Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,393)

Search Parameters:
Keywords = OES

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1788 KiB  
Article
Investigation, Prospects, and Economic Scenarios for the Use of Biochar in Small-Scale Agriculture in Tropical
by Vinicius John, Ana Rita de Oliveira Braga, Criscian Kellen Amaro de Oliveira Danielli, Heiriane Martins Sousa, Filipe Eduardo Danielli, Newton Paulo de Souza Falcão, João Guerra, Dimas José Lasmar and Cláudia S. C. Marques-dos-Santos
Agriculture 2025, 15(15), 1700; https://doi.org/10.3390/agriculture15151700 - 6 Aug 2025
Abstract
This study investigates the production and economic feasibility of biochar for smallholder and family farms in Central Amazonia, with potential implications for other tropical regions. The costs of construction of a prototype mobile kiln and biochar production were evaluated, using small-sized biomass from [...] Read more.
This study investigates the production and economic feasibility of biochar for smallholder and family farms in Central Amazonia, with potential implications for other tropical regions. The costs of construction of a prototype mobile kiln and biochar production were evaluated, using small-sized biomass from acai (Euterpe oleracea Mart.) agro-industrial residues as feedstock. The biochar produced was characterised in terms of its liming capacity (calcium carbonate equivalence, CaCO3eq), nutrient content via organic fertilisation methods, and ash analysis by ICP-OES. Field trials with cowpea assessed economic outcomes, as well scenarios of fractional biochar application and cost comparison between biochar production in the prototype kiln and a traditional earth-brick kiln. The prototype kiln showed production costs of USD 0.87–2.06 kg−1, whereas traditional kiln significantly reduced costs (USD 0.03–0.08 kg−1). Biochar application alone increased cowpea revenue by 34%, while combining biochar and lime raised cowpea revenues by up to 84.6%. Owing to high input costs and the low value of the crop, the control treatment generated greater net revenue compared to treatments using lime alone. Moreover, biochar produced in traditional kilns provided a 94% increase in net revenue compared to liming. The estimated externalities indicated that carbon credits represented the most significant potential source of income (USD 2217 ha−1). Finally, fractional biochar application in ten years can retain over 97% of soil carbon content, demonstrating potential for sustainable agriculture and carbon sequestration and a potential further motivation for farmers if integrated into carbon markets. Public policies and technological adaptations are essential for facilitating biochar adoption by small-scale tropical farmers. Full article
(This article belongs to the Special Issue Converting and Recycling of Agroforestry Residues)
Show Figures

Figure 1

13 pages, 10689 KiB  
Article
FvHsfB1a Gene Improves Thermotolerance in Transgenic Arabidopsis
by Qian Cao, Tingting Mao, Kebang Yang, Hanxiu Xie, Shan Li and Hao Xue
Plants 2025, 14(15), 2392; https://doi.org/10.3390/plants14152392 - 2 Aug 2025
Viewed by 119
Abstract
Heat stress transcription factor (Hsf) families play important roles in abiotic stress responses. However, previous studies reported that HsfBs genes may play diverse roles in response to heat stress. Here, we conducted functional analysis on a woodland strawberry Class B Hsf gene, FvHsfB1a [...] Read more.
Heat stress transcription factor (Hsf) families play important roles in abiotic stress responses. However, previous studies reported that HsfBs genes may play diverse roles in response to heat stress. Here, we conducted functional analysis on a woodland strawberry Class B Hsf gene, FvHsfB1a, to improve thermotolerance. The structure of FvHsfB1a contains a typical Hsf domain for DNA binding at the N-terminus, and FvHsfB1a belongs to the B1 family of Hsfs. The FvHsfB1a protein was localized in the nucleus. The FvHsfB1a gene was expressed in various strawberry tissues and highly induced by heat treatment. Under heat stress conditions, ectopic expression of FvHsfB1a in Arabidopsis improves thermotolerance, with higher germination and survival rates, a longer primary root length, higher proline and chlorophyll contents, lower malonaldehyde (MDA) and O2− contents, better enzyme activities, and greater expression of heat-responsive and stress-related genes compared to WT. FvWRKY75 activates the promoter of the FvHsfB1a gene through recognizing the W-box element. Similarly, FvWRKY75-OE lines also displayed a heat-tolerant phenotype, exhibiting more proline and chlorophyll contents, lower MDA and O2− contents, and higher enzyme activities under heat stress. Taken together, our study indicates that FvHsfB1a is a positive regulator of heat stress. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
Show Figures

