Effect of Chemical Etching on the Supercapacitive Performance of Electroless Ni-B Coatings
Abstract
1. Introduction
2. Experimental Section
2.1. Electrode Preparation
2.2. Characterization
3. Preliminary Results
3.1. Composition and Microstructure
3.2. Phase Structure
3.3. Etching Behavior
4. Electrochemical Performance
4.1. Cyclic Voltammetry
4.2. Galvanostatic Charge–Discharge (GCD) and Specific Capacitance
4.3. Electrochemical Impedance Spectroscopy
4.4. Cyclic Life
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barati, Q.; Hadavi, S.M.M. Electroless Ni-B and Composite Coatings: A Critical Review on Formation Mechanism, Properties, Applications and Future Trends. Surf. Interfaces 2020, 21, 100702. [Google Scholar] [CrossRef]
- Cieślak, G.; Gostomska, M.; Dąbrowski, A.; Ciciszwili-Wyspiańska, T.; Skroban, K.; Mazurek, A.; Wojda, E.; Głowacki, M.; Rygier, T.; Gajewska-Midziałek, A. Properties of Ni-B/B Composite Coatings Produced by the Electroless Method under Semi-Technical Line Conditions. Processes 2024, 12, 1280. [Google Scholar] [CrossRef]
- Bányai, K.; Czagány, M.; Kovács, S.; Bognár, G. Characterisation of Tribological Properties and Morphologies of Ni-P and Ni-B Coatings. Lubricants 2025, 13, 168. [Google Scholar] [CrossRef]
- Chintada, V.B.; Gurugubelli, T.R.; Tamtam, M.R.; Koutavarapu, R. Advancements in Nickel-Phosphate/Boron Based Electroless Composite Coatings: A Comprehensive Review of Mechanical Properties and Recent Developments. Materials 2023, 16, 6116. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Barman, T.K.; Sahoo, P.; Davim, J.P. Comparative Study of Tribological Behavior of Electroless Ni–B, Ni–B–Mo, and Ni–B–W Coatings at Room and High Temperatures. Lubricants 2018, 6, 67. [Google Scholar] [CrossRef]
- Vitry, V.; Kanta, A.-F.; Dille, J.; Delaunois, F. Structural State of Electroless Nickel–Boron Deposits (5 wt.% B): Characterization by XRD and TEM. Surf. Coat. Technol. 2012, 206, 3444–3449. [Google Scholar] [CrossRef]
- Lu, Q.; Chen, J.G.; Xiao, J.Q. Nanostructured Electrodes for High-Performance Pseudocapacitors. Angew. Chem. Int. Ed. 2013, 52, 1882–1889. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Wang, M.; Yang, Y.; Yao, T.; Han, H.; Sun, L. Electroless Plated Ni–B Films as Highly Active Electrocatalysts for Hydrogen Production from Water over a Wide pH Range. Nano Energy 2016, 19, 98–107. [Google Scholar] [CrossRef]
- Li, W.; Wang, S.; Wu, M.; Wang, X.; Long, Y.; Lou, X. Direct Aqueous Solution Synthesis of an Ultra-Fine Amorphous Nickel–Boron Alloy with Superior Pseudocapacitive Performance for Advanced Asymmetric Supercapacitors. New J. Chem. 2017, 41, 7302–7311. [Google Scholar] [CrossRef]
- Shakoor, R.A.; Kahraman, R.; Gao, W.; Wang, Y. Synthesis, Characterization and Applications of Electroless Ni-B Coatings—A Review. Int. J. Electrochem. Sci. 2016, 11, 2486–2512. [Google Scholar] [CrossRef]
- Czagany, M.; Hompoth, S.; Keshri, A.K.; Pandit, N.; Galambos, I.; Gacsi, Z.; Baumli, P. Supercapacitors: An Efficient Way for Energy Storage Application. Materials 2024, 17, 702. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Ren, X. Pseudocapacitive Storage in High-Performance Flexible Batteries and Supercapacitors. Batteries 2025, 11, 63. [Google Scholar] [CrossRef]
