Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (564)

Search Parameters:
Keywords = Northern Mediterranean

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 9190 KiB  
Article
Modeling the Historical and Future Potential Global Distribution of the Pepper Weevil Anthonomus eugenii Using the Ensemble Approach
by Kaitong Xiao, Lei Ling, Ruixiong Deng, Beibei Huang, Qiang Wu, Yu Cao, Hang Ning and Hui Chen
Insects 2025, 16(8), 803; https://doi.org/10.3390/insects16080803 (registering DOI) - 3 Aug 2025
Viewed by 42
Abstract
The pepper weevil Anthonomus eugenii is a devastating pest native to Central America that can cause severe damage to over 35 pepper varieties. Global trade in peppers has significantly increased the risk of its spread and expansion. Moreover, future climate change may add [...] Read more.
The pepper weevil Anthonomus eugenii is a devastating pest native to Central America that can cause severe damage to over 35 pepper varieties. Global trade in peppers has significantly increased the risk of its spread and expansion. Moreover, future climate change may add more uncertainty to its distribution, resulting in considerable ecological and economic damage globally. Therefore, we employed an ensemble model combining Random Forests and CLIMEX to predict the potential global distribution of A. eugenii in historical and future climate scenarios. The results indicated that the maximum temperature of the warmest month is an important variable affecting global A. eugenii distribution. Under the historical climate scenario, the potential global distribution of A. eugenii is concentrated in the Midwestern and Southern United States, Central America, the La Plata Plain, parts of the Brazilian Plateau, the Mediterranean and Black Sea coasts, sub-Saharan Africa, Northern and Southern China, Southern India, Indochina Peninsula, and coastal area in Eastern Australia. Under future climate scenarios, suitable areas in the Northern Hemisphere, including North America, Europe, and China, are projected to expand toward higher latitudes. In China, the number of highly suitable areas is expected to increase significantly, mainly in the south and north. Contrastingly, suitable areas in Central America, northern South America, the Brazilian Plateau, India, and the Indochina Peninsula will become less suitable. The total land area suitable for A. eugenii under historical and future low- and high-emission climate scenarios accounted for 73.12, 66.82, and 75.97% of the global land area (except for Antarctica), respectively. The high-suitability areas identified by both models decreased by 19.05 and 35.02% under low- and high-emission scenarios, respectively. Building on these findings, we inferred the future expansion trends of A. eugenii globally. Furthermore, we provide early warning of A. eugenii invasion and a scientific basis for its spread and outbreak, facilitating the development of effective quarantine and control measures. Full article
(This article belongs to the Section Insect Ecology, Diversity and Conservation)
Show Figures

Graphical abstract

20 pages, 1205 KiB  
Review
Patterns in Root Phenology of Woody Plants Across Climate Regions: Drivers, Constraints, and Ecosystem Implications
by Qiwen Guo, Boris Rewald, Hans Sandén and Douglas L. Godbold
Forests 2025, 16(8), 1257; https://doi.org/10.3390/f16081257 - 1 Aug 2025
Viewed by 149
Abstract
Root phenology significantly influences ecosystem processes yet remains poorly characterized across biomes. This study synthesized data from 59 studies spanning Arctic to tropical ecosystems to identify woody plants root phenological patterns and their environmental drivers. The analysis revealed distinct climate-specific patterns. Arctic regions [...] Read more.
Root phenology significantly influences ecosystem processes yet remains poorly characterized across biomes. This study synthesized data from 59 studies spanning Arctic to tropical ecosystems to identify woody plants root phenological patterns and their environmental drivers. The analysis revealed distinct climate-specific patterns. Arctic regions had a short growing season with remarkably low temperature threshold for initiation of root growth (0.5–1 °C). Temperate forests displayed pronounced spring-summer growth patterns with root growth initiation occurring at 1–9 °C. Mediterranean ecosystems showed bimodal patterns optimized around moisture availability, and tropical regions demonstrate seasonality primarily driven by precipitation. Root-shoot coordination varies predictably across biomes, with humid continental ecosystems showing the highest synchronous above- and belowground activity (57%), temperate regions exhibiting leaf-before-root emergence (55%), and Mediterranean regions consistently showing root-before-leaf patterns (100%). Winter root growth is more widespread than previously recognized (35% of studies), primarily in tropical and Mediterranean regions. Temperature thresholds for phenological transitions vary with climate region, suggesting adaptations to environmental conditions. These findings provide a critical, region-specific framework for improving models of terrestrial ecosystem responses to climate change. While our synthesis clarifies distinct phenological strategies, its conclusions are drawn from data focused primarily on Northern Hemisphere woody plants, highlighting significant geographic gaps in our current understanding. Bridging these knowledge gaps is essential for accurately forecasting how belowground dynamics will influence global carbon sequestration, nutrient cycling, and ecosystem resilience under changing climatic regimes. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

