Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (23)

Search Parameters:
Keywords = NiCuMo/SiO2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2805 KiB  
Article
Numerical Investigation of Perovskite/Silicon Heterojunction Tandem Solar Cell with a Dual-Functional Layer of MoOX
by Tian-Yu Lu, Jin Wang and Xiao-Dong Feng
Materials 2025, 18(7), 1438; https://doi.org/10.3390/ma18071438 - 24 Mar 2025
Viewed by 546
Abstract
This study proposed a novel perovskite/silicon heterojunction (SHJ) tandem device structure without an interlayer, represented as ITO/NiO/perovskite/SnO2/MoOX/i-a-Si:H/n-c-Si/i-a-Si:H/n-a-Si:H/Ag, which was investigated by Silvaco TCAD software. The recombination layer in this structure comprises the carrier transport layers of SnO2 and [...] Read more.
This study proposed a novel perovskite/silicon heterojunction (SHJ) tandem device structure without an interlayer, represented as ITO/NiO/perovskite/SnO2/MoOX/i-a-Si:H/n-c-Si/i-a-Si:H/n-a-Si:H/Ag, which was investigated by Silvaco TCAD software. The recombination layer in this structure comprises the carrier transport layers of SnO2 and MoOX, where MoOX serves dual functions, acting as the emitter for the SHJ bottom cell and as part of the recombination layer in the tandem cell. First, the effects of different recombination layers are analyzed, and the SnO2/MoOX layer demonstrates the best performance. Then, we systematically investigated the impact of the carrier concentration, interface defect density, thicknesses of the SnO2/MoOX layer, different hole transport layers (HTLs) for the top cell, absorption layer thicknesses, and perovskite defect density on device performance. The optimal carrier concentration in the recombination layer should exceed 5 × 1019 cm−3, the interface defect density should be below 1 × 1016 cm−2, and the thicknesses of SnO2/MoOX should be kept at 20 nm/20 nm. CuSCN has been found to be the optimal HTL for the top cell. When the silicon absorption layer is 200 μm, the perovskite layer thickness is 470 nm, and the defect density of the perovskite layer is 1011 cm−3, the planar structure can achieve the best performance of 32.56%. Finally, we studied the effect of surface texturing on the SHJ bottom cell, achieving a power conversion efficiency of 35.31% for the tandem cell. Our simulation results suggest that the simplified perovskite/SHJ tandem solar cell with a dual-functional MoOX layer has the potential to provide a viable pathway for developing high-efficiency tandem devices. Full article
(This article belongs to the Special Issue Recent Advances in Semiconductors for Solar Cell Devices)
Show Figures

Figure 1

23 pages, 23000 KiB  
Article
Spatial Distribution of Physical and Chemical Properties of Deep Sea Water in Xisha, South China Sea
by Xiaochen Fang, Mei Chen, Dongyu Lu, Xudong Guo, Fei Tian, Xuelin Li, Lei Huang, Chunsheng Ji, Changfa Xia, Mianyu Huang, Yanmei Wang, Xiaoyu He, Lieyu Tian and Huiyin Zhang
Water 2024, 16(20), 2988; https://doi.org/10.3390/w16202988 - 19 Oct 2024
Viewed by 1427
Abstract
Deep sea water (DSW) is a globally utilized source of renewable energy and other resources. To understand the characteristics of DSW resources in the South China Sea, in July 2022, the Guangzhou Marine Geological Survey (GMGS) investigated temperature, salinity, pH, dissolved oxygen (DO), [...] Read more.
Deep sea water (DSW) is a globally utilized source of renewable energy and other resources. To understand the characteristics of DSW resources in the South China Sea, in July 2022, the Guangzhou Marine Geological Survey (GMGS) investigated temperature, salinity, pH, dissolved oxygen (DO), inorganic salts (DIN, PO43−-P, and SiO3-Si), heavy metals (Hg, Pb, As, and Cd), trace elements (Cu, Zn, Fe, Mn, Ni, Se, and Mo), and other related indicators. The results of this investigation elucidate the horizontal and vertical changes in the physical and chemical properties of deep sea water in the Xisha Sea. The surface seawater quality in Xisha was found to be excellent and to meet first-class seawater survey standards. However, the concentrations of various nutrient salts in the surface layer were relatively low. As the seawater depth increased, different trace elements and heavy metals exhibited variations, and the concentrations of various nutrients also gradually increased. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