- Guan, L.; Li, D.; Ji, S.; Wei, X.; Meng, F. Structural Regulation and Performance Enhancement of Carbon-Based Supercapacitors: Insights into Electrode Material Engineering. Materials 2025, 18, 456. [Google Scholar] [CrossRef] [PubMed]
- Seo, Y.; Ha, H.; Cheong, J.Y.; Leem, M.; Darabi, S.; Matteini, P.; Müller, C.; Yun, T.G.; Hwang, B. Highly Reliable Yarn-Type Supercapacitor Using Conductive Silk Yarns with Multilayered Active Materials. J. Nat. Fibers 2022, 19, 835–846. [Google Scholar] [CrossRef]
- Lee, S.; Park, J.Y.; Yoon, H.; Park, J.; Lee, J.; Hwang, B.; Padil, V.V.T.; Cheong, J.Y.; Yun, T.G. Long-Lasting Supercapacitor with Stable Electrode-Electrolyte Interface Enabled by a Biopolymer Conjugate Electrolyte Additive. Energy Storage Mater. 2025, 77, 104195. [Google Scholar] [CrossRef]
- Ramkumar, R.; Koyyada, G.; Rabbi Abir, M.R.A.; Gurugubelli, T.R.; Kim, W.K.; Kim, J.H. Porous Zn Nano-Wafer Aerogels for Asymmetric Supercapacitors: Synthesis, Structural Engineering, and Performance. Processes 2025, 13, 1461. [Google Scholar] [CrossRef]
- Sudagar, J.; Lian, J.; Sha, W. Electroless Nickel, Alloy, Composite and Nano Coatings—A Critical Review. J. Alloys Compd. 2013, 571, 183–204. [Google Scholar] [CrossRef]
- Hamid, Z.A.; Hassan, H.B.; Attyia, A.M. Influence of Deposition Temperature and Heat Treatment on the Performance of Electroless Ni–B Films. Surf. Coat. Technol. 2010, 205, 2348–2354. [Google Scholar] [CrossRef]
- Mei, S.; Zou, X.; Hu, Z.; Yang, J.; Zheng, Q.; Huang, W.; Guryev, A.; Lygdenov, B. Optimization of Ni-B-Mo Electroless Coating on GCr15 Steel: Effects of Main Salt Concentration and Deposition Time. Materials 2025, 18, 1981. [Google Scholar] [CrossRef]
- Wang, D.; Kong, L.-B.; Liu, M.-C.; Zhang, W.-B.; Luo, Y.-C.; Kang, L. Amorphous Ni–P Materials for High Performance Pseudocapacitors. J. Power Sources 2015, 274, 1107–1113. [Google Scholar] [CrossRef]
- Czagany, M.; Hompoth, S.; Windisch, M.; Baumli, P. Investigation of the Supercapacitive Behavior of Electroless Ni-B Coatings. Metals 2023, 13, 1233. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, J.; Liu, X.; Huang, S.; Wang, T.; Wang, X.; Gu, C.; Tu, J.; Mao, S.X. Facile Synthesis of Ni-Coated Ni2P for Supercapacitor Applications. CrystEngComm 2013, 15, 7071. [Google Scholar] [CrossRef]
- Duan, X.; Dou, M.; Liu, L.; Zhang, L.; Bai, X.; Yang, R.; Wang, H.; Dou, J. Facile Synthesis of Sandwich-Type Porous Structured Ni(OH)2/NCNWs/rGO Composite for High Performance Supercapacitor. Molecules 2025, 30, 1119. [Google Scholar] [CrossRef]
- Haritha, B.; Deepak, M.; Hussain, O.M.; Julien, C.M. Morphological Engineering of Battery-Type Cobalt Oxide Electrodes for High-Performance Supercapacitors. Physchem 2025, 5, 11. [Google Scholar] [CrossRef]
- Zheng, J.; Wu, H.; Zhang, J.; Li, J.; Ding, B.; Hu, J.; Cheng, X.; Yi, T. Controllable Construction of Porous High Specific Surface Area Carbon Materials Derived from Walnut Green Peel for High-Performance Symmetric Supercapacitors. Colloids Surf. A Physicochem. Eng. Asp. 2025, 719, 137064. [Google Scholar] [CrossRef]