24 pages, 3832 KiB  
Article
Temperature and Precipitation Extremes Under SSP Emission Scenarios with GISS-E2.1 Model
by Larissa S. Nazarenko, Nickolai L. Tausnev and Maxwell T. Elling
Atmosphere 2025, 16(8), 920; https://doi.org/10.3390/atmos16080920 - 30 Jul 2025
Viewed by 234
Abstract
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which [...] Read more.
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which include an intensification of precipitation extremes. Using the GISS-E2.1 climate model, we present the future changes in the coldest and hottest daily temperatures as well as in extreme precipitation indices (under four main Shared Socioeconomic Pathways (SSPs)). The increase in the wet-day precipitation ranges between 6% and 15% per 1 °C global surface temperature warming. Scaling of the 95th percentile versus the total precipitation showed that the sensitivity for the extreme precipitation to the warming is about 10 times stronger than that for the mean total precipitation. For six precipitation extreme indices (Total Precipitation, R95p, RX5day, R10mm, SDII, and CDD), the histograms of probability density functions become flatter, with reduced peaks and increased spread for the global mean compared to the historical period of 1850–2014. The mean values shift to the right end (toward larger precipitation and intensity). The higher the GHG emission of the SSP scenario, the more significant the increase in the index change. We found an intensification of precipitation over the globe but large uncertainties remained regionally and at different scales, especially for extremes. Over land, there is a strong increase in precipitation for the wettest day in all seasons over the mid and high latitudes of the Northern Hemisphere. There is an enlargement of the drying patterns in the subtropics including over large regions around Mediterranean, southern Africa, and western Eurasia. For the continental averages, the reduction in total precipitation was found for South America, Europe, Africa, and Australia, and there is an increase in total precipitation over North America, Asia, and the continental Russian Arctic. Over the continental Russian Arctic, there is an increase in all precipitation extremes and a consistent decrease in CDD for all SSP scenarios, with the maximum increase of more than 90% for R95p and R10 mm observed under SSP5–8.5. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

19 pages, 2340 KiB  
Article
Analysis of Olive Tree Flowering Behavior Based on Thermal Requirements: A Case Study from the Northern Mediterranean Region
by Maja Podgornik, Jakob Fantinič, Tjaša Pogačar and Vesna Zupanc
Climate 2025, 13(8), 156; https://doi.org/10.3390/cli13080156 - 23 Jul 2025
Viewed by 444
Abstract
In recent years, early olive fruit drop has been observed in the northern Mediterranean regions, causing significant economic losses, although the exact cause remains unknown. Recent studies have identified several possible causes; however, our understanding of how olive trees respond to these environmental [...] Read more.
In recent years, early olive fruit drop has been observed in the northern Mediterranean regions, causing significant economic losses, although the exact cause remains unknown. Recent studies have identified several possible causes; however, our understanding of how olive trees respond to these environmental stresses remains limited. This study includes an analysis of selected meteorological and flowering data for Olea europaea L. “Istrska belica” to evaluate the use of a chilling and forcing model for a better understanding of flowering time dynamics under a changing climate. The flowering process is influenced by high diurnal temperature ranges (DTRs) during the pre-flowering period, resulting in earlier flowering. Despite annual fluctuations due to various climatic factors, an increase in DTRs has been observed in recent decades, although the mechanisms by which olive trees respond to high DTRs remain unclear. The chilling requirements are still well met in the region (1500 ± 250 chilling units), although their total has declined over the years. According to the Chilling Hours Model, chilling units—referred to as chilling hours—represent the number of hours with temperatures between 0 and 7.2 °C, accumulated throughout the winter season. Growing degree hours (GDHs) are strongly correlated with the onset of flowering. These results suggest that global warming is already affecting the synchrony between olive tree phenology and environmental conditions in the northern Mediterranean and may be one of the reason for the green drop. Full article
(This article belongs to the Section Climate Adaptation and Mitigation)
Show Figures