Figure 1

11 pages, 3000 KiB  
Article
Comparative Study of the Bulk and Foil Zinc Anodic Behavior Kinetics in Oxalic Acid Aqueous Solutions
by Vanya Lilova, Emil Lilov, Stephan Kozhukharov, Georgi Avdeev and Christian Girginov
Materials 2025, 18(15), 3635; https://doi.org/10.3390/ma18153635 - 1 Aug 2025
Viewed by 204
Abstract
The anodic behavior of zinc electrodes is important for energy storage, corrosion protection, electrochemical processing, and other practical applications. This study investigates the anodic galvanostatic polarization of zinc foil and bulk electrodes in aqueous oxalic acid solutions, revealing significant differences in their electrochemical [...] Read more.
The anodic behavior of zinc electrodes is important for energy storage, corrosion protection, electrochemical processing, and other practical applications. This study investigates the anodic galvanostatic polarization of zinc foil and bulk electrodes in aqueous oxalic acid solutions, revealing significant differences in their electrochemical behavior, particularly in induction period durations. The induction period’s duration depended on electrolyte concentration, current density, and temperature. Notably, the temperature dependence of the kinetics exhibited contrasting trends: the induction period for foil electrodes increased with temperature, while that of bulk electrodes decreased. Chemical analysis and polishing treatment comparisons showed no significant differences between the foil and bulk electrodes. However, Scanning Electron Microscopy (SEM) observations of samples anodized at different temperatures, combined with Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES) analysis of dissolved electrode material, provided insights into the distinct anodic behaviors. X-ray Diffraction (XRD) studies further confirmed these findings, revealing a crystallographic orientation dependence of the anodic behavior. These results provide detailed information about the electrochemical properties of zinc electrodes, with implications for optimizing their performance in various applications. Full article
Show Figures

Figure 1

7 pages, 1048 KiB  
Data Descriptor
Dataset of Morphometry and Metal Concentrations in Coptodon rendalli and Oreochromis mossambicus from the Shongweni Dam, South Africa
by Smangele Ncayiyana, Neo Mashila Maleka and Jeffrey Lebepe
Data 2025, 10(8), 124; https://doi.org/10.3390/data10080124 - 1 Aug 2025
Viewed by 186
Abstract
The uMlazi River receives effluents from wastewater work before feeding the Shongweni Dam. However, local communities are consuming fish from this dam for protein supplements. This study was undertaken to investigate the metal concentrations in the water and sediment, the general health of [...] Read more.
The uMlazi River receives effluents from wastewater work before feeding the Shongweni Dam. However, local communities are consuming fish from this dam for protein supplements. This study was undertaken to investigate the metal concentrations in the water and sediment, the general health of Coptodon rendalli and Oreochromis mossambicus, and metal bioaccumulation. Sampling was conducted during the dry (July–August) and wet seasons (November and December) in 2021. Water was sampled using acid-pre-treated sampling bottles, whereas sediment was collected using the Van Veen grab at the inflow, middle, and dam wall. Fish were collected, and their tissues were digested using aqua regia. Metal concentrations were measured using inductively coupled plasma optical emission spectroscopy (ICP-OES). This data manuscript reports the physical parameters of the water and concentrations of antimony, arsenic, cadmium, copper, iron, manganese, lead, selenium, and strontium in the water and sediment from the Shongweni Dam. Moreover, the fish morphometric data and metal concentrations observed in the muscle are also presented. This data could be used as baseline information on metal concentrations in the Shongweni Dam. Moreover, it provides insight into the potential impact of wastewater effluents on metal increases in freshwater bodies. Full article
Show Figures