- Chebrolu, V.T.; Jun, C.; Nagaraju, G.; Chinnadurai, D.; Kim, K.; Kim, C.; Lee, S.-M. The Surface Modification of NiO@NiSe2 Enhanced High Energy Storage Properties for Flexible Hybrid Supercapacitor. Appl. Surf. Sci. 2025, 703, 163377. [Google Scholar] [CrossRef]
- Bao, Y.; Xu, H.; Zhu, Y.; Liu, M.; Liu, M.; Chen, Y. Pore Regulation and Surface Modification Collaboratively Enhance Biomass Porous Carbon Anchoring Azure A for Stable Supercapacitor Electrode. Ind. Crops Prod. 2024, 210, 118176. [Google Scholar] [CrossRef]
- Lin, J.-D.; Chou, C.-T. The Influence of Acid Etching on the Electrochemical Supercapacitive Properties of Ni P Coatings. Surf. Coat. Technol. 2017, 325, 360–369. [Google Scholar] [CrossRef]
- Lin, J.-D.; Chou, C.-T. The Influence of Phosphorus Content on the Microstructure and Specific Capacitance of Etched Electroless Ni-P Coatings. Surf. Coat. Technol. 2019, 368, 126–137. [Google Scholar] [CrossRef]
- Próchniak, M.; Grdeń, M. Electrochemical Deposition of Nickel from Aqueous Electrolytic Baths Prepared by Dissolution of Metallic Powder. J. Solid State Electrochem. 2022, 26, 431–447. [Google Scholar] [CrossRef]
- Rogowska, M.; Gudme, J.; Rubin, A.; Pantleon, K.; Ambat, R. Effect of Fe Ion Concentration on Corrosion of Carbon Steel in CO2 Environment. Corros. Eng. Sci. Technol. 2016, 51, 25–36. [Google Scholar] [CrossRef]
- Kumar, S.N.; Malhotra, L.K.; Chopra, K.L. Low Cost Electroless Nickel Black Coatings for Photothermal Conversion. Sol. Energy Mater. 1980, 3, 519–532. [Google Scholar] [CrossRef]
- Bulbul, F. The Effects of Deposition Parameters on Surface Morphology and Crystallographic Orientation of Electroless Ni-B Coatings. Met. Mater. Int. 2011, 17, 67–75. [Google Scholar] [CrossRef]
- Zhao, F.; Hu, H.; Yu, J.; Lai, J.; He, H.; Zhang, Y.; Qi, H.; Wang, D. Mechanical and Tribological Properties of Ni-B and Ni-B-W Coatings Prepared by Electroless Plating. Lubricants 2023, 11, 42. [Google Scholar] [CrossRef]
- Brown, R.J.C.; Brewer, P.J.; Milton, M.J.T. The Physical and Chemical Properties of Electroless Nickel–Phosphorus Alloys and Low Reflectance Nickel–Phosphorus Black Surfaces. J. Mater. Chem. 2002, 12, 2749–2754. [Google Scholar] [CrossRef]
- Gültekin, D.; Duru, E.; Akbulut, H. Improved Wear Behaviors of Lead-Free Electroless Ni B and Ni-B/CeO2 Composite Coatings. Surf. Coat. Technol. 2021, 422, 127525. [Google Scholar] [CrossRef]
- Gajewska-Midziałek, A.; Cieślak, G.; Gostomska, M.; Ciciszwili, T.; Skroban, K.; Dąbrowski, A.; Pęśko, E.; Wojda, E.; Głowacki, M.; Kapuścińska, A.; et al. Properties of Ni-B/B Composite Coatings Produced by Chemical Reduction. Coatings 2023, 13, 1535. [Google Scholar] [CrossRef]
- Weast, R.C. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 1987; ISBN 0-8493-0468-7. [Google Scholar]
- Elfimova, L.G.; Naboichenko, S.S. Kinetics of Nickel, Iron, and Their Alloys Dissolution in Nitric Acid. Metallurgist 2022, 65, 1100–1107. [Google Scholar] [CrossRef]
- Stupnišek-Lisac, E.; Karšulin, M. Electrochemical Behaviour of Nickel in Nitric Acid. Electrochim. Acta 1984, 29, 1339–1343. [Google Scholar] [CrossRef]
