Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (448)

Search Parameters:
Keywords = PET brain imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1283 KiB  
Communication
Clinical Performance of Analog and Digital 18F-FDG PET/CT in Pediatric Epileptogenic Zone Localization: Preliminary Results
by Oreste Bagni, Roberta Danieli, Francesco Bianconi, Barbara Palumbo and Luca Filippi
Biomedicines 2025, 13(8), 1887; https://doi.org/10.3390/biomedicines13081887 (registering DOI) - 3 Aug 2025
Abstract
Background: Despite its central role in pediatric pre-surgical evaluation of drug-resistant focal epilepsy, conventional analog 18F-fluorodeoxyglucose (18F-FDG) PET/CT (aPET) systems often yield modest epileptogenic zone (EZ) detection rates (~50–60%). Silicon photomultiplier–based digital PET/CT (dPET) promises enhanced image quality, but [...] Read more.
Background: Despite its central role in pediatric pre-surgical evaluation of drug-resistant focal epilepsy, conventional analog 18F-fluorodeoxyglucose (18F-FDG) PET/CT (aPET) systems often yield modest epileptogenic zone (EZ) detection rates (~50–60%). Silicon photomultiplier–based digital PET/CT (dPET) promises enhanced image quality, but its performance in pediatric epilepsy remains untested. Methods: We retrospectively analyzed 22 children (mean age 11.5 ± 2.6 years) who underwent interictal brain 18F-FDG PET/CT: 11 on an analog system (Discovery ST, 2018–2019) and 11 on a digital system (Biograph Vision 450, 2020–2021). Three blinded nuclear medicine physicians independently scored EZ localization and image quality (4-point scale); post-surgical histology and ≥1-year clinical follow-up served as reference. Results: The EZ was correctly identified in 8/11 analog scans (72.7%) versus 10/11 digital scans (90.9%). Average image quality was significantly higher with dPET (3.0 ± 0.9 vs. 2.1 ± 0.9; p < 0.05), and inter-reader agreement improved from good (ICC = 0.63) to excellent (ICC = 0.91). Conclusions: Our preliminary findings suggest that dPET enhances image clarity and reader consistency, potentially improving localization accuracy in pediatric epilepsy presurgical workups. Full article
Show Figures

Figure 1

29 pages, 28274 KiB  
Article
Long-Term Neuroprotective Effects of Hydrogen-Rich Water and Memantine in Chronic Radiation-Induced Brain Injury: Behavioral, Histological, and Molecular Insights
by Kai Xu, Huan Liu, Yinhui Wang, Yushan He, Mengya Liu, Haili Lu, Yuhao Wang, Piye Niu and Xiujun Qin
Antioxidants 2025, 14(8), 948; https://doi.org/10.3390/antiox14080948 (registering DOI) - 1 Aug 2025
Viewed by 37
Abstract
Hydrogen-rich water (HRW) has shown neuroprotective effects in acute brain injury, but its role in chronic radiation-induced brain injury (RIBI) remains unclear. This study investigated the long-term efficacy of HRW in mitigating cognitive impairment and neuronal damage caused by chronic RIBI. Fifty male [...] Read more.
Hydrogen-rich water (HRW) has shown neuroprotective effects in acute brain injury, but its role in chronic radiation-induced brain injury (RIBI) remains unclear. This study investigated the long-term efficacy of HRW in mitigating cognitive impairment and neuronal damage caused by chronic RIBI. Fifty male Sprague Dawley rats were randomly divided into five groups: control, irradiation (IR), IR with memantine, IR with HRW, and IR with combined treatment. All but the control group received 20 Gy whole-brain X-ray irradiation, followed by daily interventions for 60 days. Behavioral assessments, histopathological analyses, oxidative stress measurements, 18F-FDG PET/CT imaging, transcriptomic sequencing, RT-qPCR, Western blot, and serum ELISA were performed. HRW significantly improved anxiety-like behavior, memory, and learning performance compared to the IR group. Histological results revealed that HRW reduced neuronal swelling, degeneration, and loss and enhanced dendritic spine density and neurogenesis. PET/CT imaging showed increased hippocampal glucose uptake in the IR group, which was alleviated by HRW treatment. Transcriptomic and molecular analyses indicated that HRW modulated key genes and proteins, including CD44, CD74, SPP1, and Wnt1, potentially through the MIF, Wnt, and SPP1 signaling pathways. Serum CD44 levels were also lower in treated rats, suggesting its potential as a biomarker for chronic RIBI. These findings demonstrate that HRW can alleviate chronic RIBI by preserving neuronal structure, reducing inflammation, and enhancing neuroplasticity, supporting its potential as a therapeutic strategy for radiation-induced cognitive impairment. Full article
Show Figures