Figure 1

12 pages, 7989 KiB  
Article
Microstructures and Magnetic Properties of Rare-Earth-Free Co-Zr-Mo-B Alloys
by Tetsuji Saito and Masaru Itakura
Crystals 2025, 15(8), 698; https://doi.org/10.3390/cryst15080698 - 31 Jul 2025
Viewed by 250
Abstract
The growing demand for rare-earth magnets has raised concerns over their price and the country’s risk of depleting the supply of rare-earth elements. These severe concerns have led to the study of rare-earth-free magnets that do not rely on rare-earth elements. Co-Zr-Mo-B alloys, [...] Read more.
The growing demand for rare-earth magnets has raised concerns over their price and the country’s risk of depleting the supply of rare-earth elements. These severe concerns have led to the study of rare-earth-free magnets that do not rely on rare-earth elements. Co-Zr-Mo-B alloys, one of the prospective candidates for rare-earth-free magnets, were produced by the melt-spinning technique and subsequent annealing. It was found that a small substitution of Mo for Zr in the Co-Zr-B alloys increased coercivity. The Co-Zr-Mo-B alloy with a Mo content of 2 at% showed a high coercivity of 6.2 kOe with a remanence of 40 emu/g. SEM studies showed that the annealed Co-Zr-Mo-B alloys had fine, uniform grains with an average diameter of about 0.6 μm. Further studies using STEM demonstrated that the ferromagnetic phase in the annealed Co-Zr-Mo-B alloys with high coercivity was composed of the Co5Zr phase and the long-period stacking ordered (LPSO) phase. That is, the fine grains observed in the SEM studies were found to be ferromagnetic dendrites containing numerous twin boundaries of the Co5Zr phase and its derived LPSO phase. Therefore, the high coercivity of the Co-Zr-Mo-B alloys can be attributed to the presence of ferromagnetic crystals of Co5Zr and the derived LPSO phase. Full article
(This article belongs to the Special Issue Innovations in Magnetic Composites: Synthesis to Application)
Show Figures

Figure 1

16 pages, 4017 KiB  
Article
Recyclable Platinum Nanocatalyst for Nitroarene Hydrogenation: Gum Acacia Polymer-Stabilized Pt Nanoparticles with TiO2 Support
by Supriya Prakash, Selvakumar Ponnusamy, Jagadeeswari Rangaraman, Kundana Nakkala and Putrakumar Balla
ChemEngineering 2025, 9(4), 81; https://doi.org/10.3390/chemengineering9040081 - 30 Jul 2025
Viewed by 150
Abstract
Platinum has emerged as an optimal catalyst for the selective hydrogenation of nitroarenes owing to its high hydrogenation activity, selectivity, and stability. In this study, we report the fabrication of platinum nanoparticles stabilized on a composite support consisting of gum acacia polymer (GAP) [...] Read more.
Platinum has emerged as an optimal catalyst for the selective hydrogenation of nitroarenes owing to its high hydrogenation activity, selectivity, and stability. In this study, we report the fabrication of platinum nanoparticles stabilized on a composite support consisting of gum acacia polymer (GAP) and TiO2. It was engineered for the targeted reduction of nitroarenes to arylamines via selective hydrogenation in methanol at ambient temperature. The non-toxic and biocompatible properties of GAP enable it to act as a reducing and stabilizing agent during synthesis. The synthesized nanocatalyst was characterized using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Morphological and structural analyses revealed that the fabricated catalyst consisted of minuscule Pt nanoparticles integrated within the GAP framework, accompanied by the corresponding TiO2 nanoparticles. Inductively coupled plasma optical emission spectrometry (ICP-OES) was employed to ascertain the Pt content. The mild reaction conditions, decent yields, trouble-free workup, and facile separation of the catalyst make this method a clean and practical alternative to nitroreduction. Selective hydrogenation yielded an average arylamine production of 97.6% over five consecutive cycles, demonstrating the stability of the nanocatalyst without detectable leaching. Full article
Show Figures