- Wang, Y.D.; Ai, X.P.; Cao, Y.L.; Yang, H.X. Exceptional Electrochemical Activities of Amorphous Fe–B and Co–B Alloy Powders Used as High Capacity Anode Materials. Electrochem. Commun. 2004, 6, 780–784. [Google Scholar] [CrossRef]
- Liu, S.; Dong, K.; Sun, Z.; Wang, J.; Kong, L.; Tang, B.; Wu, S.; You, X.; Huang, X.; Guo, F. Three-Dimensional Interconnected Composite Nanoarchitectonics with Ni(OH)2/Ni3S2 Nanosheets and Hierarchical Porous Carbon for High-Performance Supercapacitor Electrodes. Diam. Relat. Mater. 2025, 155, 112326. [Google Scholar] [CrossRef]
- Rychtowski, P.; Prowans, B.; Miądlicki, P.; Trzeciak, M.; Tryba, B. Preparation of TiO2 Nanorods@Ni-Foam for Photocatalytic Decomposition of Acetaldehyde—In Situ FTIR Surface Investigation. Materials 2025, 18, 986. [Google Scholar] [CrossRef] [PubMed]
- Wan, K.; Luo, J.; Zhang, X.; Subramanian, P.; Fransaer, J. In-Situ Formation of Ni (Oxy)Hydroxide on Ni Foam as an Efficient Electrocatalyst for Oxygen Evolution Reaction. Int. J. Hydrogen Energy 2020, 45, 8490–8496. [Google Scholar] [CrossRef]
- Zhang, C.; Park, S. The Anodic Oxidation of Nickel in Alkaline Media Studied by Spectroelectrochemical Techniques. J. Electrochem. Soc. 1987, 134, 2966–2970. [Google Scholar] [CrossRef]
- Alhebshi, N.A.; Rakhi, R.B.; Alshareef, H.N. Conformal Coating of Ni(OH)2 Nanoflakes on Carbon Fibers by Chemical Bath Deposition for Efficient Supercapacitor Electrodes. J. Mater. Chem. A 2013, 1, 14897. [Google Scholar] [CrossRef]
- Azizi, S.N.; Ghasemi, S.; Chiani, E. Nickel/Mesoporous Silica (SBA-15) Modified Electrode: An Effective Porous Material for Electrooxidation of Methanol. Electrochim. Acta 2013, 88, 463–472. [Google Scholar] [CrossRef]
- Wang, X.Y.; Yan, J.; Zhang, Y.S.; Yuan, H.T.; Song, D.Y. Cyclic Voltammetric Studies of Pasted Nickel Hydroxide Electrode Microencapsulated by Cobalt. J. Appl. Electrochem. 1998, 28, 1377–1382. [Google Scholar] [CrossRef]
- Garcia, M.F.L.; Arzuza, L.C.C.; Neves, G.A.; Loureiro, F.J.A.; Morales, M.A.; Macedo, D.A.; Lira, H.L.; Menezes, R.R. Structure and Morphological Properties of Cobalt-Oxide-Based (Co3O4) Materials as Electrodes for Supercapacitors: A Brief Review. Materials 2025, 18, 413. [Google Scholar] [CrossRef]
- Zhang, G.; Ren, L.; Hu, D.; Gu, H.; Zhang, S. Sulfuric Acid Etching for Fabrication of Porous MnO2 for High-Performance Supercapacitor. J. Colloid Interface Sci. 2018, 518, 84–91. [Google Scholar] [CrossRef]
- Patil, S.J.; Pujari, R.B.; Hou, T.; Park, J.; Lee, D.-W. Supercapacitive Performance of Vanadium Sulfide Deposited on Stainless Steel Mesh: Effect of Etching. Micro Nano Syst. Lett. 2020, 8, 8. [Google Scholar] [CrossRef]
- Sunil, V.; Yasin, A.; Pal, B.; Misnon, I.I.; Karuppiah, C.; Yang, C.-C.; Jose, R. Tailoring the Charge Storability of Commercial Activated Carbon through Surface Treatment. J. Energy Storage 2022, 55, 105809. [Google Scholar] [CrossRef]