Graphical abstract

19 pages, 950 KiB  
Review
A Narrative Review of Theranostics in Neuro-Oncology: Advancing Brain Tumor Diagnosis and Treatment Through Nuclear Medicine and Artificial Intelligence
by Rafail C. Christodoulou, Platon S. Papageorgiou, Rafael Pitsillos, Amanda Woodward, Sokratis G. Papageorgiou, Elena E. Solomou and Michalis F. Georgiou
Int. J. Mol. Sci. 2025, 26(15), 7396; https://doi.org/10.3390/ijms26157396 (registering DOI) - 31 Jul 2025
Viewed by 407
Abstract
This narrative review explores the integration of theranostics and artificial intelligence (AI) in neuro-oncology, addressing the urgent need for improved diagnostic and treatment strategies for brain tumors, including gliomas, meningiomas, and pediatric central nervous system neoplasms. A comprehensive literature search was conducted through [...] Read more.
This narrative review explores the integration of theranostics and artificial intelligence (AI) in neuro-oncology, addressing the urgent need for improved diagnostic and treatment strategies for brain tumors, including gliomas, meningiomas, and pediatric central nervous system neoplasms. A comprehensive literature search was conducted through PubMed, Scopus, and Embase for articles published between January 2020 and May 2025, focusing on recent clinical and preclinical advancements in personalized neuro-oncology. The review synthesizes evidence on novel theranostic agents—such as Lu-177-based radiopharmaceuticals, CXCR4-targeted PET tracers, and multifunctional nanoparticles—and highlights the role of AI in enhancing tumor detection, segmentation, and treatment planning through advanced imaging analysis, radiogenomics, and predictive modeling. Key findings include the emergence of nanotheranostics for targeted drug delivery and real-time monitoring, the application of AI-driven algorithms for improved image interpretation and therapy guidance, and the identification of current limitations such as data standardization, regulatory challenges, and limited multicenter validation. The review concludes that the convergence of AI and theranostic technologies holds significant promise for advancing precision medicine in neuro-oncology, but emphasizes the need for collaborative, multidisciplinary research to overcome existing barriers and enable widespread clinical adoption. Full article
(This article belongs to the Special Issue Biomarker Discovery and Validation for Precision Oncology)
Show Figures

Figure 1

11 pages, 5560 KiB  
Article
Pilot Study of [11C]HY-2-15: A Mixed Alpha-Synuclein and Tau PET Radiotracer
by Chia-Ju Hsieh, Dinahlee Saturnino Guarino, Anthony J. Young, Andrew D. Siderowf, Ilya Nasrallah, Alexander Schmitz, Carol Garcia, Ho Young Kim, Erin K. Schubert, Hsiaoju Lee, Joel S. Perlmutter and Robert H. Mach
Cells 2025, 14(15), 1157; https://doi.org/10.3390/cells14151157 - 26 Jul 2025
Viewed by 322
Abstract
A novel brain positron emission tomography (PET) radioligand, [11C]HY-2-15, has potential for imaging alpha-synuclein aggregations in multiple system atrophy and misfolded tau proteins in tauopathies, based on its high binding affinity in disease brain tissue homogenates. Here, we demonstrate that [ [...] Read more.
A novel brain positron emission tomography (PET) radioligand, [11C]HY-2-15, has potential for imaging alpha-synuclein aggregations in multiple system atrophy and misfolded tau proteins in tauopathies, based on its high binding affinity in disease brain tissue homogenates. Here, we demonstrate that [3H]HY-2-15 has the capability to bind to aggregated alpha-synuclein in multiple system atrophy brain and tau aggregations in progressive supranuclear palsy and corticobasal degeneration brain tissues via in vitro autoradiography study. A first-in-human pilot multicenter clinical study recruited a total of 10 subjects including healthy controls and patients with Parkinson’s disease, multiple system atrophy, or progressive supranuclear palsy. The study revealed that [11C]HY-2-15 has a relatively higher specific uptake in the pallidum and midbrain of patients with progressive supranuclear palsy. Total-body scans performed on the PennPET Explorer showed the radiotracer was cleared by renal excretion. However, the rapid metabolism and low brain uptake resulted in a limited signal of [11C]HY-2-15 in brain. Full article
(This article belongs to the Special Issue Development of PET Radiotracers for Imaging Alpha-Synuclein)
Show Figures