20 pages, 12378 KiB  
Article
Petrogenesis and Metallogenesis of Late Cretaceous Adakites in the Nuri Large Cu-W-Mo Deposit, Tibet, China: Constraints from Geochronology, Geochemistry, and Hf Isotopes
by Zhishan Wu, Yiyun Wang, Hongzhao Shi, Bin Chen, Yong Huang, Qingan Du, Wenqing Chen, Liwei Tang and Yun Bai
Minerals 2024, 14(6), 565; https://doi.org/10.3390/min14060565 - 29 May 2024
Viewed by 1036
Abstract
The Gangdese metallogenic belt in Tibet is an important polymetallic metallogenic belt formed during the subduction of the Neo-Tethys Ocean and subsequent India–Asia collision. Adakitic rocks are widely distributed in this belt and are considered to be closely related to porphyry–skarn Cu-Mo polymetallic [...] Read more.
The Gangdese metallogenic belt in Tibet is an important polymetallic metallogenic belt formed during the subduction of the Neo-Tethys Ocean and subsequent India–Asia collision. Adakitic rocks are widely distributed in this belt and are considered to be closely related to porphyry–skarn Cu-Mo polymetallic mineralization. However, the petrogenesis and geodynamic setting of the Late Cretaceous adakites in the Gangdese belt remain controversial. In this study, we focus on the quartz diorite in the Nuri Cu-W-Mo deposit along the southern margin of the eastern Gangdese belt. LA-ICP-MS zircon U-Pb dating yields a Late Cretaceous age of 93.6 ± 0.4 Ma for the quartz diorite. Whole-rock geochemistry shows that the quartz diorite possesses typical adakitic signatures, with high SiO2, Al2O3, and Sr contents, but low Y and Yb contents. The relatively low K2O content and high MgO, Cr, and Ni contents, as well as the positive zircon εHf(t) values (+6.58 to +14.52), suggest that the adakites were derived from the partial melting of the subducted Neo-Tethys oceanic slab, with subsequent interaction with the overlying mantle wedge. The Late Cretaceous magmatic flare-up and coeval high-temperature granulite-facies metamorphism in the Gangdese belt were likely triggered by Neo-Tethys mid-ocean ridge subduction. The widespread occurrence of Late Cretaceous adakitic intrusions and associated Cu mineralization in the Nuri ore district indicate a strong tectono-magmatic-metallogenic event related to the Neo-Tethys subduction during this period. This study provides new insights into the petrogenesis and geodynamic setting of the Late Cretaceous adakites in the Gangdese belt, and has important implications for Cu polymetallic deposit exploration in this region. Full article
Show Figures

Figure 1

21 pages, 3801 KiB  
Article
Chemostratigraphic Approach to the Study of Resources’ Deposit in the Upper Silesian Coal Basin (Poland)
by Ewa Krzeszowska
Energies 2024, 17(3), 642; https://doi.org/10.3390/en17030642 - 29 Jan 2024
Cited by 2 | Viewed by 1344
Abstract
The Upper Silesian Coal Basin (USCB), located in southern Poland, is the major coal basin in Poland, and all technological types of hard coal, including coking coal, are exploited. It is also an area of high potential for coal-bed methane (CBM). Despite the [...] Read more.
The Upper Silesian Coal Basin (USCB), located in southern Poland, is the major coal basin in Poland, and all technological types of hard coal, including coking coal, are exploited. It is also an area of high potential for coal-bed methane (CBM). Despite the increasing availability of alternative energy sources globally, it is a fact that the use of fossil fuels will remain necessary for the next few decades. Therefore, research on coal-bearing formations using modern research methods is still very important. The application of geochemistry and chemostratigraphy in reservoir characterization has become increasingly common in recent years. This paper presents the possibility of applying chemostratigraphic techniques to the study of the Carboniferous coal-bearing succession of the Upper Silesian Coal Basin. The material studied comes from 121 core samples (depth 481–1298 m), representing the Mudstone Series (Westphalian A, B). Major oxide concentrations of Al2O3, SiO2, Fe2O3, P2O5, K2O, MgO, CaO, Na2O, K2O, MnO, TiO2, and Cr2O3 were obtained using X-ray fluorescence (XRF) spectrometry. Trace elements were analyzed using inductively coupled plasma mass spectrometry (ICP/MS). The geochemical record from the Mudstone Series shows changes in the concentration of major elements and selected trace elements, leading to the identification of four chemostratigraphic units. These units differ primarily in the content of Fe, Ca, Mg, Mn, and P as well as the concentration of Zr, Hf, Nb, Ta, and Ti. The study also discusses quartz origin (based on SiO2 and TiO2), sediment provenance and source-area rock compositions (based on Al2O3/ TiO2, TiO2/Zr, and La/Th), and paleoredox conditions (based on V/Cr, Ni/Co, U/Th, (Cu+Mo)/Zn, and Sr/Ba) for the chemostratigraphic units. Chemostratigraphy was used for the first time in the study of the Carboniferous coal-bearing series of the USCB, concluding that it can be used as an effective stratigraphic tool and provide new information on the possibility of correlating barren sequences of the coal-bearing succession. Full article
Show Figures