Figure 1

13 pages, 380 KiB  
Article
Association Between Carbohydrate Quality Index During Pregnancy and Risk for Large-for-Gestational-Age Neonates: Results from the BORN 2020 Study
by Antigoni Tranidou, Antonios Siargkas, Ioannis Tsakiridis, Emmanouela Magriplis, Aikaterini Apostolopoulou, Michail Chourdakis and Themistoklis Dagklis
Children 2025, 12(7), 955; https://doi.org/10.3390/children12070955 - 20 Jul 2025
Viewed by 263
Abstract
Background/Objectives: To assess the association between early pregnancy carbohydrate quality, as measured by the Carbohydrate Quality Index (CQI), and the risk of delivering a large-for-gestational-age (LGA) infant in a Mediterranean pregnant cohort of northern Greece. Methods: We analyzed singleton pregnancies from [...] Read more.
Background/Objectives: To assess the association between early pregnancy carbohydrate quality, as measured by the Carbohydrate Quality Index (CQI), and the risk of delivering a large-for-gestational-age (LGA) infant in a Mediterranean pregnant cohort of northern Greece. Methods: We analyzed singleton pregnancies from the BORN 2020 prospective cohort in Greece. Dietary intake was assessed via a validated food frequency questionnaire, and CQI was computed from glycemic index, fiber density, whole-to-refined grain ratio, and solid-to-liquid carbohydrate ratio. Multivariable logistic regression was used to estimate the association between CQI (in tertiles) and LGA risk, defined as birthweight >90th percentile. Results: Among the 797 participants, 152 (19.1%) delivered LGA infants, and 117 (14.7%) were diagnosed with GDM. Of those with GDM, 23 (19.7%) delivered LGA infants. In the total population, higher maternal weight (p < 0.001), height (p = 0.006), and pre-pregnancy BMI (p = 0.004) were significantly associated with LGA. A greater proportion of women with LGA had a BMI > 25 (p = 0.007). In the GDM subgroup, maternal height remained significantly higher in those who delivered LGA infants (p = 0.017). In multivariable models, moderate CQI was consistently associated with increased odds of LGA across all models (Model 1: aOR = 1.60 (95% CI: 1.03–2.50), p = 0.037, Model 2: aOR = 1.57 (95% CI: 1.01–2.46), p = 0.046, Model 3: aOR = 1.58 (95% CI: 1.01–2.47), p = 0.044, Model 4 aOR: 1.70; 95% CI: 1.08–2.72; p = 0.023), whereas high CQI was not. In the GDM subgroup, a significant association between high CQI and increased LGA risk was observed in less adjusted models (Model 1 aOR: 6.74; 95% CI: 1.32–56.66; p = 0.039, Model 2 aOR: 6.64; 95% CI: 1.27–57.48; p = 0.044), but this was attenuated and became non-significant in the fully adjusted model (aOR: 3.05; 95% CI: 0.47–30.22; p = 0.28). When examining CQI components individually, no consistent associations were observed. Notably, a higher intake of low-quality carbohydrates (≥50% of energy intake) was significantly associated with increased LGA risk in the total population (aOR: 4.25; 95% CI: 1.53–11.67; p = 0.005). Conclusions: Higher early pregnancy intake of low-quality carbohydrates was associated with an elevated risk of LGA in the general population. However, CQI itself showed a non-linear and inconsistent relationship with LGA, with moderate, but not high, CQI linked to increased risk, particularly in GDM pregnancies, where associations were lost after adjustment. Both carbohydrate quality and quantity evaluations are essential, particularly in high-risk groups, to inform dietary guidance in pregnancy. Full article
(This article belongs to the Special Issue Recent Advances in Maternal and Fetal Health (2nd Edition))
Show Figures