Figure 1

23 pages, 19687 KiB  
Article
Intranasal Mitochondrial Transplantation Restores Mitochondrial Function and Modulates Glial–Neuronal Interactions in a Genetic Parkinson’s Disease Model of UQCRC1 Mutation
by Jui-Chih Chang, Chin-Hsien Lin, Cheng-Yi Yeh, Mei-Fang Cheng, Yi-Chieh Chen, Chi-Han Wu, Hui-Ju Chang and Chin-San Liu
Cells 2025, 14(15), 1148; https://doi.org/10.3390/cells14151148 - 25 Jul 2025
Viewed by 481
Abstract
The intranasal delivery of exogenous mitochondria is a potential therapy for Parkinson’s disease (PD). The regulatory mechanisms and effectiveness in genetic models remains uncertain, as well as the impact of modulating the mitochondrial permeability transition pore (mPTP) in grafts. Utilizing UQCRC1 (p.Tyr314Ser) knock-in [...] Read more.
The intranasal delivery of exogenous mitochondria is a potential therapy for Parkinson’s disease (PD). The regulatory mechanisms and effectiveness in genetic models remains uncertain, as well as the impact of modulating the mitochondrial permeability transition pore (mPTP) in grafts. Utilizing UQCRC1 (p.Tyr314Ser) knock-in mice, and a cellular model, this study validated the transplantation of mitochondria with or without cyclosporin A (CsA) preloading as a method to treat mitochondrial dysfunction and improve disease progression through intranasal delivery. Liver-derived mitochondria were labeled with bromodeoxyuridine (BrdU), incubated with CsA to inhibit mPTP opening, and were administered weekly via the nasal route to 6-month-old mice for six months. Both treatment groups showed significant locomotor improvements in open-field tests. PET imaging showed increased striatal tracer uptake, indicating enhanced dopamine synthesis capacity. The immunohistochemical analysis revealed increased neuron survival in the dentate gyrus, a higher number of tyrosine hydroxylase (TH)-positive neurons in the substantia nigra (SN) and striatum (ST), and a thicker granule cell layer. In SN neurons, the function of mitochondrial complex III was reinstated. Additionally, the CsA-accumulated mitochondria reduced more proinflammatory cytokine levels, yet their therapeutic effectiveness was similar to that of unmodified mitochondria. External mitochondria were detected in multiple brain areas through BrdU tracking, showing a 3.6-fold increase in the ST compared to the SN. In the ST, about 47% of TH-positive neurons incorporated exogenous mitochondria compared to 8% in the SN. Notably, GFAP-labeled striatal astrocytes (ASTs) also displayed external mitochondria, while MBP-labeled striatal oligodendrocytes (OLs) did not. On the other hand, fewer ASTs and increased OLs were noted, along with lower S100β levels, indicating reduced reactive gliosis and a more supportive environment for OLs. Intranasally, mitochondrial transplantation showed neuroprotective effects in genetic PD, validating a noninvasive therapeutic approach. This supports mitochondrial recovery and is linked to anti-inflammatory responses and glial modulation. Full article
Show Figures

