Fibromyalgia in the Era of Brain PET/CT Imaging
Abstract
:1. Introduction
1.1. Introduction
1.2. PET Imaging
- Showing how a radiopharmaceutical spreads naturally in the body.
- Understanding how a radiopharmaceutical interacts with its target.
- Identifying key imaging patterns in diseases using visual analysis or measurements from specialized software.
- -
- [18F]FDG, a tracer of brain glucose metabolism and general (mainly glutamatergic) synaptic activity;
- -
- Dopaminergic system tracers, including [11C]Raclopride or [18F]Fallypride to measure D2/D3-DA receptor availability, and [18F]DOPA to measure DA synthesis and metabolism;
- -
- [18F]Flumazenil, a tracer of GABAA receptors;
- -
- [11C]Carfentanil, a ligand of μ-Opioid receptor (MOR);
- -
- TSPO-targeting tracers, including the first-generation ligand [11C]PK11195, and second-generation radioligands [11C]PBR28 and [18F]DPA-714.
1.2.1. PET Patterns in FMS: Diagnosis and Prognosis
1.2.2. PET Scan Findings Correlate with the Results of Standardized Pain Testing Procedures and Quality of Life Questionnaires
1.3. Post-Treatment PET Imaging
2. Discussion
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
[18F]FDG | [18F]fluorodeoxyglucose |
ACC | anterior cingulate cortex |
BP | binding potential |
DATs | Presynaptic DA transporters |
FMS | Fibromyalgia Syndrome |
MDD | major depressive disorder |
NMD | N-methyl-D-aspartate |
PET | Positron Emission Tomograph |
rTMS | transcranial magnetic stimulation |
SPM | Statistical parametric mapping |
VTA | ventral tegmental area |
References
- Al Sharie, S.; Varga, S.J.; Al-Husinat, L.; Sarzi-Puttini, P.; Araydah, M.; Bal’awi, B.R.; Varrassi, G. Unraveling the Complex Web of Fibromyalgia: A Narrative Review. Medicina 2024, 60, 272. [Google Scholar] [CrossRef]
- Sarzi-Puttini, P.; Giorgi, V.; Marotto, D.; Atzeni, F. Fibromyalgia: An update on clinical characteristics, aetiopathogenesis and treatment. Nat. Rev. Rheumatol. 2020, 16, 645–660. [Google Scholar] [CrossRef]
- Varrassi, G.; Rekatsina, M.; Perrot, S.; Bouajina, E.; Paladini, A.; Coaccioli, S.; Narvaez Tamayo, M.A.; Sarzi Puttini, P. Is Fibromyalgia a Fashionable Diagnosis or a Medical Mystery? Cureus 2023, 15, e44852. [Google Scholar] [CrossRef] [PubMed]
- Fitzcharles, M.A.; Yunus, M.B. The clinical concept of fibromyalgia as a changing paradigm in the past 20 years. Pain Res. Treat. 2012, 2012, 184835. [Google Scholar] [CrossRef] [PubMed]
- Arout, C.A.; Sofuoglu, M.; Bastian, L.A.; Rosenheck, R.A. Gender Differences in the Prevalence of Fibromyalgia and in Concomitant Medical and Psychiatric Disorders: A National Veterans Health Administration Study. J. Womens Health 2018, 27, 1035–1044. [Google Scholar] [CrossRef]
- Siracusa, R.; Paola, R.; Di Cuzzocrea, S.; Impellizzeri, D. Fibromyalgia: Pathogenesis, Mechanisms, Diagnosis and Treatment Options Update. Int. J. Mol. Sci. 2021, 22, 3891. [Google Scholar] [CrossRef] [PubMed]
- Becker, S.; Schweinhardt, P. Dysfunctional neurotransmitter systems in fibromyalgia, their role in central stress circuitry and pharmacological actions on these systems. Pain Res. Treat. 2012, 2012, 741746. [Google Scholar] [CrossRef]
- Or-Borichev, A.; Lerner, Y.; Hamrani, Y.; Gurevitch, G.; Mor, N.; Doron, M.; Sarna, N.; Ablin, J.N.; Hendler, T.; Sharon, H. Targeted limbic self-neuromodulation for alleviating central sensitization symptoms in fibromyalgia. BMC Med. 2025, 23, 1–16. [Google Scholar] [CrossRef]