Figure 1

21 pages, 3834 KiB  
Article
Rural Landscape Transformation and the Adaptive Reuse of Historical Agricultural Constructions in Bagheria (Sicily): A GIS-Based Approach to Territorial Planning and Representation
by Santo Orlando, Pietro Catania, Carlo Greco, Massimo Vincenzo Ferro, Mariangela Vallone and Giacomo Scarascia Mugnozza
Sustainability 2025, 17(14), 6291; https://doi.org/10.3390/su17146291 - 9 Jul 2025
Viewed by 397
Abstract
Bagheria, located on the northern coast of Sicily, is home to one of the Mediterranean’s most remarkable ensembles of Baroque villas, constructed between the 17th and 18th centuries by the aristocracy of Palermo. Originally situated within a highly structured rural landscape of citrus [...] Read more.
Bagheria, located on the northern coast of Sicily, is home to one of the Mediterranean’s most remarkable ensembles of Baroque villas, constructed between the 17th and 18th centuries by the aristocracy of Palermo. Originally situated within a highly structured rural landscape of citrus groves, gardens, and visual axes, these monumental residences have undergone substantial degradation due to uncontrolled urban expansion throughout the 20th century. This study presents a diachronic spatial analysis of Bagheria’s territorial transformation from 1850 to 2018, integrating historical cartography, aerial photography, satellite imagery, and Geographic Information System (GIS) tools. A total of 33 villas were identified, georeferenced, and assessed based on their spatial integrity, architectural condition, and relationship with the evolving urban fabric. The results reveal a progressive marginalization of the villa system, with many heritage assets now embedded within dense residential development, severed from their original landscape context and deprived of their formal gardens and visual prominence. Comparative insights drawn from analogous Mediterranean heritage landscapes, such as Ortigia (Siracusa), the Appian Way (Rome), and Athens, highlight the urgency of adopting integrated conservation frameworks that reconcile urban development with cultural and ecological continuity. As a strategic response, the study proposes the creation of a thematic cultural route, La città delle ville, to enhance the visibility, accessibility, and socio-economic relevance of Bagheria’s heritage system. This initiative, supported by adaptive reuse policies, smart heritage technologies, and participatory planning, offers a replicable model for sustainable territorial regeneration and heritage-led urban resilience. Full article
Show Figures

Figure 1

9 pages, 1772 KiB  
Article
Cliff-Front Dune Development During the Late Pleistocene at Sa Fortalesa (Mallorca, Western Mediterranean)
by Laura del Valle, Federica Perazzotti and Joan J. Fornós
Geosciences 2025, 15(7), 260; https://doi.org/10.3390/geosciences15070260 - 5 Jul 2025
Viewed by 290
Abstract
This study presents the first detailed analysis of a Late Pleistocene cliff-front dune in northern Mallorca (Western Mediterranean). The research is based on sedimentological fieldwork conducted in a disused coastal quarry, where stratigraphic columns were recorded and facies were described in detail. Grain [...] Read more.
This study presents the first detailed analysis of a Late Pleistocene cliff-front dune in northern Mallorca (Western Mediterranean). The research is based on sedimentological fieldwork conducted in a disused coastal quarry, where stratigraphic columns were recorded and facies were described in detail. Grain size analysis was performed using image-based measurements from representative samples, and palaeowind conditions were reconstructed through the analysis of cross-bedding orientations and empirical wind transport equations. The dune, corresponding to Unit U4, exhibits three distinct evolutionary stages: initial, intermediate, and final. During the initial stage, sediment mobilisation required wind speeds of approximately 10 m/s from the south-southwest (SSW). The intermediate stage was characterised by variable wind velocities between 5 and 8 m/s from the west-southwest (WSW). In the final stage, average wind speeds reached 7 m/s from the west (W), with intermittent peaks up to 10 m/s. These findings underscore the critical influence of wind regime and topographic constraints on aeolian sedimentation processes. By reconstructing wind dynamics and analysing sedimentary architecture, this work provides key insights into the interplay between climatic drivers and geological context in the development of coastal aeolian systems. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