Graphical abstract

23 pages, 7256 KiB  
Article
Discovery of N-(6-Methoxypyridin-3-yl)quinoline-2-amine Derivatives for Imaging Aggregated α-Synuclein in Parkinson’s Disease with Positron Emission Tomography
by Haiyang Zhao, Tianyu Huang, Dhruva D. Dhavale, Jennifer Y. O’Shea, Zsofia Lengyel-Zhand, Dinahlee Saturnino Guarino, Jiwei Gu, Xuyi Yue, Ying-Hwey Nai, Hao Jiang, Marshall G. Lougee, Vinayak V. Pagar, Hee Jong Kim, Benjamin A. Garcia, E. James Petersson, Chester A. Mathis, Paul T. Kotzbauer, Joel S. Perlmutter, Robert H. Mach and Zhude Tu
Cells 2025, 14(14), 1108; https://doi.org/10.3390/cells14141108 - 18 Jul 2025
Viewed by 905
Abstract
The fibrillary aggregation of α-synuclein is a hallmark of Parkinson’s disease (PD) and a potential target for diagnostics and therapeutics. Although substantial effort has been devoted to the development of positron emission tomography (PET) probes for detecting α-synuclein aggregates, no clinically suitable tracer [...] Read more.
The fibrillary aggregation of α-synuclein is a hallmark of Parkinson’s disease (PD) and a potential target for diagnostics and therapeutics. Although substantial effort has been devoted to the development of positron emission tomography (PET) probes for detecting α-synuclein aggregates, no clinically suitable tracer has been reported. The design and synthesis of 43 new N-(6-methoxypyridin-3-yl)quinolin-2-amine derivatives and an evaluation of their α-synuclein binding affinity is reported here. Compounds 7f, 7j, and 8i exhibited high affinity for α-synuclein and were selected for 11C, 18F, 125I, or 3H radiolabeling. A photoaffinity variant, TZ-CLX, structurally related to 7j and 8i, demonstrated preferential binding to the C-terminal region of α-synuclein fibrils. PET brain imaging studies using [11C]7f, [18F]7j, and [11C]8i in non-human primates indicated that these three α-synuclein PET tracers penetrated the blood–brain barrier. Both [11C]7f and [18F]7j showed more favorable brain washout pharmacokinetics than [11C]8i. In vitro binding assays showed that [125I]8i is a very potent α-synuclein radioligand, with Kd values of 5 nM for both PD brain tissues and LBD-amplified fibrils; it is also selective for PD tissues versus AD or control tissues. These results strongly suggest that the PET probes based on the N-(6-methoxypyridin-3-yl)quinoline-2-amine scaffold have potential utility in detecting α-synuclein aggregates in vivo. Full article
(This article belongs to the Special Issue Development of PET Radiotracers for Imaging Alpha-Synuclein)
Show Figures

Figure 1

32 pages, 2302 KiB  
Review
Early Detection of Alzheimer’s Disease Using Generative Models: A Review of GANs and Diffusion Models in Medical Imaging
by Md Minul Alam and Shahram Latifi
Algorithms 2025, 18(7), 434; https://doi.org/10.3390/a18070434 - 15 Jul 2025
Viewed by 562
Abstract
Alzheimer’s disease (AD) is a progressive, non-curable neurodegenerative disorder that poses persistent challenges for early diagnosis due to its gradual onset and the difficulty in distinguishing pathological changes from normal aging. Neuroimaging, particularly MRI and PET, plays a key role in detection; however, [...] Read more.
Alzheimer’s disease (AD) is a progressive, non-curable neurodegenerative disorder that poses persistent challenges for early diagnosis due to its gradual onset and the difficulty in distinguishing pathological changes from normal aging. Neuroimaging, particularly MRI and PET, plays a key role in detection; however, limitations in data availability and the complexity of early structural biomarkers constrain traditional diagnostic approaches. This review investigates the use of generative models, specifically Generative Adversarial Networks (GANs) and Diffusion Models, as emerging tools to address these challenges. These models are capable of generating high-fidelity synthetic brain images, augmenting datasets, and enhancing machine learning performance in classification tasks. The review synthesizes findings across multiple studies, revealing that GAN-based models achieved diagnostic accuracies up to 99.70%, with image quality metrics such as SSIM reaching 0.943 and PSNR up to 33.35 dB. Diffusion Models, though relatively new, demonstrated strong performance with up to 92.3% accuracy and FID scores as low as 11.43. Integrating generative models with convolutional neural networks (CNNs) and multimodal inputs further improved diagnostic reliability. Despite these advancements, challenges remain, including high computational demands, limited interpretability, and ethical concerns regarding synthetic data. This review offers a comprehensive perspective to inform future AI-driven research in early AD detection. Full article
(This article belongs to the Special Issue Advancements in Signal Processing and Machine Learning for Healthcare)
Show Figures