Figure 1

15 pages, 294 KiB  
Article
Preservation of Tradition vs. Fidelity and Organic Progress: A Necessary Updating of Certain Elements of the Liturgy of a Greek-Catholic Church
by Simona Stefana Zetea
Religions 2025, 16(8), 989; https://doi.org/10.3390/rel16080989 - 29 Jul 2025
Viewed by 253
Abstract
With good reason, Vatican II encourages the Eastern ecclesial realities to preserve and, if necessary, to rediscover their own traditions (also, even if not only, for ecumenical reasons). There are, however, certain aspects of the heritage of the Eastern Churches that require urgent [...] Read more.
With good reason, Vatican II encourages the Eastern ecclesial realities to preserve and, if necessary, to rediscover their own traditions (also, even if not only, for ecumenical reasons). There are, however, certain aspects of the heritage of the Eastern Churches that require urgent revision in a spirit of consistency with the teachings of the Council. This is undoubtedly the case with regard to the anti-Jewish elements so specific to the entire Christian tradition (more or less generalised insults and judgments; substitutionary and appropriative perspectives; a purely instrumental use of the Jewish scriptures) and, in the absence of full reception of the Council, still reflected in the public prayers of the Romanian Greek-Catholic Church, to the detriment of that spirit of respect, fraternity, and dialogue theoretically embraced throughout the Catholic world today. In the light of Nostra aetate §4 and the subsequent developments that flowed from it, I shall try in this contribution to outline some possible criteria for reforming the offices of Holy Week, aiming to show that—at least in this particular case—it is not enough merely to refer to the OE, let alone to use it to justify a comfortable tendency towards inertia. Apart from the fact that it is this very Decree that speaks of a possible and necessary organic progress, we cannot ignore the more general spirit of renewal of the Council and its other documents (the NA, the SC, the DV, the GS). The challenge would be to engender a creative fidelity, which—while preserving the best of tradition—surpasses certain of its contingent elements. Full article
19 pages, 7490 KiB  
Article
Effect of Chemical Etching on the Supercapacitive Performance of Electroless Ni-B Coatings
by Mate Czagany, Gabor Meszaros, Daniel Koncz-Horvath, Adrienn Hlavacs, Mark Windisch, Byungil Hwang and Peter Baumli
Materials 2025, 18(15), 3544; https://doi.org/10.3390/ma18153544 - 29 Jul 2025
Viewed by 210
Abstract
In our study, supercapacitor electrodes were prepared by depositing electroless Ni-B coating on copper plates, followed by nitric acid etching. The composition and the micro- and phase structure of the coatings were investigated by ICP-OES, PFIB-SEM, and XRD techniques. The original pebble-like structure [...] Read more.
In our study, supercapacitor electrodes were prepared by depositing electroless Ni-B coating on copper plates, followed by nitric acid etching. The composition and the micro- and phase structure of the coatings were investigated by ICP-OES, PFIB-SEM, and XRD techniques. The original pebble-like structure of the coating consists of 0.8–10 µm particles, with an X-ray amorphous phase structure. The surface morphology and porosity of the coating can be tuned simply by changing the etching time. The supercapacitive performance of the electrodes was evaluated by means of cyclic voltammetry, galvanostatic charge–discharge, and electrochemical impedance spectroscopy measurements. The capacitance of the coating was found to vary on the etching time according to a maximum function, allowing for the determination of an optimal duration to obtain a specific capacitance of 157 mF/cm2 (at 0.5 A/g). An excellent charge storage retention of 178% was found after 5000 CV cycles at a scan rate of 50 mV/s owing to the evolved electrochemically active network on the surface of the electrode, indicating a long-term stable and reliable electrode. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