19 pages, 2012 KiB  
Article
Exploring the Variability in Rill Detachment Capacity as Influenced by Different Fire Intensities in a Semi-Arid Environment
by Masoumeh Izadpanah Nashroodcoli, Mahmoud Shabanpour, Sepideh Abrishamkesh and Misagh Parhizkar
Forests 2025, 16(7), 1097; https://doi.org/10.3390/f16071097 - 2 Jul 2025
Viewed by 210
Abstract
Wildfires, whether natural or human-caused, significantly alter soil properties and increase soil erosion susceptibility, particularly through changes in rill detachment capacity (Dc). This study aimed to evaluate the influence of fire intensity on key soil properties and to recognize their relationships with Dc [...] Read more.
Wildfires, whether natural or human-caused, significantly alter soil properties and increase soil erosion susceptibility, particularly through changes in rill detachment capacity (Dc). This study aimed to evaluate the influence of fire intensity on key soil properties and to recognize their relationships with Dc under controlled laboratory conditions. The research was conducted in the Darestan Forest, Guilan Province, northern Iran, a region characterized by a Mediterranean semi-arid climate. Soil samples were collected from three fire-affected conditions: unburned (NF), low-intensity fire (LF), and high-intensity fire (HF) zones. A total of 225 soil samples were analyzed using flume experiments at five slope gradients and five flow discharges, simulating rill erosion. Soil physical and chemical characteristics were measured, including hydraulic conductivity, organic carbon, sodium content, bulk density, and water repellency. The results showed that HF soils significantly exhibited higher rill detachment capacity (1.43 and 2.26 times the values compared to the LF and NF soils, respectively) and sodium content and lower organic carbon, hydraulic conductivity, and aggregate stability (p < 0.01). Strong correlations were found between Dc and various soil properties, particularly a negative relationship with organic carbon. The multiple linear equation had good accuracy (R2 > 0.78) in predicting rill detachment capacity. The findings of the current study show the significant impact of fire on soil degradation and rill erosion potential. The study advocates an urgent need for effective post-fire land management, erosion control, and the development of sustainable soil restoration strategies. Full article
(This article belongs to the Special Issue Postfire Runoff and Erosion in Forests: Assessment and Management)
Show Figures

Figure 1

27 pages, 5866 KiB  
Article
Modeling Streamflow Response to Climate Scenarios in Data-Scarce Mediterranean Catchment: The Medjerda in Northern Tunisia
by Khouloud Gader, Ahlem Gara, Slaheddine Khlifi and Marnik Vanclooster
Earth 2025, 6(3), 68; https://doi.org/10.3390/earth6030068 - 1 Jul 2025
Viewed by 593
Abstract
This study aimed to evaluate the performance and robustness of the GR2m “Génie Rural à 2 paramètres au pas du temps Mensuel” rainfall–runoff model for simulating streamflow under past and future hydrometeorological shifts in the Medjerda, a data-scarce Mediterranean catchment in northern Tunisia [...] Read more.
This study aimed to evaluate the performance and robustness of the GR2m “Génie Rural à 2 paramètres au pas du temps Mensuel” rainfall–runoff model for simulating streamflow under past and future hydrometeorological shifts in the Medjerda, a data-scarce Mediterranean catchment in northern Tunisia characterized by limited hydrometeorological records and high climate variability. The evaluation was conducted across three subcatchments characterized by contrasting climatic conditions and representing the hydrometeorological pattern of the Medjerda catchment. To assess the model’s robustness, a calibration–validation process was applied. This method alternated between dry and wet periods and evaluated model performance through various criteria. Subsequently, GR2m was adopted to simulate projected discharge, using projections from the “Model for Interdisciplinary Research on Climate 5” (MIROC5) under Representative Concentration Pathway (RCP4.5 and RCP8.5) scenarios. Standardized climate indices (SCIs) were employed to assess climate change impacts. The results demonstrate that GR2m performs well in simulating streamflow across different climatic conditions within the Medjerda catchment and maintains satisfactory performance when calibrated over a non-stationary climate period. The findings indicate a continuous decline in projected runoff and suggest a significant increase in extreme drought events. Full article
Show Figures