Graphical abstract

19 pages, 2151 KiB  
Systematic Review
Optimizing Stereotactic Intracranial Neoplasm Treatment: A Systematic Review of PET Integration with Gamma Knife Radiosurgery
by Robert C. Subtirelu, Eric M. Teichner, Milo Writer, Kevin Bryan, Shiv Patil, Talha Khan, Lancelot Herpin, Raj N. Patel, Emily Christner, Chitra Parikh, Thomas Werner, Abass Alavi and Mona-Elisabeth Revheim
Diseases 2025, 13(7), 215; https://doi.org/10.3390/diseases13070215 - 10 Jul 2025
Viewed by 385
Abstract
Objective: Traditional imaging modalities for the planning of Gamma Knife radiosurgery (GKRS) are non-specific and do not accurately delineate intracranial neoplasms. This study aimed to evaluate the utility of positron emission tomography (PET) for the planning of GKRS for intracranial neoplasms (ICNs) and [...] Read more.
Objective: Traditional imaging modalities for the planning of Gamma Knife radiosurgery (GKRS) are non-specific and do not accurately delineate intracranial neoplasms. This study aimed to evaluate the utility of positron emission tomography (PET) for the planning of GKRS for intracranial neoplasms (ICNs) and the post-GKRS applications of PET for patient care. Methods: PubMed, Scopus, and ScienceDirect were searched in order to assemble relevant studies regarding the uses of PET in conjunction with GKRS for ICN treatment. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed to identify relevant studies on the use of PET in conjunction with GKRS. Particular emphasis was placed on review articles and medical research investigating tumor delineation and post-operative care. Relevant studies were selected and assessed based on quality measures, including study design, sample size, and significance. Inclusion and exclusion criteria were used to examine the yield of the initial search (n = 105). After a secondary review, the included results were identified (n = 50). Results: This study revealed that PET imaging is highly accurate for the planning of GKRS. In fact, many cases indicate that it is more specific than traditional imaging modalities. PET is also capable of complementing traditional imaging techniques through combination imaging. This showed significant efficacy for the planning of GKRS for ICNs. Conclusions: While PET shows a multitude of applications for the treatment of ICNs with GKRS, further research is necessary to assemble a complete set of clinical guidelines for treatment specifications. Importantly, future studies need a greater standardization of methods and expanded trials with a multitude of radiotracers. Full article
Show Figures

Figure 1

17 pages, 3035 KiB  
Article
Data-Driven Image-Based Protocol for Brain PET Image Harmonization
by Eva Štokelj, Urban Simončič and for the Alzheimer’s Disease Neuroimaging Initiative
Sensors 2025, 25(13), 4230; https://doi.org/10.3390/s25134230 - 7 Jul 2025
Viewed by 373
Abstract
Quantitative FDG-PET brain imaging across multiple centers is challenged by inter-scanner variability, impacting the comparability of neuroimaging data. This study proposes a data-driven image-based harmonization protocol to address these discrepancies without relying on traditional phantom scans. The protocol uses spatially normalized FDG-PET brain [...] Read more.
Quantitative FDG-PET brain imaging across multiple centers is challenged by inter-scanner variability, impacting the comparability of neuroimaging data. This study proposes a data-driven image-based harmonization protocol to address these discrepancies without relying on traditional phantom scans. The protocol uses spatially normalized FDG-PET brain images to estimate scanner-specific Gaussian smoothing filters, optimizing parameters via the structural similarity index (SSIM). Validation was performed using images from cognitively normal individuals and Alzheimer’s disease patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. Results demonstrated robust harmonization at moderate target resolutions (8 and 10 mm FWHM), with filter estimates consistently within 1.2 mm of phantom-derived ground truths. However, at higher resolutions (6 mm FWHM), discrepancies reached up to 3 mm, reflecting reduced accuracy. These deviations were particularly evident for high-resolution scanners like HRRT, likely due to elevated noise levels and smaller sample sizes. The presented harmonization method effectively reduces inter-scanner variability in retrospective FDG-PET studies, especially valuable when phantom scans are unavailable. Nonetheless, the current limitations at finer resolutions underline the necessity for methodological refinements to meet the demands of evolving high-resolution PET imaging technologies. Full article
Show Figures

Figure 1

23 pages, 1185 KiB  
Review
Radioligands Targeting the Purinergic P2X Receptors
by Diego Dal Ben, Michela Buccioni, Catia Lambertucci, Beatrice Francucci, Aleksei Smirnov, Andrea Spinaci, Gabriella Marucci and Rosaria Volpini
Cells 2025, 14(13), 984; https://doi.org/10.3390/cells14130984 - 27 Jun 2025
Viewed by 451
Abstract
Purinergic P2X receptors have a wide distribution within the body and modulate a number of physiological processes, being also involved in the development and progression of inflammation-, neuroinflammation-, neurodegeneration-, and cancer-related diseases. Radioligands that can detect specific P2X receptor subtypes and reveal their [...] Read more.
Purinergic P2X receptors have a wide distribution within the body and modulate a number of physiological processes, being also involved in the development and progression of inflammation-, neuroinflammation-, neurodegeneration-, and cancer-related diseases. Radioligands that can detect specific P2X receptor subtypes and reveal their level of expression are of key importance for the development of novel P2X modulators, for the depiction of the involvement of these proteins in physio-pathological processes, and for the availability of novel diagnostic tools to be used for imaging experiments in vivo. Here we review and summarise the various P2X-targeting radioligands developed and reported to date, ranging from analogues of the endogenous P2X agonist ATP to the more recent and P2X subtype-selective allosteric modulators. Many of the high-affinity radioligands described are only suitable as in vitro receptor probes. No viable P2X3 or P2X4 radioligands for in vivo positron emission tomography (PET) imaging have been developed and reported to date. However, P2X7 antagonists, such as [11C]SMW139, [11C]GSK1482160, [11C]JNJ-54173717, and [18F]JNJ-64413739, have been successfully applied to PET imaging in the brain. Full article
Show Figures