- Ali, Z.; Raja, S.N.; Wesselmann, U.; Fuchs, P.N.; Meyer, R.A.; Campbell, J.N. Intradermal injection of norepinephrine evokes pain in patients with sympathetically maintained pain. Pain 2000, 88, 161–168. [Google Scholar] [CrossRef]
- Liu, Y.J.; Li, Y.L.; Fang, Z.H.; Liao, H.L.; Zhang, Y.Y.; Lin, J.; Liu, F.; Shen, J.F. NMDARs mediate peripheral and central sensitization contributing to chronic orofacial pain. Front. Cell. Neurosci. 2022, 16, 999509. [Google Scholar] [CrossRef]
- Caxaria, S.; Bharde, S.; Fuller, A.M.; Evans, R.; Thomas, B.; Celik, P.; Dell’Accio, F.; Yona, S.; Gilroy, D.; Voisin, M.B.; et al. Neutrophils infiltrate sensory ganglia and mediate chronic widespread pain in fibromyalgia. Proc. Natl. Acad. Sci. USA 2023, 120, e2211631120. [Google Scholar] [CrossRef] [PubMed]
- Goebel, A.; Krock, E.; Gentry, C.; Israel, M.R.; Jurczak, A.; Urbina, C.M.; Sandor, K.; Vastani, N.; Maurer, M.; Cuhadar, U.; et al. Passive transfer of fibromyalgia symptoms from patients to mice. J. Clin. Investig. 2021, 131, e144201. [Google Scholar] [CrossRef]
- Björkander, S.; Ernberg, M.; Bileviciute-Ljungar, I. Reduced immune system responsiveness in fibromyalgia—A pilot study. Clin. Immunol. Commun. 2022, 2, 46–53. [Google Scholar] [CrossRef]
- Lutz, J.; Jäger, L.; de Quervain, D.; Krauseneck, T.; Padberg, F.; Wichnalek, M.; Beyer, A.; Stahl, R.; Zirngibl, B.; Morhard, D.; et al. White and gray matter abnormalities in the brain of patients with fibromyalgia: A diffusion-tensor and volumetric imaging study. Arthritis Rheum. 2008, 58, 3960–3969. [Google Scholar] [CrossRef]
- Ichesco, E.; Schmidt-Wilcke, T.; Bhavsar, R.; Clauw, D.J.; Peltier, S.J.; Kim, J.; Napadow, V.; Hampson, J.P.; Kairys, A.E.; Williams, D.A.; et al. Altered resting state connectivity of the insular cortex in individuals with fibromyalgia. J. Pain 2014, 15, 815–826.e1. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.E.; Craggs, J.G.; Price, D.D.; Perlstein, W.M.; Staud, R. Gray matter volumes of pain-related brain areas are decreased in fibromyalgia syndrome. J. Pain 2011, 12, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.E.; Sundgren, P.C.; Craig, A.D.; Kirshenbaum, E.; Sen, A.; Napadow, V.; Clauw, D.J. Elevated insular glutamate in fibromyalgia is associated with experimental pain. Arthritis Rheum. 2009, 60, 3146–3152. [Google Scholar] [CrossRef]
- Foerster, B.R.; Petrou, M.; Edden, R.A.; Sundgren, P.C.; Schmidt-Wilcke, T.; Lowe, S.E.; Harte, S.E.; Clauw, D.J.; Harris, R.E. Reduced insular γ-aminobutyric acid in fibromyalgia. Arthritis Rheum. 2012, 64, 579–583. [Google Scholar] [CrossRef]
- Schrepf, A.; Harper, D.E.; Harte, S.E.; Wang, H.; Ichesco, E.; Hampson, J.P.; Zubieta, J.K.; Clauw, D.J.; Harris, R.E. Endogenous opioidergic dysregulation of pain in fibromyalgia: A PET and fMRI study. Pain 2016, 157, 2217–2225. [Google Scholar] [CrossRef]
- Berti, V.; Pupi, A.; Mosconi, L. PET/CT in diagnosis of dementia. Ann. N. Y. Acad. Sci. 2011, 1228, 81–92. [Google Scholar] [CrossRef]
- Berti, V.; Pupi, A.; Mosconi, L. PET/CT in diagnosis of movement disorders. Ann. N. Y. Acad. Sci. 2011, 1228, 93–108. [Google Scholar] [CrossRef] [PubMed]
