband Multimode Tonpilz Transducer for Underwater Applications. J. Mech. Eng. Sci. 2024, 18, 10161–10170. [Google Scholar] [CrossRef]
- Blum, N.T.; Gyorkos, C.M.; Narowetz, S.J.; Mueller, E.N.; Goodwin, A.P. Phospholipid-Coated Hydrophobic Mesoporous Silica Nanoparticles Enhance Thrombectomy by High-Intensity Focused Ultrasound with Low Production of Embolism-Inducing Clot Debris. ACS Appl. Mater. Interfaces 2019, 11, 36324–36332. [Google Scholar] [CrossRef] [PubMed]
- Ferrara, K.; Pollard, R.; Borden, M. Ultrasound Microbubble Contrast Agents: Fundamentals and Application to Gene and Drug Delivery. Annu. Rev. Biomed. Eng. 2007, 9, 415–447. [Google Scholar] [CrossRef] [PubMed]
- Lindsey, B.D.; Rojas, J.D.; Dayton, P.A. On the Relationship between Microbubble Fragmentation, Deflation and Broadband Superharmonic Signal Production. Ultrasound Med. Biol. 2015, 41, 1711–1725. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yang, D.Q.; Liu, S.L.; Yu, S.Y.; Lu, M.H.; Zhu, J.; Zhang, S.T.; Zhu, M.W.; Guo, X.S.; Wu, H.D.; et al. Broadband Gradient Impedance Matching Using an Acoustic Metamaterial for Ultrasonic Transducers. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Cannata, J.M.; Meyer, R.J.; Van Tol, D.J.; Tadigadapa, S.; Hughes, W.J.; Shung, K.K.; Trolier-McKinstry, S. Fabrication and Characterization of Micromachined High-Frequency Tonpilz Transducers Derived by PZT Thick Films. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2005, 52, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.H.; Jeong, J.-W.; Liu, Y.; Zhang, Y.; Shi, Y.; Kang, S.-K.; Kim, J.; Kim, J.S.; Lee, N.Y.; Kim, B.H.; et al. Materials and Wireless Microfluidic Systems for Electronics Capable of Chemical Dissolution on Demand. Adv. Funct. Mater. 2015, 25, 1338–1343. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, S.; Xu, X.; Liu, W.; Zhang, S.; Li, G.; He, J. Dynamic Piezo-Thermoelectric Generator for Simultaneously Harvesting Mechanical and Thermal Energies. Nano Energy 2020, 69, 104397. [Google Scholar] [CrossRef]
- Baac, H.W.; Lee, T.; Guo, L.J. Micro-Ultrasonic Cleaving of Cell Clusters by Laser-Generated Focused Ultrasound and Its Mechanisms. Biomed. Opt. Express 2013, 4, 1442–1450. [Google Scholar] [CrossRef] [PubMed]
- Marzo, A.; Drinkwater, B.W. Holographic Acoustic Tweezers. Proc. Natl. Acad. Sci. USA 2019, 116, 84–89. [Google Scholar] [CrossRef] [PubMed]
Head Mass Design | Results | Bandwidth † | Peak TVR (dB) † | Remark | Ref. |
---|---|---|---|---|---|
Tapered edge flexural mode | Experiment | >100% (−3 dB) TVR * | 130 | fc: 30 kHz PZT-4 ceramic | [22] |
Tapered edge flexural mode | Experiment | 37.8% (−6 dB) TVR | 146.8 | fc: 35.15 kHz PZT-4 ceramic | [20] |
Tapered edge flexural mode | Experiment | 89.0% (−6 dB) TVR | 144.7 | PZT-5A 1–3 composite | [9] |
Single hole | Experiment | ~31.7% (−3 dB) TVR ** | ~134 ** | fc: ~25.07 kHz ** PZT ceramic | [35] |
Inside cavity | Simulation (FEM) | 97.9% (−6 dB) TVR | ~139 ** | PZT-4 ceramic | [29] |
Tapered edge flexural mode | Simulation (FEM) | 93.6% (−6 dB) TVR | 145.6 | PZT-4 ceramic | [36] |
Inside cavity | Experiment | 129.5% (−6 dB) TVR | ~140 | PZT 1–3 composite | [37] |
Through-hole | Experiment | 22–32.50 kHz (−3 dB) TVR | 141 | fr: 30.38 kHz PZT-4 ceramic | [30] |
Bending disk | Experiment | 2 octaves | - | - | [31] |
Tapered edge flexural mode | Experiment | From 1fr to 2.39fr | 146.85 | PZT-4 ceramic | [38] |