13 pages, 25093 KiB  
Article
Sunflower HaGLK Enhances Photosynthesis, Grain Yields, and Stress Tolerance of Rice
by Jie Luo, Mengyi Zheng, Jiacheng He, Yangyang Lou, Qianwen Ge, Bojun Ma and Xifeng Chen
Biology 2025, 14(8), 946; https://doi.org/10.3390/biology14080946 - 27 Jul 2025
Viewed by 329
Abstract
GOLDEN2-LIKEs (GLKs) are important transcription factors for the chloroplast development influencing photosynthesis, nutrition, senescence, and stress response in plants. Sunflower (Helianthus annuus) is a highly photosynthetic plant; here, a GLK-homologues gene HaGLK was identified from the sunflower genome by bioinformatics. [...] Read more.
GOLDEN2-LIKEs (GLKs) are important transcription factors for the chloroplast development influencing photosynthesis, nutrition, senescence, and stress response in plants. Sunflower (Helianthus annuus) is a highly photosynthetic plant; here, a GLK-homologues gene HaGLK was identified from the sunflower genome by bioinformatics. To analyze the bio-function of HaGLK, transgenic rice plants overexpressing HaGLK (HaGLK-OE) were constructed and characterized via phenotype. Compared to the wild-type control rice variety Zhonghua 11 (ZH11), the HaGLK-OE lines exhibited increased photosynthetic pigment contents, higher net photosynthetic rates, and enlarged chloroplast area; meanwhile, genes involved in both photosynthesis and chlorophyll biosynthesis were also significantly up-regulated. Significantly, the HaGLK-OE plants showed a 12–13% increase in yield per plant. Additionally, the HaGLK-OE plants were demonstrated to have improved salt and drought tolerance compared to the control ZH11. Our results indicated that the HaGLK gene could play multiple roles in photosynthesis and stress response in rice, underscoring its potential value for improving crop productivity and environmental adaptability in breeding. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

17 pages, 2625 KiB  
Article
Monitoring and Diagnostics of Non-Thermal Plasmas in the Food Sector Using Optical Emission Spectroscopy
by Sanda Pleslić and Franko Katalenić
Appl. Sci. 2025, 15(15), 8325; https://doi.org/10.3390/app15158325 - 26 Jul 2025
Viewed by 116
Abstract
Non-thermal plasma technology is used in the food sector due to its many advantages such as low operating costs, fast and efficient processing at low temperatures, minimal environmental impact, and preservation of sensory and nutritional properties. In this article, the plasma was generated [...] Read more.
Non-thermal plasma technology is used in the food sector due to its many advantages such as low operating costs, fast and efficient processing at low temperatures, minimal environmental impact, and preservation of sensory and nutritional properties. In this article, the plasma was generated using a high-voltage electrical discharge (HVED) with argon at a voltage of 35 kV and a frequency of 60 Hz. Plasma monitoring and diagnostics were performed using optical emission spectroscopy (OES) to optimise the process parameters and for quality control. OES was used as a non-invasive sensor to collect useful information about the properties of the plasma and to identify excited species. The values obtained for electron temperature and electron density (up to 2.3 eV and up to 1023 m3) confirmed that the generated plasma is a non-thermal plasma. Therefore, the use of OES is recommended in the daily control of food processing, as this is necessary to confirm that the processes are non-thermal and suitable for the food sector. Full article
(This article belongs to the Special Issue Innovative Technology in Food Analysis and Processing)
Show Figures