- de Geus-Oei, L.F.; Ruers, T.J.M.; Punt, C.J.A.; Leer, J.W.; Corstens, F.H.M.; Oyen, W.J.G. FDG-PET in colorectal cancer. Cancer Imaging 2006, 6, S71–S81. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Liu, X.; Yu, T.; Ren, J.; Wang, Q. Positron emission tomography in autoimmune encephalitis: Clinical implications and future directions. Acta Neurol. Scand. 2022, 146, 708–715. [Google Scholar] [CrossRef]
- Miyashita, K. Brain function and local anatomy for SPM analysis. Kaku Igaku 2001, 38, 301–307. [Google Scholar] [PubMed]
- Yunus, M.B.; Young, C.S.; Saeed, S.A.; Mountz, J.M.; Aldag, J.C. Positron emission tomography in patients with fibromyalgia syndrome and healthy controls. Arthritis Care Res. 2004, 51, 513–518. [Google Scholar] [CrossRef]
- Usui, C.; Soma, T.; Hatta, K.; Aratani, S.; Fujita, H.; Nishioka, K.; Machida, Y.; Kuroiwa, Y.; Nakajima, T.; Nishioka, K. A study of brain metabolism in fibromyalgia by positron emission tomography. Prog. Neuropsychopharmacol. Biol. Psychiatry 2017, 75, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Woolf, C.J.; Salter, M.W. Neuronal Plasticity: Increasing the Gain in Pain. Science 2000, 288, 1765–1768. [Google Scholar] [CrossRef]
- Usui, C.; Doi, N.; Nishioka, M.; Komatsu, H.; Yamamoto, R.; Ohkubo, T.; Ishizuka, T.; Shibata, N.; Hatta, K.; Miyazaki, H.; et al. Electroconvulsive therapy improves severe pain associated with fibromyalgia. Pain 2006, 121, 276–280. [Google Scholar] [CrossRef]
- Cummiford, C.M.; Nascimento, T.D.; Foerster, B.R.; Clauw, D.J.; Zubieta, J.K.; Harris, R.E.; DaSilva, A.F. Changes in resting state functional connectivity after repetitive transcranial direct current stimulation applied to motor cortex in fibromyalgia patients. Arthritis Res. Ther. 2016, 18, 40. [Google Scholar] [CrossRef]
- Riederer, F.; Landmann, G.; Gantenbein, A.R.; Stockinger, L.; Egloff, N.; Sprott, H.; Schleinzer, W.; Pirrotta, R.; Dumat, W.; Luechinger, R.; et al. Nondermatomal somatosensory deficits in chronic pain are associated with cerebral grey matter changes. World J. Biol. Psychiatry 2017, 18, 227–238. [Google Scholar] [CrossRef]
- Wood, P.B.; Patterson, J.C.; Jasmin, L.D. Insular Hypometabolism in a Patient with Fibromyalgia: A Case Study. Pain Med. 2008, 9, 365–370. [Google Scholar] [CrossRef]
- Peyron, R.; Laurent, B.; García-Larrea, L. Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiol. Clin. 2000, 30, 263–288. [Google Scholar] [CrossRef]
- Ohara, P.T.; Granato, A.; Moallem, T.M.; Wang, B.R.; Tillet, Y.; Jasmin, L. Dopaminergic input to GABAergic neurons in the rostral agranular insular cortex of the rat. J. Neurocytol. 2003, 32, 131–141. [Google Scholar] [CrossRef]
- Jasmin, L.; Rabkin, S.D.; Granato, A.; Boudah, A.; Ohara, P.T. Analgesia and hyperalgesia from GABA-mediated modulation of the cerebral cortex. Nature 2003, 424, 316–320. [Google Scholar] [CrossRef]
- Mouraux, A.; Diukova, A.; Lee, M.C.; Wise, R.G.; Iannetti, G.D. A multisensory investigation of the functional significance of the “pain matrix”. Neuroimage 2011, 54, 2237–2249. [Google Scholar] [CrossRef] [PubMed]
- Smallwood, R.F.; Laird, A.R.; Ramage, A.E.; Parkinson, A.L.; Lewis, J.; Clauw, D.J.; Williams, D.A.; Schmidt-Wilcke, T.; Farrell, M.J.; Eickhoff, S.B.; et al. Structural Brain Anomalies and Chronic Pain: A Quantitative Meta-Analysis of Gray Matter Volume. J. Pain 2013, 14, 663–675. [Google Scholar] [CrossRef] [PubMed]
- Kapogiannis, D.; Reiter, D.A.; Willette, A.A.; Mattson, M.P. Posteromedial cortex glutamate and GABA predict intrinsic functional connectivity of the default mode network. Neuroimage 2013, 64, 112–119. [Google Scholar] [CrossRef]
