Nanoparticle Formulation Generated from DDGS and Its Anthraquinone Synthesis Elicitation in Rubia tinctorum Hairy Roots
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of DDGS-NPs from DDGS
2.3. Characterization Techniques
2.4. Plant Cell Culture
2.5. Elicitation with DDGS-NPs
2.6. Biomass Determination
2.7. Anthraquinone Determination
2.8. Statistical Analysis
3. Results and Discussion
3.1. Isolation and Chemical Characterization of DDGS-NPs from DDGS
3.2. DLS and TEM Characterization of DDGS-NPs
3.3. AQ Elicitation from Rubia tinctorum by DDGS-NPs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duval, J.; Pecher, V.; Poujol, M.; Lesellier, E. Research Advances for the Extraction, Analysis and Uses of Anthraquinones: A Review. Ind. Crops Prod. 2016, 94, 812–833. [Google Scholar] [CrossRef]
- Zhao, J.; Davis, L.C.; Verpoorte, R. Elicitor Signal Transduction Leading to Production of Plant Secondary Metabolites. Biotechnol. Adv. 2005, 23, 283–333. [Google Scholar] [CrossRef] [PubMed]
- Perassolo, M.; Cardillo, A.B.; Mugas, M.L.; Núñez Montoya, S.C.; Giulietti, A.M.; Rodríguez Talou, J. Enhancement of Anthraquinone Production and Release by Combination of Culture Medium Selection and Methyl Jasmonate Elicitation in Hairy Root Cultures of Rubia Tinctorum. Ind. Crops Prod. 2017, 105, 124–132. [Google Scholar] [CrossRef]
- Cardillo, A.B.; Rodriguez Talou, J.; Giulietti, A.M. Establishment, Culture, and Scale-up of Brugmansia Candida Hairy Roots for the Production of Tropane Alkaloids. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2016; Volume 1391, pp. 173–186. [Google Scholar]
- Busto, V.D.; Calabró-López, A.; Rodríguez-Talou, J.; Giulietti, A.M.; Merchuk, J.C. Anthraquinones Production in Rubia Tinctorum Cell Suspension Cultures: Down Scale of Shear Effects. Biochem. Eng. J. 2013, 77, 119–128. [Google Scholar] [CrossRef]
- Furuta, A.; Tsubuki, M.; Endoh, M.; Miyamoto, T.; Tanaka, J.; Salam, K.; Akimitsu, N.; Tani, H.; Yamashita, A.; Moriishi, K.; et al. Identification of Hydroxyanthraquinones as Novel Inhibitors of Hepatitis C Virus NS3 Helicase. Int. J. Mol. Sci. 2015, 16, 18439–18453. [Google Scholar] [CrossRef] [PubMed]
- Comini, L.R.; Fernandez, I.M.; Vittar, N.B.R.; Núñez Montoya, S.C.; Cabrera, J.L.; Rivarola, V.A. Photodynamic Activity of Anthraquinones Isolated from Heterophyllaea Pustulata Hook f. (Rubiaceae) on MCF-7c3 Breast Cancer Cells. Phytomedicine 2011, 18, 1093–1095. [Google Scholar] [CrossRef] [PubMed]
- Orbán, N.; Boldizsár, I.; Szucs, Z.; Dános, B. Influence of Different Elicitors on the Synthesis of Anthraquinone Derivatives in Rubia tinctorum L. Cell Suspension Cultures. Dye. Pigment. 2008, 77, 249–257. [Google Scholar] [CrossRef]
- Marslin, G.; Sheeba, C.J.; Franklin, G. Nanoparticles Alter Secondary Metabolism in Plants via ROS Burst. Front. Plant Sci. 2017, 8, 832. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xie, X.; Zhao, J.; Liu, X.; Feng, W.; White, J.C.; Xing, B. Xylem- and Phloem-Based Transport of CuO Nanoparticles in Maize (Zea mays L.). Environ. Sci. Technol. 2012, 46, 4434–4441. [Google Scholar] [CrossRef] [PubMed]
- Milenković, I.; Mitrović, A.; Algarra, M.; Lázaro-Martínez, J.M.; Rodríguez-Castellón, E.; Maksimović, V.; Spasić, S.Z.; Beškoski, V.P.; Radotić, K. Interaction of Carbohydrate Coated Cerium-Oxide Nanoparticles with Wheat and Pea: Stress Induction Potential and Effect on Development. Plants 2019, 8, 478. [Google Scholar] [CrossRef] [PubMed]