Figure 1

17 pages, 1509 KiB  
Article
Nanocellulose Application for Metal Adsorption and Its Effect on Nanofiber Thermal Behavior
by Wanderson Ferreira Braz, Lucas Tonetti Teixeira, Rogério Navarro and Omar Ginoble Pandoli
Metals 2025, 15(8), 832; https://doi.org/10.3390/met15080832 - 25 Jul 2025
Viewed by 339
Abstract
Carboxylate (TCNF) and sulfonated (SCNC) cellulose nanofibers were synthesized and used as adsorbents for metallic cations in aqueous solutions: Na+ and Hg2+ (SCNC); Mg2+ and Hg2+ (TCNF). ICP-OES analysis of the liquid phase revealed metal removal efficiencies at room [...] Read more.
Carboxylate (TCNF) and sulfonated (SCNC) cellulose nanofibers were synthesized and used as adsorbents for metallic cations in aqueous solutions: Na+ and Hg2+ (SCNC); Mg2+ and Hg2+ (TCNF). ICP-OES analysis of the liquid phase revealed metal removal efficiencies at room temperature of 89.3% (Hg2+) and 100% (Mg2+) for TCNF, 35.2% (Hg2+) and 63.3% (Na+) for SCNC after 3 h of contact. Interestingly, the nanofibers exhibited a distinct thermal degradation profile (characterized by two main events) compared to that of cellulose, suggesting that their nanostructured morphology and surface functionalization may enhance thermal instability. Additionally, the presence of metals at its surface notably altered the thermal degradation kinetics, as observed for mercury and magnesium in TCNF. Finally, the results for SCNC strongly suggest that the mechanism for thermal degradation can also change, as observed for mercury and sodium, expressed through the appearance of a new DTG peak located around 300 °C. Full article
(This article belongs to the Special Issue Advances in Recycling of Valuable Metals—2nd Edition)
Show Figures

Figure 1

24 pages, 9486 KiB  
Article
StMAPKK1 Enhances Thermotolerance in Potato (Solanum tuberosum L.) by Enhancing Antioxidant Defense and Photosynthetic Efficiency Under Heat Stress
by Xi Zhu, Yasir Majeed, Kaitong Wang, Xiaoqin Duan, Nengkang Guan, Junfu Luo, Haifei Zheng, Huafen Zou, Hui Jin, Zhuo Chen and Yu Zhang
Plants 2025, 14(15), 2289; https://doi.org/10.3390/plants14152289 - 24 Jul 2025
Viewed by 297
Abstract
The functional role of MAPKK genes in potato (Solanum tuberosum L.) under high-temperature stress remains unexplored, despite their critical importance in stress signaling and yield protection. We characterized StMAPKK1, a novel group D MAPKK localized to plasma membrane/cytoplasm. Quantitative real-time polymerase chain [...] Read more.
The functional role of MAPKK genes in potato (Solanum tuberosum L.) under high-temperature stress remains unexplored, despite their critical importance in stress signaling and yield protection. We characterized StMAPKK1, a novel group D MAPKK localized to plasma membrane/cytoplasm. Quantitative real-time polymerase chain reaction (qRT-PCR) revealed cultivar-specific upregulation in potato (‘Atlantic’ and ‘Desiree’) leaves under heat stress (25 °C, 30 °C, and 35 °C). Transgenic lines overexpressing (OE) StMAPKK1 exhibited elevated antioxidant enzyme activity, including ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD), mitigating oxidative damage. Increased proline and chlorophyll accumulation and reduced oxidative stress markers, hydrogen peroxide (H2O2) and malondialdehyde (MDA), indicate improved cellular redox homeostasis. The upregulation of key antioxidant and heat stress-responsive genes (StAPX, StCAT1/2, StPOD12/47, StFeSOD2/3, StMnSOD, StCuZnSOD1/2, StHSFA3 and StHSP20/70/90) strengthened the enzymatic defense system, enhanced thermotolerance, and improved photosynthetic efficiency, with significant improvements in net photosynthetic rate (Pn), transpiration rate (E), and stomatal conductance (Gs) under heat stress (35 °C) in StMAPKK1-OE plants. Superior growth and biomass (plant height, plant and its root fresh and dry weights, and tuber yield) accumulation, confirming the positive role of StMAPKK1 in thermotolerance. Conversely, RNA interference (RNAi)-mediated suppression of StMAPKK1 led to a reduction in enzymatic activity, proline content, and chlorophyll levels, exacerbating oxidative stress. Downregulation of antioxidant-related genes impaired ROS scavenging capacity and declines in photosynthetic efficiency, growth, and biomass, accompanied by elevated H2O2 and MDA accumulation, highlighting the essential role of StMAPKK1 in heat stress adaptation. These findings highlight StMAPKK1’s potential as a key genetic target for breeding heat-tolerant potato varieties, offering a foundation for improving crop resilience in warming climates. Full article
(This article belongs to the Special Issue Cell Physiology and Stress Adaptation of Crops)
Show Figures