Figure 1

16 pages, 3647 KiB  
Article
Depolymerization of Pine Wood Organosolv Lignin in Ethanol Medium over NiCu/SiO2 and NiCuMo/SiO2 Catalysts: Impact of Temperature and Catalyst Composition
by Angelina V. Miroshnikova, Sergey V. Baryshnikov, Yuriy N. Malyar, Xiaomin Li, Maria V. Alekseeva, Boris N. Kuznetsov and Oxana P. Taran
Polymers 2023, 15(24), 4722; https://doi.org/10.3390/polym15244722 - 15 Dec 2023
Cited by 3 | Viewed by 1887
Abstract
The process of thermocatalytic conversion of pine ethanol lignin in supercritical ethanol was studied over NiCu/SiO2 and NiCuMo/SiO2 catalysts bearing 8.8 and 11.7 wt.% of Mo. The structure and composition of ethanol lignin and the products of its thermocatalytic conversion were [...] Read more.
The process of thermocatalytic conversion of pine ethanol lignin in supercritical ethanol was studied over NiCu/SiO2 and NiCuMo/SiO2 catalysts bearing 8.8 and 11.7 wt.% of Mo. The structure and composition of ethanol lignin and the products of its thermocatalytic conversion were characterized via 2D-HSQC NMR spectroscopy, GC-MC. The main aromatic monomers among the liquid products of ethanol lignin conversion were alkyl derivatives of guaiacol (propyl guaiacol, ethyl guaiacol and methyl guaiacol). The total of the monomers yield in this case was 12.1 wt.%. The temperature elevation up to 350 °C led to a slight decrease in the yield (to 11.8 wt.%) and a change in the composition of monomeric compounds. Alkyl derivatives of pyrocatechol, phenol and benzene were observed to form due to deoxygenation processes. The ratio of the yields of these compounds depended on the catalyst, namely, on the content of Mo in the catalyst composition. Thus, the distribution of monomeric compounds used in various industries can be controlled by varying the catalyst composition and the process conditions. Full article
(This article belongs to the Special Issue Natural Polymer Materials: Cellulose, Lignin and Chitosan)
Show Figures