- Večeřová, K.; Večeřa, Z.; Dočekal, B.; Oravec, M.; Pompeiano, A.; Tříska, J.; Urban, O. Changes of Primary and Secondary Metabolites in Barley Plants Exposed to CdO Nanoparticles. Environ. Pollut. 2016, 218, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Barrios, A.C.; Medina-Velo, I.A.; Zuverza-Mena, N.; Dominguez, O.E.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Nutritional Quality Assessment of Tomato Fruits after Exposure to Uncoated and Citric Acid Coated Cerium Oxide Nanoparticles, Bulk Cerium Oxide, Cerium Acetate and Citric Acid. Plant Physiol. Biochem. 2017, 110, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, D.K.; Shweta; Singh, S.; Singh, S.; Pandey, R.; Singh, V.P.; Sharma, N.C.; Prasad, S.M.; Dubey, N.K.; Chauhan, D.K. An Overview on Manufactured Nanoparticles in Plants: Uptake, Translocation, Accumulation and Phytotoxicity. Plant Physiol. Biochem. 2017, 110, 2–12. [Google Scholar] [CrossRef] [PubMed]
- Yan, A.; Chen, Z. Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. Int. J. Mol. Sci. 2019, 20, 1003. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, M.H.; Al-Whaibi Firoz, M.H.; Editors, M. Nanotechnology and Plant Sciences; Siddiqui, M.H., Al-Whaibi, M.H., Mohammad, F., Eds.; Springer International Publishing: New York, NY, USA, 2015; ISBN 978-3-319-14501-3. [Google Scholar]
- Dietz, K.-J.; Herth, S. Plant Nanotoxicology. Trends Plant Sci. 2011, 16, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yang, X.; Chen, S.; Li, Q.; Wang, W.; Hou, C.; Gao, X.; Wang, L.; Wang, S. Zinc Oxide Nanoparticles Affect Biomass Accumulation and Photosynthesis in Arabidopsis. Front. Plant Sci. 2016, 6, 1243. [Google Scholar] [CrossRef] [PubMed]
- Sundar, S.; Kundu, J.; Kundu, S.C. Biopolymeric Nanoparticles. Sci. Technol. Adv. Mater. 2010, 11, 14104. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.S.; Rookes, J.E.; Cahill, D.M.; Lenka, S.K. Chitosan Nanoparticles and Their Combination with Methyl Jasmonate for the Elicitation of Phenolics and Flavonoids in Plant Cell Suspension Cultures. Int. J. Biol. Macromol. 2022, 214, 632–641. [Google Scholar] [CrossRef] [PubMed]
- Chronopoulou, L.; Donati, L.; Bramosanti, M.; Rosciani, R.; Palocci, C.; Pasqua, G.; Valletta, A. Microfluidic Synthesis of Methyl Jasmonate-Loaded PLGA Nanocarriers as a New Strategy to Improve Natural Defenses in Vitis Vinifera. Sci. Rep. 2019, 9, 18322. [Google Scholar] [CrossRef] [PubMed]
- Chatzifragkou, A.; Prabhakumari, P.C.; Kosik, O.; Lovegrove, A.; Shewry, P.R.; Charalampopoulos, D. Extractability and Characteristics of Proteins Deriving from Wheat DDGS. Food Chem. 2016, 198, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Chatzifragkou, A.; Kosik, O.; Prabhakumari, P.C.; Lovegrove, A.; Frazier, R.A.; Shewry, P.R.; Charalampopoulos, D. Biorefinery Strategies for Upgrading Distillers’ Dried Grains with Solubles (DDGS). Process Biochem. 2015, 50, 2194–2207. [Google Scholar] [CrossRef]
- Nuez Ortín, W.G.; Yu, P. Nutrient Variation and Availability of Wheat DDGS, Corn DDGS and Blend DDGS from Bioethanol Plants. J. Sci. Food Agric. 2009, 89, 1754–1761. [Google Scholar] [CrossRef]
- Buenavista, R.M.E.; Siliveru, K.; Zheng, Y. Utilization of Distiller’s Dried Grains with Solubles: A Review. J. Agric. Food Res. 2021, 5, 100195. [Google Scholar] [CrossRef]
- Han, J.; Liu, K. Changes in Composition and Amino Acid Profile during Dry Grind Ethanol Processing from Corn and Estimation of Yeast Contribution toward DDGS Proteins. J. Agric. Food Chem. 2010, 58, 3430–3437. [Google Scholar] [CrossRef] [PubMed]