- Wood, P.B.; Glabus, M.F.; Simpson, R.; Patterson, J.C. Changes in Gray Matter Density in Fibromyalgia: Correlation With Dopamine Metabolism. J. Pain 2009, 10, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Tempel, A.; Zukin, R.S. Neuroanatomical patterns of the mu, delta, and kappa opioid receptors of rat brain as determined by quantitative in vitro autoradiography. Proc. Natl. Acad. Sci. USA 1987, 84, 4308–4312. [Google Scholar] [CrossRef]
- Méndez, M.; Leriche, M.; Carlos Calva, J. Acute ethanol administration transiently decreases [3H]-DAMGO binding to mu opioid receptors in the rat substantia nigra pars reticulata but not in the caudate-putamen. Neurosci. Res. 2003, 47, 153–160. [Google Scholar] [CrossRef]
- Harris, R.E.; Clauw, D.J.; Scott, D.J.; McLean, S.A.; Gracely, R.H.; Zubieta, J.K. Decreased Central μ-Opioid Receptor Availability in Fibromyalgia. J. Neurosci. 2007, 27, 10000–10006. [Google Scholar] [CrossRef] [PubMed]
- Vogt, B.A. Pain and emotion interactions in subregions of the cingulate gyrus. Nat. Rev. Neurosci. 2005, 6, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Albrecht, D.S.; Forsberg, A.; Sandström, A.; Bergan, C.; Kadetoff, D.; Protsenko, E.; Lampa, J.; Lee, Y.C.; Höglund, C.O.; Catana, C.; et al. Brain glial activation in fibromyalgia—A multi-site positron emission tomography investigation. Brain Behav. Immun. 2019, 75, 72–83. [Google Scholar] [CrossRef] [PubMed]
- Alshelh, Z.; Brusaferri, L.; Saha, A.; Morrissey, E.; Knight, P.; Kim, M.; Zhang, Y.; Hooker, J.M.; Albrecht, D.; Torrado-Carvajal, A.; et al. Neuroimmune signatures in chronic low back pain subtypes. Brain 2022, 145, 1098–1110. [Google Scholar] [CrossRef]
- Mueller, C.; Fang, Y.D.; Jones, C.; McConathy, J.E.; Raman, F.; Lapi, S.E.; Younger, J.W. Evidence of neuroinflammation in fibromyalgia syndrome: A [18F]DPA-714 positron emission tomography study. Pain 2023, 164, 2285–2295. [Google Scholar] [CrossRef]
- Fitzcharles, M.A.; Cohen, S.P.; Clauw, D.J.; Littlejohn, G.; Usui, C.; Häuser, W. Nociplastic pain: Towards an understanding of prevalent pain conditions. Lancet 2021, 397, 2098–2110. [Google Scholar] [CrossRef]
- Wolfe, F.; Clauw, D.J.; Fitzcharles, M.A.; Goldenberg, D.L.; Katz, R.S.; Mease, P.; Russell, A.S.; Russell, I.J.; Winfield, J.B.; Yunus, M.B. The American College of Rheumatology preliminary diagnostic criteria for fibromyalgia and measurement of symptom severity. Arthritis Care Res. 2010, 62, 600–610. [Google Scholar] [CrossRef]
- Costafreda, S.G.; Brammer, M.J.; David, A.S.; Fu, C.H.Y. Predictors of amygdala activation during the processing of emotional stimuli: A meta-analysis of 385 PET and fMRI studies. Brain Res. Rev. 2008, 58, 57–70. [Google Scholar] [CrossRef]
- Neumann, L.; Berzak, A.; Buskila, D. Measuring health status in Israeli patients with fibromyalgiasyndrome and widespread pain and healthy individuals: Utility of the Short Form 36-item health survey (SF-36). Semin. Arthritis Rheum. 2000, 29, 400–408. [Google Scholar] [CrossRef]
- Simons, L.E.; Moulton, E.A.; Linnman, C.; Carpino, E.; Becerra, L.; Borsook, D. The human amygdala and pain: Evidence from neuroimaging. Hum. Brain Mapp. 2014, 35, 527–538. [Google Scholar] [CrossRef]