Figure 1

27 pages, 22770 KiB  
Article
Ore Genesis and the Magmatism of the Yuhaixi Mo(Cu) Deposit in Eastern Tianshan, NW China: Constraints from Geology, Geochemistry, Zircon U-Pb and Molybdenite Re-Os Dating
by Di Wang, Chunji Xue, Yun Zhao, Chao Li, Binbin Xi, Yang Yang, Qinglei Tian, Xunshan Kang and Xing Wu
Minerals 2023, 13(11), 1368; https://doi.org/10.3390/min13111368 - 26 Oct 2023
Viewed by 1513
Abstract
The Yuhaixi Mo(Cu) deposit is a new discovery in the eastern section of the Dananhu-Tousuquan island arc, Eastern Tianshan. However, the genesis of the Yuhaixi Mo(Cu) deposit is still not fully understood. The Yuhaixi intrusion is composed of monzonitic granites, diorites, granites, and [...] Read more.
The Yuhaixi Mo(Cu) deposit is a new discovery in the eastern section of the Dananhu-Tousuquan island arc, Eastern Tianshan. However, the genesis of the Yuhaixi Mo(Cu) deposit is still not fully understood. The Yuhaixi intrusion is composed of monzonitic granites, diorites, granites, and gabbro dikes, among which disseminated or veinlet Mo and Cu mineralization is mainly hosted by the monzonitic granites. The LA-ICP-MS zircon U-Pb dating yields emplacement ages of 359.4 ± 1.6 Ma for the monzonitic granite, 298.8 ± 1.8 Ma for the diorite, and 307.0 ± 2.3 Ma for the granite. The Re-Os dating of molybdenite hosted by monzonitic granite yields a well-constrained 187Re-187Os isochron age of 354.1 ± 6.8 Ma (MSWD = 1.7) with a weighted average age of 344.5 ± 3.1 Ma. The Mo mineralization is closely associated with the Yuhaixi monzonitic granite. The Yuhaixi monzonitic granite rocks are characterized by high silica (SiO2 > 70 wt.%), low MgO (0.23–0.36), Ni, Cr contents, and they are enriched in light rare earth elements (LREEs) and large ion lithophile elements (LILEs: e.g., K, Ba, Pb and Sr), and depleted in heavy rare earth elements (HREEs) and high field-strength elements (HFSEs: e.g., Nb, Ta and Ti). They are weak peraluminous and have high εHf(t) (11.37–17.59) and εNd(t) (1.36–7.75) values, and varied initial 87Sr/86Sr (0.7037–0.7128) values. The Yuhaixi post-ore granites exhibit similar geochemical and isotopic signatures to the Yuhaixi monzonitic granite. These characteristics suggest that the Yuhaixi felsic rocks are likely sourced from the partial melting of the juvenile lower crust. The Yuhaixi diorite has low SiO2, and K2O contents, relatively high Na2O, MgO (Mg# = 45–53) contents, and depletions in HFSE (e.g., Nb, Ta, and Ti). These geochemical features, coupled with isotopic data such as low initial 87Sr/86Sr (≤0.7043), high εNd(t) (2.5 to 3.0) and εHf(t) (≥11.6) values, and young Hf model ages, suggest that their parental magmas possibly originated from the partial melting of the depleted lithospheric mantle that was metasomatized by hydrous melts or fluids from the subducting oceanic plate. Integrating our new results with previous works on the Dananhu-Tousuquan island arc belt, we suggest that the Yuhaixi Mo(Cu)deposit is likely sourced from the juvenile lower crust, which was formed in an arc setting, where the bipolar subduction of the North Tianshan oceanic slab forms the Dananhu Tousuquan belt to the north and the Aqishan-Yamansu belt to the south. The eastern section of the Dananhu-Tousuquan island arc is a promising target for late Paleozoic porphyry Mo(Cu) deposits. Full article
Show Figures

Figure 1

19 pages, 33866 KiB  
Article
Highly Efficient Catalytic Hydrodeoxygenation for Aliphatic Acid to Liquid Alkane: The Role of Molybdenum
by Jiangtao Li, Depeng Han and Shuqian Xia
Catalysts 2023, 13(10), 1329; https://doi.org/10.3390/catal13101329 - 28 Sep 2023
Cited by 2 | Viewed by 1995
Abstract
A series of NiM/SiO2 (M = Ce, Co, Cu, Fe, Sn, Zr, Mo) catalysts are prepared and used in the selective hydrodeoxygenation (HDO) of aliphatic acid to produce alkanes with the same number of carbon atoms as the reactant (alkane-Cx). The results [...] Read more.
A series of NiM/SiO2 (M = Ce, Co, Cu, Fe, Sn, Zr, Mo) catalysts are prepared and used in the selective hydrodeoxygenation (HDO) of aliphatic acid to produce alkanes with the same number of carbon atoms as the reactant (alkane-Cx). The results indicate the introduction of Mo promotes the hydrodehydration of aliphatic alcohol and suppresses the decarbonylation of aliphatic aldehyde. The selective to alkane-Cx is more than 70% in the case of a complete conversion of aliphatic acid. A mechanism study proves that, due to the higher electronegativity of Mo, electrons transfer from Ni to Mo easily and facilitate the reduction of Mo, and the partially reduced Mo species is favorable for the hydrodehydration of aliphatic alcohol. Meanwhile, the adsorption of alcohol on Mo is more favorable than on the Ni site, and the hydrogen bond between hydroxyl hydrogen and O atoms on the catalyst improves the adsorption stability of aliphatic alcohol. Further COHP analysis indicates that the C-OH bond was activated when alcohol was adsorbed on the Ni5/MoO2 surface, which promoted the hydrodehydration of aliphatic alcohols and improved carbon atom utilization. Full article
(This article belongs to the Special Issue Advanced Materials for Application in Catalysis)
Show Figures