Figure 1

31 pages, 10891 KiB  
Review
Development of Positron Emission Tomography Radiotracers for Imaging α-Synuclein Aggregates
by Xiaodi Guo, Jie Xiang, Keqiang Ye and Zhentao Zhang
Cells 2025, 14(12), 907; https://doi.org/10.3390/cells14120907 - 16 Jun 2025
Cited by 1 | Viewed by 941
Abstract
Neurodegenerative diseases (NDDs) that are characterized by the accumulation of alpha-synuclein (α-syn) aggregates in both neurons and the non-neuronal cells of the brain are called synucleinopathies. The most common synucleinopathies includes Parkinson’s disease (PD), Parkinson’s disease dementia (PDD), multiple system atrophy (MSA), and [...] Read more.
Neurodegenerative diseases (NDDs) that are characterized by the accumulation of alpha-synuclein (α-syn) aggregates in both neurons and the non-neuronal cells of the brain are called synucleinopathies. The most common synucleinopathies includes Parkinson’s disease (PD), Parkinson’s disease dementia (PDD), multiple system atrophy (MSA), and dementia with Lewy bodies (DLB). Significant progress has been made in the development of positron emission tomography (PET) radiotracers for synucleinopathies, yielding several α-syn tracers that have entered clinical studies. However, selective α-syn imaging still faces inherent challenges. This review provides a comprehensive overview of the progress in α-syn PET radiotracers from three angles: Alzheimer’s disease (AD)-derived scaffolds, representative compound scaffolds and analogs, and the identification of α-syn tracers through high-throughput screening (HTS). We discuss the characteristics, advantages, and limitations of the tracers for preclinical and clinical application. Finally, future directions in the development of radioligands for proteinopathies are discussed. There is no clinical available PET radiotracer for imaging α-syn aggregates, but these advances have laid a key foundation for non-invasive α-syn imaging and early diagnosis of synucleinopathies. Full article
(This article belongs to the Special Issue Development of PET Radiotracers for Imaging Alpha-Synuclein)
Show Figures

Graphical abstract

26 pages, 4766 KiB  
Review
Applications of Advanced Imaging for Radiotherapy Planning and Response Assessment in the Central Nervous System
by Liam S. P. Lawrence, Rachel W. Chan, Amit Singnurkar, Jay Detsky, Chris Heyn, Pejman J. Maralani, Hany Soliman, Greg J. Stanisz, Arjun Sahgal and Angus Z. Lau
Tomography 2025, 11(6), 68; https://doi.org/10.3390/tomography11060068 - 12 Jun 2025
Viewed by 1191
Abstract
Background/Objectives: Radiotherapy for tumors of the central nervous system (CNS) could be improved by incorporating advanced imaging techniques into treatment planning and response assessment. The objective of this narrative review is to highlight the recent developments in magnetic resonance imaging (MRI) and positron [...] Read more.
Background/Objectives: Radiotherapy for tumors of the central nervous system (CNS) could be improved by incorporating advanced imaging techniques into treatment planning and response assessment. The objective of this narrative review is to highlight the recent developments in magnetic resonance imaging (MRI) and positron emission tomography (PET) for applications in CNS radiotherapy. Methods: Recent articles were selected for discussion, covering the following topics: advanced imaging on MRI-linear accelerators for early response assessment in glioma; PET for guiding treatment planning and response assessment in glioma; and contrast-enhanced imaging and metabolic imaging for differentiating tumor progression and radiation necrosis for brain metastasis treatment. Where necessary, searches of scholarly databases (e.g., Google Scholar, PubMed) were used to find papers for each topic. The topics were chosen based on the perception of promise in advancing specific applications of CNS radiotherapy and not covered in detail elsewhere. This review is not intended to be comprehensive. Results: Advanced MRI sequences and PET could have a substantial impact on CNS radiotherapy. For gliomas, the tumor response to therapy could be assessed much earlier than using the conventional technique of measuring changes in tumor size. Using advanced imaging on combined imaging/therapy devices like MR-Linacs would enable response monitoring throughout radiotherapy. For brain metastases, radiation necrosis and tumor progression might be reliably differentiated with imaging techniques sensitive to perfusion or metabolism. However, the lack of level 1 evidence supporting specific uses for each imaging technique is an impediment to widespread use. Conclusions: Advanced MRI and PET have great promise to change the standard of care for CNS radiotherapy, but clinical trials validating specific applications are needed. Full article
(This article belongs to the Special Issue Progress in the Use of Advanced Imaging for Radiation Oncology)
Show Figures