- Pimsawat, A.; Tangtrakarn, A.; Pimsawat, N.; Daengsakul, S. Effect of Substrate Surface Roughening on the Capacitance and Cycling Stability of Ni(OH)2 Nanoarray Films. Sci. Rep. 2019, 9, 16877. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, M.; Nethravathi, C.; Rajamathi, M. Interstratified Hybrids of α-Hydroxides of Nickel and Cobalt as Supercapacitor Electrode Materials. Mater. Res. Bull. 2013, 48, 2715–2719. [Google Scholar] [CrossRef]
- Rout, S.K.; Samal, P.K.; Panigrahy, J.; Nanda, P.; Praharaj, S.; Rout, D. Enhanced Cyclic Stability of MoO3@BiFeO3 Nanocomposites for Long Life Supercapacitor Electrodes. J. Alloys Compd. 2025, 1020, 179422. [Google Scholar] [CrossRef]
- Yu, Z.; Cheng, Z.; Wang, X.; Dou, S.X.; Kong, X. High Area-Specific Capacitance of Co(OH)2/Hierarchical Nickel/Nickel Foam Supercapacitors and Its Increase with Cycling. J. Mater. Chem. A 2017, 5, 7968–7978. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, K.; Xiang, X. Fabrication of Customizable Specific Capacitance Supercapacitor Electrodes via In-Situ Oxidation of Nickel Foam by Cyclic Voltammetry Process. J. Power Sources 2025, 641, 236833. [Google Scholar] [CrossRef]
Element | Cu | Si | Al | Zn | P | Ni |
---|---|---|---|---|---|---|
Composition (wt.%) | 99.61 | 0.19 | 0.09 | 0.07 | 0.02 | 0.01 |
Bath Composition | Concentration |
NiCl2 (g/L) | 40 |
EDA (g/L) | 90 |
NaOH (g/L) | 90 |
NaBH4 (g/L) | 0.8 |
Thiourea (mg/L) | 1 |
Conditions | |
pH | >13 |
T (°C) | 80 |
Deposition time | 60 min |
Bath volume | 50 mL |
Element | C | O | Cu | Ni |
---|---|---|---|---|
Composition (wt.%) | 3.68 | 1.31 | 2.13 | 92.88 |
Element | As-Deposited Ni-B | ||
Value | Error% | Chi-Squared | |
RS (Ohm) | 0.4479 | 1.34 | 0.0015667 |
CDL (F) | 0.0027 | 13.38 | |
CPE (F·sP−1) | 0.0072 | 5.16 | |
P (-) | 0.8187 | 1.41 | |
RCT (Ohm) | 0.3202 | 41.61 | |
Ni-B etched for 15 s | |||
RS (Ohm) | 0.4696 | 0.34 | 0.00020966 |
CDL (F) | 0.0479 | 5.21 | |
CPE (F·sP−1) | 0.1047 | 2.41 | |
P (-) | 0.8640 | 0.53 | |
RCT (Ohm) | 0.2215 | 10.33 |
Element | O | K | Ni | Cu | |
---|---|---|---|---|---|
Composition (wt.%) | Point 1 | 5.42 | 0.22 | 92.12 | 2.24 |
Point 2 | 11.71 | 0.20 | 83.83 | 4.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czagany, M.; Meszaros, G.; Koncz-Horvath, D.; Hlavacs, A.; Windisch, M.; Hwang, B.; Baumli, P. Effect of Chemical Etching on the Supercapacitive Performance of Electroless Ni-B Coatings. Materials 2025, 18, 3544. https://doi.org/10.3390/ma18153544
Czagany M, Meszaros G, Koncz-Horvath D, Hlavacs A, Windisch M, Hwang B, Baumli P. Effect of Chemical Etching on the Supercapacitive Performance of Electroless Ni-B Coatings. Materials. 2025; 18(15):3544. https://doi.org/10.3390/ma18153544
Chicago/Turabian StyleCzagany, Mate, Gabor Meszaros, Daniel Koncz-Horvath, Adrienn Hlavacs, Mark Windisch, Byungil Hwang, and Peter Baumli. 2025. "Effect of Chemical Etching on the Supercapacitive Performance of Electroless Ni-B Coatings" Materials 18, no. 15: 3544. https://doi.org/10.3390/ma18153544
APA StyleCzagany, M., Meszaros, G., Koncz-Horvath, D., Hlavacs, A., Windisch, M., Hwang, B., & Baumli, P. (2025). Effect of Chemical Etching on the Supercapacitive Performance of Electroless Ni-B Coatings. Materials, 18(15), 3544. https://doi.org/10.3390/ma18153544