Figure 1

17 pages, 1176 KiB  
Article
Diet of the Common Eagle Ray, Myliobatis aquila (Linnaeus, 1758) in the Northern Adriatic Sea
by Lovrenc Lipej, Riccardo Battistella, Borut Mavrič and Danijel Ivajnšič
Fishes 2025, 10(7), 311; https://doi.org/10.3390/fishes10070311 - 1 Jul 2025
Viewed by 434
Abstract
We studied the feeding habits of the common eagle ray (Myliobatis aquila) in the shallow northern Adriatic Sea. Altogether we analysed the contents of 122 stomachs of specimens caught as by-catch in the Gulf of Trieste and along the west Istrian [...] Read more.
We studied the feeding habits of the common eagle ray (Myliobatis aquila) in the shallow northern Adriatic Sea. Altogether we analysed the contents of 122 stomachs of specimens caught as by-catch in the Gulf of Trieste and along the west Istrian coast. Shelled molluscs (N% = 75.17), mainly bivalves and gastropods, were the most prominent prey categories, while crustaceans, sipunculids, echinoderms and polychaets (N% < 10) represented considerably smaller numbers. With increasing size (and age) the eagle rays tend to become more experienced in preying molluscs and specialized to this prey category. The obtained results are in general in agreement with the limited existing reports on the diet of the common eagle ray in the Mediterranean Sea and adjacent areas. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

19 pages, 7377 KiB  
Article
An SWE-FEM Model with Application to Resonant Periods and Tide Components in the Western Mediterranean Sea Region
by Kostas Belibassakis and Vincent Rey
J. Mar. Sci. Eng. 2025, 13(7), 1286; https://doi.org/10.3390/jmse13071286 - 30 Jun 2025
Viewed by 494
Abstract
A FEM model of Shallow Wave Equations (SWE-FEM) is studied, taking into account the variable bathymetry of semi-enclosed sea basins. The model, with a spatially varying Coriolis term, is implemented for the description of combined refraction–diffraction effects, from which the eigenperiods and eigenmodes [...] Read more.
A FEM model of Shallow Wave Equations (SWE-FEM) is studied, taking into account the variable bathymetry of semi-enclosed sea basins. The model, with a spatially varying Coriolis term, is implemented for the description of combined refraction–diffraction effects, from which the eigenperiods and eigenmodes of extended geographical sea areas are calculated by means of a low-order FEM scheme. The model is applied to the western Mediterranean basin, illustrating its versatility to easily include the effects of geographical characteristics like islands and other coastal features. The calculated resonant frequencies and modes depend on the domain size and characteristics as well as the location of the open sea boundary, and it is shown to provide results compatible with tide measurements at several stations in the coastal region of France. The calculation of the natural oscillation modes in the western Mediterranean basin, bounded by open boundaries at the Strait of Gibraltar and the Strait of Sicily, reveals a natural period of around 6 h corresponding to the quarter-diurnal tidal components, which are stationary and of roughly constant amplitude on the northern coast of the basin and on the west coast of Corsica (France). On the east coast of Corsica, on the other hand, these components are of very low amplitude and in phase opposition. The semi-diurnal tidal components observed on the same tide gauges north of the basin and west of Corsica are also quasi-stationary although they are not resonant. Resonant oscillations are also observed at lower periods, especially at a period of around 3 h at the Sète station. This period corresponds to a higher-order natural mode of the western Mediterranean basin, but this resonance seems to be essentially linked to the presence of the Gulf of Lion, whose shallowness and the width of the shelf at this point induce a resonance. Other oscillations are also observed at lower periods (T = 1.5 h at station Fos-sur-Mer, T = 45 min in the Toulon harbour station), due to more local forcing. Full article
(This article belongs to the Special Issue New Developments of Ocean Wind, Wave and Tidal Energy)
Show Figures