- Pomares, F.B.; Roy, S.; Funck, T.; Feier, N.A.; Thiel, A.; Fitzcharles, M.A.; Schweinhardt, P. Upregulation of cortical GABAA receptor concentration in fibromyalgia. Pain 2020, 161, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Bennett, R.M.; Bushmakin, A.G.; Cappelleri, J.C.; Zlateva, G.; Sadosky, A.B. Minimal clinically important difference in the fibromyalgia impact questionnaire. J. Rheumatol. 2009, 36, 1304–1311. [Google Scholar] [CrossRef]
- Wood, P.B.; Schweinhardt, P.; Jaeger, E.; Dagher, A.; Hakyemez, H.; Rabiner, E.A.; Bushnell, M.C.; Chizh, B.A. Fibromyalgia patients show an abnormal dopamine response to pain. Eur. J. Neurosci. 2007, 25, 3576–3582. [Google Scholar] [CrossRef]
- Ledermann, K.; Jenewein, J.; Sprott, H.; Hasler, G.; Schnyder, U.; Warnock, G.; Johayem, A.; Kollias, S.; Buck, A.; Martin-Soelch, C. Relation of dopamine receptor 2 binding to pain perception in female fibromyalgia patients with and without depression—A [11C] raclopride PET-study. Eur. Neuropsychopharmacol. 2016, 26, 320–330. [Google Scholar] [CrossRef] [PubMed]
- Pertovaara, A.; Martikainen, I.K.; Hagelberg, N.; Mansikka, H.; Någren, K.; Hietala, J.; Scheinin, H. Striatal dopamine D2/D3 receptor availability correlates with individual response characteristics to pain. Eur. J. Neurosci. 2004, 20, 1587–1592. [Google Scholar] [CrossRef] [PubMed]
- Thieme, K.; Turk, D.C.; Flor, H. Comorbid Depression and Anxiety in Fibromyalgia Syndrome: Relationship to Somatic and Psychosocial Variables. Psychosom. Med. 2004, 66, 837–844. [Google Scholar] [CrossRef]
- Arnold, L.M.; Bradley, L.A.; Clauw, D.J.; Glass, J.M.; Goldenberg, D.L. Multidisciplinary Care and Stepwise Treatment for Fibromyalgia. J. Clin. Psychiatry 2008, 69, e35. [Google Scholar] [CrossRef]
- Işık-Ulusoy, S. Evaluation of affective temperament and anxiety-depression levels in fibromyalgia patients: A pilot study. Braz. J. Psychiatry 2019, 41, 428–432. [Google Scholar] [CrossRef]
- Uçar, M.; Sarp, Ü.; Karaaslan, Ö.; Gül, A.I.; Tanik, N.; Arik, H.O. Health anxiety and depression in patients with fibromyalgia syndrome. J. Int. Med. Res. 2015, 43, 679–685. [Google Scholar] [CrossRef]
- Albrecht, D.S.; MacKie, P.J.; Kareken, D.A.; Hutchins, G.D.; Chumin, E.J.; Christian, B.T.; Yoder, K.K. Differential dopamine function in fibromyalgia. Brain Imaging Behav. 2016, 10, 829–839. [Google Scholar] [CrossRef]
- Nakatomi, Y.; Mizuno, K.; Ishii, A.; Wada, Y.; Tanaka, M.; Tazawa, S.; Onoe, K.; Fukuda, S.; Kawabe, J.; Takahashi, K.; et al. Neuroinflammation in Patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis: An 11C-(R)-PK11195 PET Study. J. Nucl. Med. 2014, 55, 945–950. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.; Jung, Y.H.; Lee, D.; Lee, W.J.; Jang, J.H.; Lee, J.Y.; Choi, S.H.; Moon, J.Y.; Lee, J.S.; Cheon, G.J.; et al. Abnormal neuroinflammation in fibromyalgia and CRPS using [11C]-(R)-PK11195 PET. PLoS ONE 2021, 16, e0246152. [Google Scholar] [CrossRef]
- Jung, Y.H.; Kim, H.; Seo, S.; Lee, D.; Lee, J.Y.; Moon, J.Y.; Cheon, G.J.; Choi, S.H.; Kang, D.H. Central metabolites and peripheral parameters associated neuroinflammation in fibromyalgia patients: A preliminary study. Medicine 2023, 102, e33305. [Google Scholar] [CrossRef]
- Walitt, B.; Roebuck-Spencer, T.; Esposito, G.; Atkins, F.; Bleiberg, J.; Foster, G.; Weinstein, A. The effects of multidisciplinary therapy on positron emission tomography of the brain in fibromyalgia: A pilot study. Rheumatol. Int. 2007, 27, 1019–1024. [Google Scholar] [CrossRef]