Figure 1

20 pages, 2822 KiB  
Article
Nanoparticle Formulation Generated from DDGS and Its Anthraquinone Synthesis Elicitation in Rubia tinctorum Hairy Roots
by Gonzalo Galaburri, Yazmín R. Kalapuj, María Perassolo, Julián Rodríguez Talou, Patricio G. Márquez, Romina J. Glisoni, Antonia Infantes-Molina, Enrique Rodríguez-Castellón and Juan M. Lázaro-Martínez
Polymers 2025, 17(15), 2021; https://doi.org/10.3390/polym17152021 - 24 Jul 2025
Viewed by 299
Abstract
A nanoparticle formulation was generated from distiller dried grains with solubles (DDGS), and its effect on the production of anthraquinones (AQs) was evaluated on Rubia tinctorum hairy roots. The DDGS material was washed with water and ethyl acetate to remove mainly the soluble [...] Read more.
A nanoparticle formulation was generated from distiller dried grains with solubles (DDGS), and its effect on the production of anthraquinones (AQs) was evaluated on Rubia tinctorum hairy roots. The DDGS material was washed with water and ethyl acetate to remove mainly the soluble organic/inorganic molecules and reduce the fat content, respectively, followed by an alkaline treatment to remove the polysaccharides. The resulting alkaline solutions were then lyophilized and redispersed in deionized water to generate a monodispersed nanoparticulate formulation (DDGS-NP) with a hydrodynamic diameter and zeta potential of 227 ± 42 nm and −53 ± 7 mV, respectively. The formulation demonstrated good colloidal stability over time, and sterilized DDGS-NPs maintained comparable physicochemical properties. The nanoparticles were enriched in protein fractions, unsaturated fatty acids, and orthophosphate anion components from DDGS, as determined by solid-state Nuclear Magnetic Resonance (NMR), X-ray photoelectron spectroscopy (XPS), organic elemental analysis (OEA), and inductively coupled plasma optical emission spectrometry (ICP-OES) techniques. The DDGS-NPs were tested at different concentrations on Rubia tinctorum hairy roots, in comparison to or in combination with methyl jasmonate (MeJ), for their capacity to induce the production of AQs. All DDGS-NP concentrations increased the production of specific AQs to 7.7 (100 mg L−1), 7.8 (200 mg L−1), and 9.3 µmol/gFW (500 mg L−1), with an extracellular AQ accumulation of 18 µM for the highest DDGS-NP concentration, in comparison with the control hairy roots (~2 µM AQ). The plant growth was not affected at any of the tested nanoparticle concentrations. Interestingly, the combination of DDGS-NPs and MeJ resulted in the highest extracellular AQ accumulation in R. tinctorum root cultures. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