Figure 1

21 pages, 9386 KiB  
Article
Comparative Analysis of Non-Negative Matrix Factorization in Fire Susceptibility Mapping: A Case Study of Semi-Mediterranean and Semi-Arid Regions
by Iraj Rahimi, Lia Duarte, Wafa Barkhoda and Ana Cláudia Teodoro
Land 2025, 14(7), 1334; https://doi.org/10.3390/land14071334 - 23 Jun 2025
Viewed by 457
Abstract
Semi-Mediterranean (SM) and semi-arid (SA) regions, exemplified by the Kurdo-Zagrosian forests in western Iran and northern Iraq, have experienced frequent wildfires in recent years. This study proposes a modified Non-Negative Matrix Factorization (NMF) method for detecting fire-prone areas using satellite-derived data in SM [...] Read more.
Semi-Mediterranean (SM) and semi-arid (SA) regions, exemplified by the Kurdo-Zagrosian forests in western Iran and northern Iraq, have experienced frequent wildfires in recent years. This study proposes a modified Non-Negative Matrix Factorization (NMF) method for detecting fire-prone areas using satellite-derived data in SM and SA forests. The performance of the proposed method was then compared with three other already proposed NMF methods: principal component analysis (PCA), K-means, and IsoData. NMF is a factorization method renowned for performing dimensionality reduction and feature extraction. It imposes non-negativity constraints on factor matrices, enhancing interpretability and suitability for analyzing real-world datasets. Sentinel-2 imagery, the Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), and the Zagros Grass Index (ZGI) from 2020 were employed as inputs and validated against a post-2020 burned area derived from the Normalized Burned Ratio (NBR) index. The results demonstrate NMF’s effectiveness in identifying fire-prone areas across large geographic extents typical of SM and SA regions. The results also revealed that when the elevation was included, NMF_L1/2-Sparsity offered the best outcome among the used NMF methods. In contrast, the proposed NMF method provided the best results when only Sentinel-2 bands and ZGI were used. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

21 pages, 4259 KiB  
Article
Assessing Climate Risk in Viticulture: A Localized Index for the Semi-Arid and Mediterranean Regions of Chile
by Katherine Cuevas-Zárate, Donna Cortez, Jorge Soto and Manuel Paneque
Agriculture 2025, 15(12), 1322; https://doi.org/10.3390/agriculture15121322 - 19 Jun 2025
Viewed by 588
Abstract
Viticulture contributes significantly to Chile’s exports and GDP. However, the development and productivity of grapevines is threatened by climate change. Grapevines are grown in diverse regions; thus, adaptable tools for evaluating climate risk at the local level are required. In this study, a [...] Read more.
Viticulture contributes significantly to Chile’s exports and GDP. However, the development and productivity of grapevines is threatened by climate change. Grapevines are grown in diverse regions; thus, adaptable tools for evaluating climate risk at the local level are required. In this study, a local climate risk index (LCRI) was developed to assess the vulnerability of Chilean viticulture (wine, table, and pisco grapes) in the current (2017–2024) and future (2046–2065) periods. Various components, including exposure, sensitivity, and adaptive and response capacities, were analyzed using different indicators based on municipal-level information. The results for the current period indicated that most municipalities were at medium risk, whereas future projections showed a marked increase in climate risk, principally due to changes in climate suitability. In the current period, the highest LCRI values were observed in semi-arid and mediterranean zones, particularly in the northern regions of Atacama and Coquimbo; in the future period, this situation intensified. In contrast, the lowest values in the current period occurred in the Maule region and further south, where the climate transitions from mediterranean to temperate conditions, and in the future period, valley and mountainous areas presented improvements in the index. Some municipalities showed improvement or stability with local adaptation efforts. The results highlight the urgent need for region-specific adaptation policies that prioritize water management, infrastructure, and increased capacities. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