- Ricci, M.; Cimini, A.; Grivet Fojaja, M.R.; Ullo, M.; Carabellese, B.; Frantellizzi, V.; Lubrano, E. Novel Approaches in Molecular Imaging and Neuroimaging of Fibromyalgia. Int. J. Mol. Sci. 2022, 23, 15519. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boyer, L.; Dousset, A.; Roussel, P.; Dossetto, N.; Cammilleri, S.; Piano, V.; Khalfa, S.; Mundler, O.; Donnet, A.; Guedj, E. rTMS in fibromyalgia: A randomized trial evaluating QoL and its brain metabolic substrate. Neurology 2014, 82, 1231–1238. [Google Scholar] [CrossRef]
- Jurado-Priego, L.N.; Cueto-Ureña, C.; Ramírez-Expósito, M.J.; Martínez-Martos, J.M. Fibromyalgia: A Review of the Pathophysiological Mechanisms and Multidisciplinary Treatment Strategies. Biomedicines 2024, 12, 1543. [Google Scholar] [CrossRef] [PubMed]
- Martins, D.; Veronese, M.; Turkheimer, F.E.; Howard, M.A.; Williams, S.C.R.; Dipasquale, O. A candidate neuroimaging biomarker for detection of neurotransmission-related functional alterations and prediction of pharmacological analgesic response in chronic pain. Brain Commun. 2022, 4, fcab302. [Google Scholar] [CrossRef]
- Bjersing, J.L.; Dehlin, M.; Erlandsson, M.; Bokarewa, M.I.; Mannerkorpi, K. Changes in pain and insulin-like growth factor 1 in fibromyalgia during exercise: The involvement of cerebrospinal inflammatory factors and neuropeptides. Arthritis Res. Ther. 2012, 14, R162. [Google Scholar] [CrossRef]
- Kadetoff, D.; Lampa, J.; Westman, M.; Andersson, M.; Kosek, E. Evidence of central inflammation in fibromyalgia-increased cerebrospinal fluid interleukin-8 levels. J. Neuroimmunol. 2012, 242, 33–38. [Google Scholar] [CrossRef]
- Bäckryd, E.; Tanum, L.; Lind, A.L.; Larsson, A.; Gordh, T. Evidence of both systemic inflammation and neuroinflammation in fibromyalgia patients, as assessed by a multiplex protein panel applied to the cerebrospinal fluid and to plasma. J. Pain Res. 2017, 10, 515–525. [Google Scholar] [CrossRef] [PubMed]
- Hazra, S.; Venkataraman, S.; Handa, G.; Yadav, S.L.; Wadhwa, S.; Singh, U.; Kochhar, K.P.; Deepak, K.K.; Sarkar, K. A Cross-Sectional Study on Central Sensitization and Autonomic Changes in Fibromyalgia. Front. Neurosci. 2020, 14, 788. [Google Scholar] [CrossRef]
- Dumolard, A.; Lefaucheur, J.P.; Hodaj, E.; Liateni, Z.; Payen, J.F.; Hodaj, H. Central Sensitization and Small-fiber Neuropathy Are Associated in Patients with Fibromyalgia. Clin. J. Pain. 2023, 39, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Puja, G.; Sonkodi, B.; Bardoni, R. Mechanisms of Peripheral and Central Pain Sensitization: Focus on Ocular Pain. Front. Pharmacol. 2021, 12, 764396. [Google Scholar] [CrossRef] [PubMed]
- Theoharides, T.C.; Tsilioni, I.; Bawazeer, M. Mast Cells, Neuroinflammation and Pain in Fibromyalgia Syndrome. Front. Cell. Neurosci. 2019, 13, 353. [Google Scholar] [CrossRef]
- Junior, A.E.A.; Carbinatto, F.M.; Rodrigues, T.Z.; Garcia, V.; Canelada, A.C.N.; Bagnato, V.S. Outcomes of Non-Surgical Spinal Decompression Therapy in Patientswith a Herniated Disc Across Different Age Groups. J. Nov. Physiother. 2023, 13, 56. [Google Scholar]
Author | Pathway | PET Radiotracer | Population | Main Findings |
---|---|---|---|---|