Tapered edge flexural mode | Experiment | From ~4.1 to ~6.5 kHz (−3 dB) TVR ** | 137.3 | fr: 4.9 kHz PZT-4 ceramic | [39] |
Tapered edge flexural mode | Simulation (FEM) | 14.5–26 kHz | 132.6 | fr: 8.5 kHz PZT-4 ceramic | [40] |
Variable cavity filling material | Experiment | ~100% (−6 dB) TVR | ~135 | fc: ~20 kHz PZT-5A ceramic | [32] |
Tapered edge flexural mode | Experiment | fr: 20.9 kHz fa: 21.9 kHz | - | PZT-4 ceramic | [41] |
Design Features | Results | Bandwidth † | Peak TVR (dB) † | Remark | Ref. |
---|---|---|---|---|---|
2–2 composite drive stack | Simulation (FEM) | 13.3% (−3 dB) TVR | - | PZT-5H composite Single mode Transmitting sensitivity: 36 Pa/V | [46] |
1–3 composite drive stack | Simulation (FEM) | 10% (−3 dB) TVR | - | PZT-5H composite Single mode Transmitting sensitivity: 47.9 Pa/V | [23] |
1–3 composite drive stack | Experiment | 89.0% (−6 dB) TVR | 144.7 | PZT-5A composite Head flexural mode | [9] |
1–3 composite drive stack | Experiment | 129.5% (−6 dB) TVR | ~140 | PZT composite Head flexural + cavity | [37] |
Additional mass | Experiment | 23–66 kHz 97% (−6 dB) TVR | ~145 | fc: 44.6 kHz PZT-4 ceramic Head flexural + middle mass | [47] |
Additional mass | Simulation (FEM) | 19.5–90 kHz >2 octaves (−6 dB) TVR | ~150 | PZT-4 ceramic Head flexural + middle mass + high orders | [48] |
Additional mass | Experiment | (Design II) From ~12.5 to ~25 kHz (−6 dB) TVR * | ~140 | PZT-4 ceramic Triple mass resonances + matching layer block | [12] |
Non-uniform drive stack | Experiment | From 0.97fr to 2.78fr | 146.8 | PZT-5H ceramic Head flexural + nonuniform stack vibration | [49] |
Single crystal drive stack | Experiment | From 12 to ~26 kHz (−6 dB) TVR * | 146.3 | PIN-PMN-PT single crystal | [50] |
Single crystal drive stack | Experiment | From 11 to ~18 kHz (−6 dB) TVR * | ~147 | PMN-PT single crystal Various segments | [51] |
Design Features | Results | Bandwidth † | Peak TVR (dB) † | Remark | Ref. |
---|---|---|---|---|---|
Rear-mount suspension | Simulation (FEM) | From 0.77fc to 1.01fc (−3 dB) TVR | ~135 | −11 dB peak at 0.42fc | [58] |
Rear-mount suspension | Simulation (Theoretical model) | From 0.9fr to 2.26fr (−6 dB) TVR | ~135 | −24 dB peak at 0.3fr | [59] |
Rear-mount suspension | Simulation (Theoretical model) | ft/fr = 0.3–0.44 | 133–140 | Minimum ∆TVR of 9 dB | [11] |
Shared wedge-shaped tail mass for array elements | Experiment | 30.75–40.0 kHz 51.0–60.5 kHz 71.5–74.75 kHz 80.75–85.25 kHz (−3 dB) TVR | - | 12-element linear array | [60] |
Connected tail mass with asymmetric dual-liquid cavity | Experiment | 1.07–40 kHz (−6 dB) TVR | 138–147 | fc: 1.15 kHz Janus-Helmholtz transducer (JHT) | [61] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Kim, J.; Kang, J. Advances in Langevin Piezoelectric Transducer Designs for Broadband Ultrasonic Transmitter Applications. Actuators 2025, 14, 355. https://doi.org/10.3390/act14070355
Kim J, Kim J, Kang J. Advances in Langevin Piezoelectric Transducer Designs for Broadband Ultrasonic Transmitter Applications. Actuators. 2025; 14(7):355. https://doi.org/10.3390/act14070355
Chicago/Turabian StyleKim, Jinwook, Jinwoo Kim, and Juwon Kang. 2025. "Advances in Langevin Piezoelectric Transducer Designs for Broadband Ultrasonic Transmitter Applications" Actuators 14, no. 7: 355. https://doi.org/10.3390/act14070355
APA StyleKim, J., Kim, J., & Kang, J. (2025). Advances in Langevin Piezoelectric Transducer Designs for Broadband Ultrasonic Transmitter Applications. Actuators, 14(7), 355. https://doi.org/10.3390/act14070355