18 pages, 8415 KiB  
Article
Genome-Wide Identification of the UGT Gene Family in Poplar Populus euphratica and Functional Analysis of PeUGT110 Under Drought Stress
by Jilong An, Qing He, Jinfeng Xi, Jing Li and Gaini Wang
Forests 2025, 16(8), 1214; https://doi.org/10.3390/f16081214 - 24 Jul 2025
Viewed by 309
Abstract
UDP-glycosyltransferases (UGTs) play essential roles in various biological processes, such as phytohormone homeostasis, abiotic stress adaptation, and secondary metabolite biosynthesis. Populus euphratica is a model species for investigating stress adaptation; however, the PeUGT gene family has yet to be systematically characterized. Here, we [...] Read more.
UDP-glycosyltransferases (UGTs) play essential roles in various biological processes, such as phytohormone homeostasis, abiotic stress adaptation, and secondary metabolite biosynthesis. Populus euphratica is a model species for investigating stress adaptation; however, the PeUGT gene family has yet to be systematically characterized. Here, we identified 134 UGT genes in P. euphratica. Phylogenetic analysis classified these genes into 16 major groups (A–P), and UGT genes within the same groups showed similar structural characteristics. Tandem duplication events were identified as the predominant mechanism driving the expansion of the PeUGT family. Cis-acting element analysis revealed an enrichment of motifs associated with developmental regulation, light response, phytohormone signaling, and abiotic stress in the promoters of PeUGT genes. Expression profiling demonstrated spatiotemporal regulation of the PeUGT genes under drought stress. Among them, PeUGT110 was significantly induced by PEG treatment in the leaf, root, and stem tissues of P. euphratica. Overexpression of PeUGT110 enhanced drought tolerance in transgenic Arabidopsis. Furthermore, the PeUGT110-OE lines exhibited reduced malonaldehyde accumulation, elevated proline content, higher superoxide dismutase activity, and upregulated expression of stress-related genes under drought stress. The results demonstrated that PeUGT110 plays a critical role in plant drought resistance. These findings establish a foundation for elucidating the function of PeUGT genes. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

18 pages, 5499 KiB  
Article
Overexpression of OsCSP41b Enhances Rice Tolerance to Sheath Blight Caused by Rhizoctonia solani
by Jianhua Zhao, Yan Zhang, Taixuan Liu, Guangda Wang, Ran Ju, Quanyi Sun, Qi Chen, Yixuan Xiong, Penfei Zhai, Wenya Xie, Zhiming Feng, Zongxiang Chen, Kemin Hu and Shimin Zuo
J. Fungi 2025, 11(8), 548; https://doi.org/10.3390/jof11080548 - 23 Jul 2025
Viewed by 438
Abstract
Sheath blight (ShB), caused by the necrotrophic fungus Rhizoctonia solani (R. solani), poses severe threats to global rice production. Developing a resistant variety with an ShB-resistance gene is one of most efficient and economical approaches to control the disease. Here, we [...] Read more.
Sheath blight (ShB), caused by the necrotrophic fungus Rhizoctonia solani (R. solani), poses severe threats to global rice production. Developing a resistant variety with an ShB-resistance gene is one of most efficient and economical approaches to control the disease. Here, we identified a highly conserved chloroplast-localized stem-loop-binding protein encoding gene (OsCSP41b), which shows great potential in developing an ShB-resistant variety. OsCSP41b-knockout mutants exhibit chlorotic leaves and increased ShB susceptibility, whereas OsCSP41b-overexpressing lines (CSP41b-OE) display significantly enhanced resistance to R. solani, as well as to drought, and salinity stresses. Notably, CSP41b-OE lines present a completely comparable grain yield to the wild type (WT). Transcriptomic analyses reveal that chloroplast transcripts and photosynthesis-associated genes maintain observably elevated stability in CSP41b-OE plants versus WT plants following R. solani infection, which probably accounts for the enhanced ShB resistance of CSP41b-OE. Our findings nominate the OsCSP41b gene as a promising molecular target for developing a rice variety with stronger resistance to both R. solani and multi-abiotic stresses. Full article
Show Figures

Figure 1

Back to TopTop