Usui | Glutamatergic system | [18F]FDG | 18 FMS patients vs. 18 healthy controls | No significant group differences in global brain glucose metabolism. Patients with poor prognosis showed increased metabolism in the right thalamus, left lentiform nucleus, and right parahippocampal gyrus. Good prognosis was associated with hypometabolism in the left insula and lentiform nucleus. Parahippocampal activity correlated with Tender Point count. |
Wood | Glutamatergic system | [18F]FDG | Single FMS patient | Reduced metabolic activity in the left insular cortex. |
Walitt | Glutamatergic system | [18F]FDG | 9 FMS patients (pre-/post-treatment) | Increased metabolism in limbic structures after an 8-week treatment, paralleling symptom improvement. No change detected in somatosensory regions. |
Boyer | Glutamatergic system | [18F]FDG | 38 FMS patients (rTMS intervention) | Increased metabolism in the right medial temporal lobe at week 11. Changes were positively correlated with clinical improvements in FIQ and SF-36 scores. |
Wood | Dopaminergic system | [18F]DOPA | 6 FMS patients vs. 8 controls | Reduced uptake in regions including the ventral tegmental area, substantia nigra, locus coeruleus, medial thalamus, hippocampus, ACC, and insular cortex. |
Wood | Dopaminergic system | [11C]raclopride | 11 FMS patients vs. 11 controls | During painful stimulation, dopamine release in the basal ganglia occurred in controls but not in FMS patients. FMS patients rated the pain as more intense. |
Ledermann | Dopaminergic system | [11C]raclopride | 11 FMS patients vs. 13 controls | Significantly reduced binding in the left ventral striatum, caudate nucleus, and nucleus accumbens in FMS patients. |
Albrecht | Dopaminergic system | [18F]Fallypride | 12 FMS patients vs. 11 controls | Lower binding potential in the ACC and fusiform gyrus. Pain sensitivity inversely correlated with binding in orbitofrontal and parahippocampal regions. |
Pomares | GABAergic system | [11C]flumazenil | 26 FMS patients vs. 25 controls | Increased GABA_A receptor availability in regions including the precuneus, superior frontal gyrus, angular gyrus, and occipital cortex. Receptor availability positively correlated with pain intensity and functional scores. |
Seo | Neuroinflammation | [11C]PK11195 | 12 FMS patients vs. 11 controls | Higher TSPO binding in the pre/postcentral gyri, superior parietal lobule, and medial/superior frontal regions in FMS. Lower binding in the medulla, superior temporal gyrus, and amygdala. Positive correlations with stress and pain scores. |
Harris | Opioid system | [11C]carfentanil | 17 FMS patients vs. 17 controls | Reduced μ-opioid receptor availability in the bilateral nucleus accumbens, left amygdala, and right dorsal ACC. Binding inversely correlated with affective pain ratings. |
Christina Mueller | Opioid system | [18F]DPA-714 | 15 FMS patients vs. 10 controls | Increased radioligand binding (V_T) in several brain regions, irrespective of TSPO binding status. Group differences in right parietal gray matter correlated with lower quality of life, higher pain, and cognitive symptoms. |
Daniel S. Albrecht | Opioid system | [11C]PBR28 | 31 FMS patients vs. 27 controls | Elevated TSPO binding in FMS suggests glial activation. Absence of increased [11C]-L-deprenyl-D2 signal indicates microglial—rather than astrocytic—contribution to neuroinflammation. Larger studies are needed to clarify astrocytic involvement. |
Radiopharmaceutical | Clinical Relevance |
---|---|
[18F]FDG | Identifies regional metabolic changes; supports prognosis and treatment monitoring |