Figure 1

18 pages, 4138 KiB  
Review
Fibromyalgia in the Era of Brain PET/CT Imaging
by Elisabetta Abenavoli, Valentina Berti, Matilde Nerattini, Piercarlo Sarzi-Puttini, Georgios Filippou, Alessandro Lucia, Gilberto Pari, Stefano Pallanti, Fausto Salaffi, Marina Carotti, Silvia Sirotti and Francesco Porta
J. Clin. Med. 2025, 14(12), 4166; https://doi.org/10.3390/jcm14124166 - 12 Jun 2025
Viewed by 1087
Abstract
Fibromyalgia syndrome (FMS) is a complex, heterogeneous disorder characterized by chronic widespread pain, fatigue, and cognitive disturbances. The multifactorial nature of FMS, with the involvement of central and peripheral mechanisms, hampers diagnosis and effective treatment. In recent years, positron emission tomography (PET) imaging [...] Read more.
Fibromyalgia syndrome (FMS) is a complex, heterogeneous disorder characterized by chronic widespread pain, fatigue, and cognitive disturbances. The multifactorial nature of FMS, with the involvement of central and peripheral mechanisms, hampers diagnosis and effective treatment. In recent years, positron emission tomography (PET) imaging has emerged as a valuable tool for exploring the neurobiological underpinnings of FMS. Several studies have investigated alterations in glucose metabolism, neurotransmitter systems (including opioid, dopamine, and GABAergic pathways), and neuroinflammation using various PET tracers. These findings have revealed distinct brain metabolic and molecular patterns in FMS patients compared to healthy controls, particularly in pain-related regions such as the thalamus, insula, and anterior cingulate cortex (ACC). Moreover, preliminary data suggest that PET imaging may help identify FMS subgroups with different pathophysiological profiles, potentially allowing for tailored therapeutic approaches. This review summarizes the current evidence on PET applications in FMS and discusses the potential role of molecular imaging in improving patient stratification and predicting treatment response. Full article
(This article belongs to the Special Issue Imaging in Diagnosis and Treatment of Musculoskeletal Disorders)
Show Figures

Figure 1

16 pages, 3021 KiB  
Article
Prediction of Alzheimer’s Disease Based on Multi-Modal Domain Adaptation
by Binbin Fu, Changsong Shen, Shuzu Liao, Fangxiang Wu and Bo Liao
Brain Sci. 2025, 15(6), 618; https://doi.org/10.3390/brainsci15060618 - 7 Jun 2025
Viewed by 699
Abstract
Background/Objectives: Structural magnetic resonance imaging (MRI) and 18-fluoro-deoxy-glucose positron emission tomography (PET) reveal the structural and functional information of the brain from different dimensions, demonstrating considerable clinical and practical value in the computer-aided diagnosis of Alzheimer’s disease (AD). However, the structure and semantics [...] Read more.
Background/Objectives: Structural magnetic resonance imaging (MRI) and 18-fluoro-deoxy-glucose positron emission tomography (PET) reveal the structural and functional information of the brain from different dimensions, demonstrating considerable clinical and practical value in the computer-aided diagnosis of Alzheimer’s disease (AD). However, the structure and semantics of different modal data are different, and the distribution between different datasets is prone to the problem of domain shift. Most of the existing methods start from the single-modal data and assume that different datasets meet the same distribution, but they fail to fully consider the complementary information between the multi-modal data and fail to effectively solve the problem of domain distribution difference. Methods: In this study, we propose a multi-modal deep domain adaptation (MM-DDA) model that integrates MRI and PET modal data, which aims to maximize the utilization of the complementarity of the multi-modal data and narrow the differences in domain distribution to boost the accuracy of AD classification. Specifically, MM-DDA comprises three primary modules: (1) the feature encoding module, which employs convolutional neural networks (CNNs) to capture detailed and abstract feature representations from MRI and PET images; (2) the multi-head attention feature fusion module, which is used to fuse MRI and PET features, that is, to capture rich semantic information between modes from multiple angles by dynamically adjusting weights, so as to achieve more flexible and efficient feature fusion; and (3) the domain transfer module, which reduces the distributional discrepancies between the source and target domains by employing adversarial learning training. Results: We selected 639 subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and considered two transfer learning settings. In ADNI1→ADNI2, the accuracies of the four experimental groups, AD vs. CN, pMCI vs. sMCI, AD vs. MCI, and MCI vs. CN, reached 92.40%, 81.81%, 81.13%, and 85.45%, respectively. In ADNI2→ADNI1, the accuracies of the four experimental groups, AD vs. CN, pMCI vs. sMCI, AD vs. MCI, and MCI vs. CN, reached 94.73%, 81.48%, 85.48%, and 81.69%, respectively. Conclusions: MM-DDA is compared with other deep learning methods on two kinds of transfer learning, and the performance comparison results confirmed the superiority of the proposed method in AD prediction tasks. Full article
Show Figures