- Chatzifragkou, A.; Charalampopoulos, D. Distiller’s Dried Grains with Solubles (DDGS) and Intermediate Products as Starting Materials in Biorefinery Strategies. In Sustainable Recovery and Reutilization of Cereal Processing By-Products; Elsevier Science & Technology: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Iram, A.; Cekmecelioglu, D.; Demirci, A. Distillers’ Dried Grains with Solubles (DDGS) and Its Potential as Fermentation Feedstock. Appl. Microbiol. Biotechnol. 2020, 104, 6115–6128. [Google Scholar] [CrossRef] [PubMed]
- De Matteis, M.C.; Yu, T.E.; Boyer, C.N.; DeLong, K.L.; Smith, J. Economic and Environmental Implications of Incorporating Distillers’ Dried Grains with Solubles in Feed Rations of Growing and Finishing Swine in Argentina. Int. Food Agribus. Manag. Rev. 2018, 21, 803–816. [Google Scholar] [CrossRef]
- Martínez-López, A.L.; Pangua, C.; Reboredo, C.; Campión, R.; Morales-Gracia, J.; Irache, J.M. Protein-Based Nanoparticles for Drug Delivery Purposes. Int. J. Pharm. 2020, 581, 119289. [Google Scholar] [CrossRef] [PubMed]
- Tapia, D.; Reyes-Sandoval, A.; Sanchez-Villamil, J.I. Protein-Based Nanoparticle Vaccine Approaches Against Infectious Diseases. Arch. Med. Res. 2023, 54, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Oymaci, P.; Altinkaya, S.A. Improvement of Barrier and Mechanical Properties of Whey Protein Isolate Based Food Packaging Films by Incorporation of Zein Nanoparticles as a Novel Bionanocomposite. Food Hydrocoll. 2016, 54, 1–9. [Google Scholar] [CrossRef]
- Galaburri, G.; Infantes-Molina, A.; Melian Queirolo, C.M.; Mebert, A.; Tuttolomondo, M.V.; Rodríguez-Castellón, E.; Lázaro-Martínez, J.M. Composite Films Based on Linear Polyethyleneimine Polymer and Starch or Polysaccharides from DDGS: Synthesis, Characterization, and Antimicrobial Studies. Polymers 2025, 17, 458. [Google Scholar] [CrossRef] [PubMed]
- Angelini, L.G.; Pistelli, L.; Belloni, P.; Bertoli, A.; Panconesi, S. Rubia Tinctorum a Source of Natural Dyes: Agronomic Evaluation, Quantitative Analysis of Alizarin and Industrial Assays. Ind. Crops Prod. 1997, 6, 303–311. [Google Scholar] [CrossRef]
- De Santis, D.; Moresi, M. Production of Alizarin Extracts from Rubia Tinctorum and Assessment of Their Dyeing Properties. Ind. Crops Prod. 2007, 26, 151–162. [Google Scholar] [CrossRef]
- Schulte, U.; El-Shagi, H.; Zenk, M.H. Optimization of 19 Rubiaceae Species in Cell Culture for the Production of Anthraquinones. Plant Cell Rep. 1984, 3, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Yang, X.; Cao, C.; Lv, Z.; Han, C.; Guo, Q.; Duan, Y.; Zhang, J. Improved Antioxidant Activities of Edible Films by Curcumin-Containing with Zein/Polysaccharide. Food Biosci. 2024, 57, 103538. [Google Scholar] [CrossRef]
- Liu, C.; Yang, X.; Wu, W.; Long, Z.; Xiao, H.; Luo, F.; Shen, Y.; Lin, Q. Elaboration of Curcumin-Loaded Rice Bran Albumin Nanoparticles Formulation with Increased in Vitro Bioactivity and in Vivo Bioavailability. Food Hydrocoll. 2018, 77, 834–842. [Google Scholar] [CrossRef]
- Hartmann, S.R.; Hahn, E.L. Nuclear Double Resonance in the Rotating Frame. Phys. Rev. 1962, 128, 2042–2053. [Google Scholar] [CrossRef]
- Fung, B.M.; Khitrin, A.K.; Ermolaev, K. An Improved Broadband Decoupling Sequence for Liquid Crystals and Solids. J. Magn. Reson. 2000, 142, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Kaye, I.A.; Weiner, N. Semimicro-Kjeldahl Nitrogen Determination. Ind. Eng. Chem. Anal. Ed. 1945, 17, 397–398. [Google Scholar] [CrossRef]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzalez, L.; Tablada, M.; Robledo, Y.C.W. InfoStat Versión 2011; Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina: Córdoba, Argentina, 2011; Available online: http://www.infostat.com.ar (accessed on 1 March 2025).