17 pages, 1484 KiB  
Article
Genotypic Variation in Drought-Season Stress Responses Among Traditional Fig (Ficus carica L.) Varieties from Mediterranean Transition Zones of Northern Morocco
by Mohammed Elmeknassia, Abdelali Boussakouran, Rachid Boulfia and Yahia Rharrabti
Plants 2025, 14(12), 1879; https://doi.org/10.3390/plants14121879 - 19 Jun 2025
Viewed by 502
Abstract
The fig (Ficus carica L.) is one of the oldest fruit crops cultivated in arid and semi-arid regions, valued for both its nutritional and economic importance; thus, ensuring sustainable fig production under climate change conditions is very important, as water scarcity increasingly [...] Read more.
The fig (Ficus carica L.) is one of the oldest fruit crops cultivated in arid and semi-arid regions, valued for both its nutritional and economic importance; thus, ensuring sustainable fig production under climate change conditions is very important, as water scarcity increasingly affects fruit quality and production. Selecting and preserving resilient varieties among traditional varieties, representing centuries of local adaptation, is a vital strategy for addressing the challenges driven by climate change. In this context, this study assessed the physiological and biochemical parameters of the leaves of four fig landrace varieties (Fassi, Ghouddane, Nabout, and Ounq Hmam) grown in three different Mediterranean transitional zones of northern Morocco (Chefchaouen, Taounate, and Taza), during a single timepoint assessment conducted in late August 2023. The combined effects of location, variety, and their interactions on chlorophyll fluorescence (Fv/Fm), Soil Plant Analysis Development (SPAD) index, total chlorophyll content (ChlT), canopy temperature depression (CTD), proline content, protein content, total soluble sugar (TSS), hydrogen peroxide (H2O2), and malondialdehyde (MDA) were determined. Significant variation was observed among varieties and locations, with the location effect being observed for proline content, protein content, TSS, CTD, and ChlT, while variety had a stronger influence on SPAD, Fv/Fm, H2O2, and MDA. The results showed that Nabout and Ounq Hmam varieties had the greatest photosynthetic efficiency, as indicated by their elevated SPAD index, ChlT, and Fv/Fm values, and showed lower sensitivity to oxidative stress (low proline content, H2O2, and MDA levels). In contrast, Ghouddane and Fassi displayed better stress tolerance, presenting higher levels of oxidative stress markers. Among locations, Chefchaouen showed the highest protein, TSS, H2O2, and MDA levels, reflecting active stress tolerance mechanisms. These variations were confirmed by principal component analysis, which revealed a clear separation between photosynthetically efficient varieties (Nabout and Ounq Hmam) and stress-tolerant varieties (Ghouddane and Fassi). More than a conventional crop physiology study, this work highlights the adaptive strategies in traditional Mediterranean fig germplasm that could be crucial for climate change adaptation. While our findings are limited to a single season, they offer valuable, practical insights that can inform grower decision-making in the near term, especially when considered alongside local knowledge and additional research. Full article
(This article belongs to the Special Issue Ecophysiology and Quality of Crops)
Show Figures

Figure 1

16 pages, 2668 KiB  
Article
How Do Natural Ventilation Strategies Affect Thermal Comfort in Educational Buildings? A Comparative Analysis in the Mediterranean Climate
by Rocío Escandón, Simone Ferrari, Riccardo Cardelli, Teresa Blázquez and Rafael Suárez
Appl. Sci. 2025, 15(12), 6606; https://doi.org/10.3390/app15126606 - 12 Jun 2025
Viewed by 374
Abstract
The COVID-19 pandemic highlighted the importance of indoor air quality in buildings for the well-being of their occupants. In long-term occupancy buildings such as schools, where environmental conditions also impact academic performance, this importance was heightened. Despite the significant changes in ventilation practices [...] Read more.
The COVID-19 pandemic highlighted the importance of indoor air quality in buildings for the well-being of their occupants. In long-term occupancy buildings such as schools, where environmental conditions also impact academic performance, this importance was heightened. Despite the significant changes in ventilation practices resulting from the pandemic, recommendations have varied across different countries. This study aimed to provide a comparative analysis of the environmental conditions and air quality in classrooms in southern Spain and northern Italy (representative Mediterranean locations with different post-pandemic heating and natural ventilation approaches). Data measured on-site during periods with similar outdoor conditions were analysed to ascertain how ventilation strategies influence thermal comfort and indoor air quality. According to the results, during mild periods, high-intensity ventilation ensures excellent indoor air quality results based on CO2 concentrations, without compromising thermal comfort. Nevertheless, ventilation rates should be controlled in more adverse climate conditions to avoid negative effects on thermal comfort. Full article
(This article belongs to the Special Issue Air Quality in Indoor Environments, 3rd Edition)
Show Figures

Figure 1

Back to TopTop