Graphical abstract

19 pages, 3133 KiB  
Article
Reductive Catalytic Fractionation of Abies Wood into Bioliquids and Cellulose with Hydrogen in an Ethanol Medium over NiCuMo/SiO2 Catalyst
by Boris N. Kuznetsov, Angelina V. Miroshnikova, Aleksandr S. Kazachenko, Sergey V. Baryshnikov, Yuriy N. Malyar, Vadim A. Yakovlev, Andrey M. Skripnikov, Olga Yu. Fetisova, Yong Xu and Oxana P. Taran
Catalysts 2023, 13(2), 413; https://doi.org/10.3390/catal13020413 - 15 Feb 2023
Cited by 5 | Viewed by 2258
Abstract
Noble metal-based catalysts are widely used to intensify the processes of reductive fractionation of lignocellulose biomass. In the present investigation, we proposed for the first time using the inexpensive NiCuMo/SiO2 catalyst to replace Ru-, Pt-, and Pd-containing catalysts in the process of [...] Read more.
Noble metal-based catalysts are widely used to intensify the processes of reductive fractionation of lignocellulose biomass. In the present investigation, we proposed for the first time using the inexpensive NiCuMo/SiO2 catalyst to replace Ru-, Pt-, and Pd-containing catalysts in the process of reductive fractionation of abies wood into bioliquids and cellulose products. The optimal conditions of abies wood hydrogenation were selected to provide the effective depolymerization of wood lignin (250 °C, 3 h, initial H2 pressure 4 MPa). The composition and structure of the liquid and solid products of wood hydrogenation were established. The NiCuMo/SiO2 catalyst increases the yield of bioliquids (from 36 to 42 wt%) and the content of alkyl derivatives of methoxyphenols, predominantly 4-propylguaiacol and 4-propanolguaiacol. A decrease in the molecular mass and polydispersity (from 1870 and 3.01 to 1370 Da and 2.66, respectively) of the liquid products and a threefold increase (from 9.7 to 36.8 wt%) in the contents of monomer and dimer phenol compounds were observed in the presence of the catalyst. The solid product of catalytic hydrogenation of abies wood contains up to 73.2 wt% of cellulose. The composition and structure of the solid product were established using IRS, XRD, elemental and chemical analysis. The data obtained show that the catalyst NiCuMo/SiO2 can successfully replace noble metal catalysts in the process of abies wood reductive fractionation into bioliquids and cellulose. Full article
Show Figures

Figure 1

11 pages, 2015 KiB  
Article
Control of Copper Content in Flash Smelting Slag and the Recovery of Valuable Metals from Slag—A Thermodynamic Consideration
by Sui Xie, Xinhua Yuan, Fupeng Liu and Baojun Zhao
Metals 2023, 13(1), 153; https://doi.org/10.3390/met13010153 - 11 Jan 2023
Cited by 8 | Viewed by 4827
Abstract
To determine slag properties and the factors influencing these properties for optimization of operating conditions in the copper flash smelting process, the composition and microstructures of the quenched smelting and converting slags have been analyzed. Thermodynamic software FactSage 8.2 has been used to [...] Read more.
To determine slag properties and the factors influencing these properties for optimization of operating conditions in the copper flash smelting process, the composition and microstructures of the quenched smelting and converting slags have been analyzed. Thermodynamic software FactSage 8.2 has been used to investigate the effects of matte grade, SO2 partial pressure, and the Fe/SiO2 ratio on the liquidus temperature and the copper content of the smelting slag. The possibility to recover valuable metals from the smelting and converting slags through pyrometallurgical reduction by carbon is also discussed. It was found that the flash smelting slag temperature is usually higher than its liquidus temperature and the copper (1.2% Cu) is mainly present in the slag as dissolved copper. In the copper flash smelting process, the copper content in the slag can be decreased by decreasing the Fe/SiO2 ratio and temperature. In pyrometallurgical slag reduction, most Cu, Mo, and Ni can be recovered as an alloy. The conditions of recovery such as the ratio of smelting slag to converting slag, temperature, and reduction extent have been discussed. Full article
(This article belongs to the Special Issue Fundamentals of Advanced Pyrometallurgy)
Show Figures