- Nishida, Y.; Aono, R.; Dohi, H.; Ding, W.; Uzawa, H. 1H-NMR Karplus Analysis of Molecular Conformations of Glycerol under Different Solvent Conditions: A Consistent Rotational Isomerism in the Backbone Governed by Glycerol/Water Interactions. Int. J. Mol. Sci. 2023, 24, 2766. [Google Scholar] [CrossRef] [PubMed]
- Galaburri, G.; Peralta Ramos, M.L.; Lázaro-Martínez, J.M.; Fernández de Luis, R.; Arriortua, M.I.; Villanueva, M.E.; Copello, G.J. PH and Ion-Selective Swelling Behaviour of Keratin and Keratose 3D Hydrogels. Eur. Polym. J. 2019, 118, 1–9. [Google Scholar] [CrossRef]
- Liu, K.; Han, J. Changes in Mineral Concentrations and Phosphorus Profile during Dry-Grind Processing of Corn into Ethanol. Bioresour. Technol. 2011, 102, 3110–3118. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, D.; Żyszka-Haberecht, B.; Kafka, A.; Lipok, J. Determination of Phosphorus Compounds in Plant Tissues: From Colourimetry to Advanced Instrumental Analytical Chemistry. Plant Methods 2022, 18, 22. [Google Scholar] [CrossRef] [PubMed]
- Godinot, C.; Gaysinski, M.; Thomas, O.P.; Ferrier-Pagès, C.; Grover, R. On the Use of 31P NMR for the Quantification of Hydrosoluble Phosphorus-Containing Compounds in Coral Host Tissues and Cultured Zooxanthellae. Sci. Rep. 2016, 6, 21760. [Google Scholar] [CrossRef] [PubMed]
- Cade-Menun, B.J. Improved Peak Identification in 31P-NMR Spectra of Environmental Samples with a Standardized Method and Peak Library. Geoderma 2015, 257–258, 102–114. [Google Scholar] [CrossRef]
- Hayashi, S.; Hayamizu, K. High-Resolution Solid-State 31P NMR of Alkali Phosphates. Bull. Chem. Soc. Jpn. 1989, 62, 3061–3068. [Google Scholar] [CrossRef]
- Yu, P.; Marshall, J.W.; Sadek, P.; Walton, J.H. Speciation of Phosphorus in Pet Foods by Solid-State 31 P-MAS-NMR Spectroscopy. J. Agric. Food Chem. 2023, 71, 8602–8612. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Lu, W.; Guo, Y.; Zhu, Y.; Lu, H.; Wu, Y. Superhydrophobic Coatings on Gelatin-Based Films: Fabrication, Characterization and Cytotoxicity Studies. RSC Adv. 2018, 8, 23712–23719. [Google Scholar] [CrossRef] [PubMed]
- Galdopórpora, J.M.; Martinena, C.; Bernabeu, E.; Riedel, J.; Palmas, L.; Castangia, I.; Manca, M.L.; Garc, M.; Lázaro-Martínez, J.M.; Salgueiro, M.J.; et al. Inhalable Mannosylated Rifampicin—Curcumin Co-Loaded Nanomicelles with Enhanced In Vitro Antimicrobial Efficacy for an Optimized Pulmonary Tuberculosis Therapy. Pharmaceutics 2022, 14, 959. [Google Scholar] [CrossRef] [PubMed]
- Lázaro Martínez, J.M.; Chattah, A.K.; Torres Sánchez, R.M.; Buldain, G.Y.; Campo Dall’ Orto, V. Synthesis and Characterization of Novel Polyampholyte and Polyelectrolyte Polymers Containing Imidazole, Triazole or Pyrazole. Polymer 2012, 53, 1288–1297. [Google Scholar] [CrossRef]