[18F]DOPA | Reveals dopaminergic hypofunction; may identify patients with altered central pain modulation |
[11C]raclopride | Detects impaired dopamine release during pain; may help identify patients with dysfunctional reward processing and guide tailored interventions |
[18F]Fallypride | Shows reduced D2/D3 receptor binding; correlates with pain sensitivity and emotional dysregulation |
[11C]flumazenil | Detects increased GABA_A receptor availability; associated with greater pain severity |
[11C]PK11195 | Indicates elevated TSPO binding; suggests neuroinflammation as a contributing mechanism |
[18F]DPA-714 | Marks glial activation; linked to pain intensity and cognitive impairment |
[11C]PBR28 | Reveals selective microglial activation; no astrocyte involvement, supporting a targeted neuroimmune response |
[11C]carfentanil | Detects reduced μ-opioid receptor availability; reflects impaired endogenous pain inhibition |
Radiopharmaceutical | Pain Measures Used | PET-Clinical Association |
---|---|---|
[18F]FDG | FIQ, SF-36, Tender Point Count | Parahippocampal metabolism correlated with tenderness; limbic metabolism changes paralleled symptom improvement. |
[18F]DOPA | Subjective pain ratings | Reduced dopamine uptake in pain/reward regions associated with altered pain perception. |
[11C]raclopride | VAS, Pain intensity scales | Reduced dopamine release during painful stimulation linked to higher pain ratings. |
[18F]Fallypride | Pain sensitivity scores | Binding inversely correlated with pain sensitivity in orbitofrontal and parahippocampal regions. |
[11C]flumazenil | FIQ, Pain intensity | Increased receptor availability positively correlated with pain and dysfunction. |
[11C]PK11195 | VAS, Perceived Stress Scale | TSPO binding levels correlated with pain and stress scores. |
[18F]DPA-714 | Pain, QoL, cognitive symptoms | Higher radioligand binding associated with greater pain and lower quality of life. |
[11C]PBR28 | VAS, stress measures | TSPO elevation consistent with microglial activation and pain/stress correlation. |
[11C]carfentanil | Affective pain ratings | Reduced μ-opioid receptor availability inversely correlated with affective pain. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abenavoli, E.; Berti, V.; Nerattini, M.; Sarzi-Puttini, P.; Filippou, G.; Lucia, A.; Pari, G.; Pallanti, S.; Salaffi, F.; Carotti, M.; et al. Fibromyalgia in the Era of Brain PET/CT Imaging. J. Clin. Med. 2025, 14, 4166. https://doi.org/10.3390/jcm14124166
Abenavoli E, Berti V, Nerattini M, Sarzi-Puttini P, Filippou G, Lucia A, Pari G, Pallanti S, Salaffi F, Carotti M, et al. Fibromyalgia in the Era of Brain PET/CT Imaging. Journal of Clinical Medicine. 2025; 14(12):4166. https://doi.org/10.3390/jcm14124166
Chicago/Turabian StyleAbenavoli, Elisabetta, Valentina Berti, Matilde Nerattini, Piercarlo Sarzi-Puttini, Georgios Filippou, Alessandro Lucia, Gilberto Pari, Stefano Pallanti, Fausto Salaffi, Marina Carotti, and et al. 2025. "Fibromyalgia in the Era of Brain PET/CT Imaging" Journal of Clinical Medicine 14, no. 12: 4166. https://doi.org/10.3390/jcm14124166
APA StyleAbenavoli, E., Berti, V., Nerattini, M., Sarzi-Puttini, P., Filippou, G., Lucia, A., Pari, G., Pallanti, S., Salaffi, F., Carotti, M., Sirotti, S., & Porta, F. (2025). Fibromyalgia in the Era of Brain PET/CT Imaging. Journal of Clinical Medicine, 14(12), 4166. https://doi.org/10.3390/jcm14124166