Figure 1

33 pages, 7019 KiB  
Article
Petrogenesis and Tectonic Implications of Late Carboniferous Intrusions in the Tuwu-Yandong Porphyry Cu Belt (NW China): Constraints from Geochronology, Geochemistry and Sr–Nd–Hf Isotopes
by Weicai An, Chunji Xue, Yun Zhao, Chao Li, Dengfeng Xu and Bo Chen
Minerals 2022, 12(12), 1573; https://doi.org/10.3390/min12121573 - 7 Dec 2022
Cited by 3 | Viewed by 2189
Abstract
The Tuwu-Yandong porphyry Cu belt is located on the southern margin of the Dananhu island arc in eastern Tianshan, constituting the largest Cu metallogenic belt in Northwest China. Two episodes (~334 Ma and ~317 Ma) of porphyry Cu-Mo mineralization in the belt have [...] Read more.
The Tuwu-Yandong porphyry Cu belt is located on the southern margin of the Dananhu island arc in eastern Tianshan, constituting the largest Cu metallogenic belt in Northwest China. Two episodes (~334 Ma and ~317 Ma) of porphyry Cu-Mo mineralization in the belt have been recognized, associated with Early and Late Carboniferous felsic intrusions, respectively. The Carboniferous intrusions, therefore, provide a unique opportunity to investigate tectono-magmatic-metallogenic evolution of the belt. New LA–ICP–MS zircon U–Pb dating indicates that the mineralization-related and post-mineralization intrusions (granodiorite porphyry, gabbro, and granite porphyry) were formed at 321.8 ± 3.1 Ma, 313.5 ± 1.2 Ma, and 309.8 ± 2.5 Ma, respectively. The zircon trace element shows that the granodiorite porphyry (Ce4+/Ce3+ ratios, avg. 129, median = 112, n = 15) was likely derived from a more oxidized (and hydrous) magma source than that of the gabbro (Ce4+/Ce3+ ratios, avg. 74, median = 40, n = 15) and granite porphyry (Ce4+/Ce3+ ratios, avg. 100, median = 91, n = 15), being favorable for porphyry copper mineralization. The granodiorite porphyry shows an adakitic affinity (e.g., high Sr/Y ratios and low Y contents) and has high εNd(t) (6.4–6.7), εHf(t) (11.4–14.3), and Mg# values (47.4–58.1) and low (87Sr/86Sr)i (0.703804–0.703953), suggesting that the melt was derived from partial melting of a subducted oceanic slab followed by mantle peridotite interaction. The gabbro exhibits higher Al2O3 (16.5–17.4 wt.%), Cr (107–172 ppm), and Ni (37–77 ppm) contents and εNd(t) (6.6–7.2), εHf(t) (11.6–15.9), and Mg # (53.3–59.9) values, while it has lower (87Sr/86Sr)i values (0.703681–0.703882) than the granodiorite porphyry, indicating a depleted mantle source. The granite porphyry exhibits an affinity with non-fractionated I-type granites and possesses higher SiO2 (71.1–72.0 wt.%) contents, lower but positive εNd(t) (4.8–5.2), εHf(t) (10.3–13.0), and Mg # (38.7–41.0) values, and higher (87Sr/86Sr)i (0.704544–0.704998) than the granodiorite porphyry and gabbro, together with young Nd and Hf model ages, suggesting that the parental magmas originated from the partial melting of a juvenile lower crust. The enrichment in LREEs and LILEs (e.g., Ba, U, K and Sr) and depletion in HFSEs (e.g., Nb, Ta, and Ti) indicate that these intrusive rocks formed in the subduction zone. With the integration of previous studies, it can be inferred that the northward flat subduction of the Kangguer ocean slab at ca. 335–315 Ma caused the formation of the adakites and associated porphyry Cu mineralization in the Tuwu-Yandong belt. After the prolonged flat subduction, slab rollback may have occurred at ca. 314–310 Ma, followed by a “quiet period” before the final closure of the ancient Tianshan Ocean along the Kangguer Fault in this belt. Full article
Show Figures

