Emerging Technologies in the Diagnosis and Management of Neurological Disorders

A special issue of Biomedicines (ISSN 2227-9059). This special issue belongs to the section "Neurobiology and Clinical Neuroscience".

Deadline for manuscript submissions: 31 January 2026 | Viewed by 377

Special Issue Editor

Special Issue Information

Dear Colleagues,

Neurological disorders—including neurodegenerative diseases, movement disorders, cognitive impairment, and rare neurological syndromes—pose complex diagnostic and therapeutic challenges. In recent years, the integration of novel technologies into clinical and research settings has opened new frontiers in the understanding, detection, and management of these conditions.

This Special Issue of Biomedicines aims to collect high-quality original articles and reviews focused on the impact of emerging technologies in the field of neurology. Contributions may include but are not limited to the application of advanced diagnostic imaging modalities (such as PET, PET/MRI, or hybrid systems), machine learning and AI-based decision support systems, digital biomarkers, and neurophysiological tools.

Special attention will be paid to studies highlighting how these technologies contribute to improved disease characterization, early diagnosis, personalized treatment planning, and patient monitoring. Interdisciplinary approaches that connect nuclear medicine, neurology, biomedical engineering, and cognitive neuroscience are particularly welcome.

By fostering a dialogue between clinical experience and technological innovation, this Special Issue seeks to offer a comprehensive overview of how cutting-edge tools are reshaping the diagnostic and therapeutic landscape of neurological disorders.

Dr. Luca Filippi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Biomedicines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • neurological disorders
  • advanced diagnostic imaging modalities
  • neurophysiological tools

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 1283 KiB  
Communication
Clinical Performance of Analog and Digital 18F-FDG PET/CT in Pediatric Epileptogenic Zone Localization: Preliminary Results
by Oreste Bagni, Roberta Danieli, Francesco Bianconi, Barbara Palumbo and Luca Filippi
Biomedicines 2025, 13(8), 1887; https://doi.org/10.3390/biomedicines13081887 - 3 Aug 2025
Viewed by 308
Abstract
Background: Despite its central role in pediatric pre-surgical evaluation of drug-resistant focal epilepsy, conventional analog 18F-fluorodeoxyglucose (18F-FDG) PET/CT (aPET) systems often yield modest epileptogenic zone (EZ) detection rates (~50–60%). Silicon photomultiplier–based digital PET/CT (dPET) promises enhanced image quality, but [...] Read more.
Background: Despite its central role in pediatric pre-surgical evaluation of drug-resistant focal epilepsy, conventional analog 18F-fluorodeoxyglucose (18F-FDG) PET/CT (aPET) systems often yield modest epileptogenic zone (EZ) detection rates (~50–60%). Silicon photomultiplier–based digital PET/CT (dPET) promises enhanced image quality, but its performance in pediatric epilepsy remains untested. Methods: We retrospectively analyzed 22 children (mean age 11.5 ± 2.6 years) who underwent interictal brain 18F-FDG PET/CT: 11 on an analog system (Discovery ST, 2018–2019) and 11 on a digital system (Biograph Vision 450, 2020–2021). Three blinded nuclear medicine physicians independently scored EZ localization and image quality (4-point scale); post-surgical histology and ≥1-year clinical follow-up served as reference. Results: The EZ was correctly identified in 8/11 analog scans (72.7%) versus 10/11 digital scans (90.9%). Average image quality was significantly higher with dPET (3.0 ± 0.9 vs. 2.1 ± 0.9; p < 0.05), and inter-reader agreement improved from good (ICC = 0.63) to excellent (ICC = 0.91). Conclusions: Our preliminary findings suggest that dPET enhances image clarity and reader consistency, potentially improving localization accuracy in pediatric epilepsy presurgical workups. Full article
Show Figures

Figure 1

Back to TopTop