- Kalinowska, M.; Borawska, M.; Świsłocka, R.; Piekut, J.; Lewandowski, W. Spectroscopic (IR, Raman, UV, 1H and 13C NMR) and Microbiological Studies of Fe(III), Ni(II), Cu(II), Zn(II) and Ag(I) Picolinates. J. Mol. Struct. 2007, 834–836, 419–425. [Google Scholar] [CrossRef]
- Jastrzbski, W.; Sitarz, M.; Rokita, M.; Bułat, K. Infrared Spectroscopy of Different Phosphates Structures. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 79, 722–727. [Google Scholar] [CrossRef] [PubMed]
- Araque, L.M.; Infantes-Molina, A.; Rodríguez-Castellón, E.; Garro-Linck, Y.; Franzoni, B.; Pérez, C.J.; Copello, G.J.; Lázaro-Martínez, J.M. Ionic Crosslinking of Linear Polyethyleneimine Hydrogels with Tripolyphosphate. Gels 2024, 10, 790. [Google Scholar] [CrossRef] [PubMed]
- Dinh, C.-T.; Jain, A.; de Arquer, F.P.G.; De Luna, P.; Li, J.; Wang, N.; Zheng, X.; Cai, J.; Gregory, B.Z.; Voznyy, O.; et al. Multi-Site Electrocatalysts for Hydrogen Evolution in Neutral Media by Destabilization of Water Molecules. Nat. Energy 2018, 4, 107–114. [Google Scholar] [CrossRef]
- Fleutot, S.; Dupin, J.-C.; Renaudin, G.; Martinez, H. Intercalation and Grafting of Benzene Derivatives into Zinc–Aluminum and Copper–Chromium Layered Double Hydroxide Hosts: An XPS Monitoring Study. Phys. Chem. Chem. Phys. 2011, 13, 17564–17578. [Google Scholar] [CrossRef] [PubMed]
- Briggs, D. Handbook of X-ray Photoelectron Spectroscopy, C. D. Wanger, W.M. Riggs, L.E. Davis, J.F. Moulder and G. E.Muilenberg Perkin-Elmer Corp., Physical Electronics Division, Eden Prairie, Minnesota, USA, 1979. 190 pp. $195. Surf. Interface Anal. 1981, 3, v. [Google Scholar] [CrossRef]
- Kim, S.S.; Britcher, L.; Kumar, S.; Griesser, H.J. XPS Study of Sulfur and Phosphorus Compounds with Different Oxidation States. Sains Malays. 2018, 47, 1913–1922. [Google Scholar] [CrossRef]
- Milenkovic, I.; Algarra, M.; Alcoholado, C.; Cifuentes, M.; Mutavd, D.; Lázaro-Martínez, J.M. Fingerprint Imaging Using N -Doped Carbon Dots. Carbon. N. Y. 2019, 144, 791–797. [Google Scholar] [CrossRef]
- Dučić, T.; Alves, C.S.; Vučinić, Ž.; Lázaro-Martínez, J.M.; Petković, M.; Soto, J.; Mutavdžić, D.; Valle Martínez de Yuso, M.; Radotić, K.; Algarra, M. S, N-Doped Carbon Dots-Based Cisplatin Delivery System in Adenocarcinoma Cells: Spectroscopical and Computational Approach. J. Colloid. Interface Sci. 2022, 623, 226–237. [Google Scholar] [CrossRef] [PubMed]
- Lázaro-Martínez, J.M.; Rodríguez-Castellón, E.; Vega, D.; Monti, G.A.; Chattah, A.K. Solid-State Studies of the Crystalline/Amorphous Character in Linear Poly (Ethylenimine Hydrochloride) (PEI·HCl) Polymers and Their Copper Complexes. Macromolecules 2015, 48, 1115–1125. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Rebolloso-Fuentes, M.M.; Navarro-Pérez, A.; García-Camacho, F.; Ramos-Miras, J.J.; Guil-Guerrero, J.L. Biomass Nutrient Profiles of the Microalga Nannochloropsis. J. Agric. Food Chem. 2001, 49, 2966–2972. [Google Scholar] [CrossRef] [PubMed]