Figure 1

15 pages, 4089 KiB  
Article
Increased [18F]DPA-714 Uptake in the Skeletal Muscle of SOD1G93A Mice: A New Potential of Translocator Protein 18 kDa Imaging in Amyotrophic Lateral Sclerosis
by Cecilia Marini, Mattia Riondato, Edoardo Dighero, Alessia Democrito, Serena Losacco, Laura Emionite, Lucilla Nobbio, Irene Di Patrizi, Mattia Camera, Chiara Ghersi, Maddalena Ghelardoni, Francesco Lanfranchi, Francesca Vitale, Sonia Carta, Sabrina Chiesa, Carola Torazza, Marco Milanese, Matteo Bauckneht, Mehrnaz Hamedani, Federico Zaottini, Angelo Schenone, Carlo Martinoli, Federica Grillo and Gianmario Sambucetiadd Show full author list remove Hide full author list
Biomolecules 2025, 15(6), 799; https://doi.org/10.3390/biom15060799 - 31 May 2025
Viewed by 571
Abstract
Purpose: The skeletal muscle has been proposed to contribute to the progressive loss of motor neurons typical of amyotrophic lateral sclerosis (ALS). However, this mechanism has not yet been clarified due to the lack of suitable imaging tools. Here, we aimed to verify [...] Read more.
Purpose: The skeletal muscle has been proposed to contribute to the progressive loss of motor neurons typical of amyotrophic lateral sclerosis (ALS). However, this mechanism has not yet been clarified due to the lack of suitable imaging tools. Here, we aimed to verify whether PET imaging of the translocator protein 18 kDa (TSPO) can detect a muscular abnormality in an experimental model of ALS. Methods: In vivo biodistribution and kinetics of [18F]DPA-714 were analyzed in skeletal muscle and brain of SOD1G93A transgenic mice and in wildtype (WT) littermates. Both cohorts were divided into three groups (n = 6 each) to be studied at 60, 90 and 120 days. After microPET imaging, animals were sacrificed to evaluate inflammatory infiltrates by hematoxylin/eosin staining and TSPO expression by immunohistochemistry and Western blot in both quadriceps and brain. Results: [18F]DPA-714 uptake was higher in the skeletal muscles of SOD1G93A than in WT mice in the preclinical phase (60 and 90 days) and further increased up to the symptomatic late stage (120 days). Inflammatory cells were absent in the quadriceps of SOD1G93A mice whose myocytes, instead, showed a progressive increase in TSPO expression with advancing age. By contrast, brain tracer uptake and TSPO expression were comparably low in both groups, regardless of age and genotype. Conclusion: Upregulation of TSPO expression is characteristic of skeletal muscle, but not the brain, in the experimental SOD1G93A mouse model of ALS. Tracers targeting this pathway have been mostly proposed for the evaluation of inflammatory processes within the central nervous system. Nevertheless, the ubiquitous nature of TSPO expression and its responsiveness to various signals may broaden the diagnostic potential of these tracers to include disease conditions beyond inflammation. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Graphical abstract

Back to TopTop