- Blachman, A.; Funez, F.; Birocco, A.M.; Saavedra, S.L.; Lázaro-martinez, J.M.; Camperi, S.A.; Glisoni, R.; Sosnik, A.; Calabrese, G.C. Targeted Anti-Inflammatory Peptide Delivery in Injured Endothelial Cells Using Dermatan Sulfate/Chitosan Nanomaterials. Carbohydr. Polym. 2020, 230, 115610. [Google Scholar] [CrossRef] [PubMed]
- Márquez, P.G.; Wolman, F.J.; Glisoni, R.J. Nanotechnology Platforms for Antigen and Immunostimulant Delivery in Vaccine Formulations. Nano Trends 2024, 8, 100058. [Google Scholar] [CrossRef]
- Cammarata, A.; Marino, J.; Atia, M.N.; Durán, H.; Glisoni, R.J. Novel Doxycycline Gold Nanoparticles via Green Synthesis Using PEO-PPO Block Copolymers for Enhanced Radiosensitization of Melanoma. Biomater. Sci. 2025, 13, 3223–3241. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, S. DLS and Zeta Potential—What They Are and What They Are Not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, D.B.; Baieli, M.F.; Urtasun, N.; Lázaro- Martínez, J.M.; Glisoni, R.J.; Miranda, M.V.; Cascone, O.; Wolman, F.J. Sulfanilic Acid-Modified Chitosan Mini-Spheres and Their Application for Lysozyme Purification from Egg White. Biotechnol. Prog. 2018, 34, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, D.B.; Martínez Álvarez, L.M.; Urtasun, N.; Baieli, M.F.; Lázaro-Martínez, J.M.; Glisoni, R.J.; Miranda, M.V.; Cascone, O.; Wolman, F.J. Lactoferrin Purification and Whey Protein Isolate Recovery from Cheese Whey Using Chitosan Mini-Spheres. Int. Dairy. J. 2020, 109, 104764. [Google Scholar] [CrossRef]
- Kuznetsova, E.V.; Kuznetsov, N.M.; Kalinin, K.T.; Lebedev-Stepanov, P.V.; Novikov, A.A.; Chvalun, S.N. The Role of Integrated Approach in the Determination of Nanoparticle Sizes in Dispersions. Colloid J. 2022, 84, 704–714. [Google Scholar] [CrossRef]
- Filippov, S.K.; Khusnutdinov, R.; Murmiliuk, A.; Inam, W.; Zakharova, L.Y.; Zhang, H.; Khutoryanskiy, V.V. Dynamic Light Scattering and Transmission Electron Microscopy in Drug Delivery: A Roadmap for Correct Characterization of Nanoparticles and Interpretation of Results. Mater. Horiz. 2023, 10, 5354–5370. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Montejo, S.d.J.; Vargas-Hernandez, M.; Torres-Pacheco, I. Nanoparticles as Novel Elicitors to Improve Bioactive Compounds in Plants. Agriculture 2021, 11, 134. [Google Scholar] [CrossRef]
- Anjum, S.; Komal, A.; Haider Abbasi, B.; Hano, C. Nanoparticles as Elicitors of Biologically Active Ingredients in Plants. In Nanotechnology in Plant Growth Promotion and Protection: Recent Advances and Impacts; Wiley: Hoboken, NJ, USA, 2021. [Google Scholar]
- Cardillo, A.B.; Otálvaro, A.Á.M.; Busto, V.D.; Talou, J.R.; Velásquez, L.M.E.; Giulietti, A.M. Scopolamine, Anisodamine and Hyoscyamine Production by Brugmansia Candida Hairy Root Cultures in Bioreactors. Process Biochem. 2010, 45, 1577–1581. [Google Scholar] [CrossRef]
- Guru, A.; Dwivedi, P.; Kaur, P.; Pandey, D.K. Exploring the Role of Elicitors in Enhancing Medicinal Values of Plants under in Vitro Condition. S. Afr. J. Bot. 2022, 149, 1029–1043. [Google Scholar] [CrossRef]
Sample | Organic Elemental Analysis (OEA) | ICP-OES | |||
---|---|---|---|---|---|
%C | %H | %N | %S | %P | |
Pristine DDGS | 46.8 | 7.1 | 4.3 | 0.1 | 0.60 |
Washed DDGS | 45.7 | 6.4 | 6.1 | 0.4 | 0.46 |
DDGS-NPs | 23.0 | 7.4 | 3.2 | - | 0.41 |
Sample | %C | %N | %O | %S | %P | %Ca | %Mg | %Na | %Cl |
---|---|---|---|---|---|---|---|---|---|
Pristine DDGS | 80.03 | 1.67 | 16.09 | 0.45 | 0.49 | 0.49 | 0.78 | - | - |
Washed DDGS | 86.6 | 1.0 | 12.4 | - | - | - | - | - | - |
DDGS-NPs | 65.7 | 5.2 | 20.5 | - | - | - | - | 8.4 | 0.2 |
Sample | Dh (nm) (S.D.) | Intensity % (S.D.) | PdI (S.D.) | Z-Potential(mV) (S.D.) |
---|---|---|---|---|
DDGS-NPs | 227.0 (42.1) | 100.0 (0.0) | 0.328 (0.093) | −52.9 (7.0) |
Sterilized DDGS-NPs | 263.0 (24.0) | 100.0 (0.0) | 0.397 (0.047) | −49.6 (6.9) |
NIST standard-NPs | 421.9 (3.1) | 100.0 (0.0) | 0.108 (0.079) | −68.6 (0.5) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galaburri, G.; Kalapuj, Y.R.; Perassolo, M.; Rodríguez Talou, J.; Márquez, P.G.; Glisoni, R.J.; Infantes-Molina, A.; Rodríguez-Castellón, E.; Lázaro-Martínez, J.M. Nanoparticle Formulation Generated from DDGS and Its Anthraquinone Synthesis Elicitation in Rubia tinctorum Hairy Roots. Polymers 2025, 17, 2021. https://doi.org/10.3390/polym17152021
Galaburri G, Kalapuj YR, Perassolo M, Rodríguez Talou J, Márquez PG, Glisoni RJ, Infantes-Molina A, Rodríguez-Castellón E, Lázaro-Martínez JM. Nanoparticle Formulation Generated from DDGS and Its Anthraquinone Synthesis Elicitation in Rubia tinctorum Hairy Roots. Polymers. 2025; 17(15):2021. https://doi.org/10.3390/polym17152021
Chicago/Turabian StyleGalaburri, Gonzalo, Yazmín R. Kalapuj, María Perassolo, Julián Rodríguez Talou, Patricio G. Márquez, Romina J. Glisoni, Antonia Infantes-Molina, Enrique Rodríguez-Castellón, and Juan M. Lázaro-Martínez. 2025. "Nanoparticle Formulation Generated from DDGS and Its Anthraquinone Synthesis Elicitation in Rubia tinctorum Hairy Roots" Polymers 17, no. 15: 2021. https://doi.org/10.3390/polym17152021
APA StyleGalaburri, G., Kalapuj, Y. R., Perassolo, M., Rodríguez Talou, J., Márquez, P. G., Glisoni, R. J., Infantes-Molina, A., Rodríguez-Castellón, E., & Lázaro-Martínez, J. M. (2025). Nanoparticle Formulation Generated from DDGS and Its Anthraquinone Synthesis Elicitation in Rubia tinctorum Hairy Roots. Polymers, 17(15), 2021. https://doi.org/10.3390/polym17152021