Figure 1

20 pages, 4261 KiB  
Article
National-Scale Geochemical Baseline of 69 Elements in Laos Stream Sediments
by Wei Wang, Xueqiu Wang, Bimin Zhang, Qiang Wang, Dongsheng Liu, Zhixuan Han, Sounthone LAOLO, Phomsylalai SOUKSAN, Hanliang Liu, Jian Zhou, Xinbin Cheng and Lanshi Nie
Minerals 2022, 12(11), 1360; https://doi.org/10.3390/min12111360 - 26 Oct 2022
Cited by 5 | Viewed by 4057
Abstract
Geochemical baselines are crucial to explore mineral resources and monitor environmental changes. This study presents the first Laos geochemical baseline values of 69 elements. The National-scale Geochemical Mapping Project of Lao People’s Democratic Republic conducted comprehensive stream sediment sampling across Laos, yielding 2079 [...] Read more.
Geochemical baselines are crucial to explore mineral resources and monitor environmental changes. This study presents the first Laos geochemical baseline values of 69 elements. The National-scale Geochemical Mapping Project of Lao People’s Democratic Republic conducted comprehensive stream sediment sampling across Laos, yielding 2079 samples collected at 1 sample/100 km2, and 69 elements were analyzed. Based on the results of LGB value, R-mode factor analysis, and scatter plot analysis, this paper analyzes the relationship between the 69 elements and the geological background, mineralization, hypergene processes and human activities in the study area. The median values of element contents related to the average crustal values were: As, B, Br, Cs, Hf, Li, N, Pb, Sb, Zr, and SiO2, >1.3 times; Ba, Be, Cl, Co, Cr, Cu, F, Ga, Mn, Mo, Ni, S, Sc, Sr, Ti, Tl, V, Zn, Eu, Al2O3, Tot.Fe2O3, MgO, CaO, and Na2O, <0.7 times; and Ag, Au, Bi, Cd, Ge, Hg, I, In, Nb, P, Rb, Se, Sn, Ta, Th, U, W, Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and K2O, 0.7–1.3 times. R-mode factor analysis based on principal component analysis and varimax rotation showed that they fall into 12 factors related to bedrock, (rare earth, ferrum-group, and major Al2O3 and K2O elements; mineralization–Au, Sb, and As) and farming activities–N, Br, S, and C). This study provides basic geochemical data for many fields, including basic geology, mineral exploration, environmental protection and agricultural production in Laos. Full article
(This article belongs to the Special Issue Critical Metal Minerals)
Show Figures

Figure 1

28 pages, 8884 KiB  
Article
Ecofriendly High NIR Reflectance Ceramic Pigments Based on Rare Earths Compared with Classical Chromophores Prepared by DPC Method
by Guillermo Monrós, José A. Badenes and Mario Llusar
Ceramics 2022, 5(4), 614-641; https://doi.org/10.3390/ceramics5040046 - 20 Sep 2022
Cited by 12 | Viewed by 3392
Abstract
A high NIR reflectance ceramic pigments palette based on rare earths except black (La,Li-SrCuSi4O10 blue wesselsite, Pr-CeO2 red-brown cerianite, Mo-Y2Ce2O7 yellow cerate, Sr4Mn2CuO9 black hexagonal perovskite) was compared with [...] Read more.
A high NIR reflectance ceramic pigments palette based on rare earths except black (La,Li-SrCuSi4O10 blue wesselsite, Pr-CeO2 red-brown cerianite, Mo-Y2Ce2O7 yellow cerate, Sr4Mn2CuO9 black hexagonal perovskite) was compared with the coolest traditional pigments palette prepared by dry powder coating (DPC) to obtain “core-shell” pigments (Co-willemite blue, Cr-franklinite brown, Ni,Sb-rutile yellow, Co,Cr-spinel black). Adding CaCO3 as a binder, normalized NIR reflectance at L* = 85, 55 and 30 was compared for yellow, brown and blue-black powders, respectively. Rare earths lack intense absorption bands in the NIR range and therefore its pigments show higher NIR reflectance, but normalized measurements show smaller differences and even have an inverse result for blue pigments. The pigmenting capacity and stability study in different media show that the stability of cool rare earth pigments is lower than that of DPC classical pigments, except in the case of the red-brown Pr-cerianite pigment. Full article
(This article belongs to the Special Issue Advances in Ceramics)
Show Figures

Figure 1

25 pages, 2279 KiB  
Article
Metallurgical Wastes as Resources for Sustainability of the Steel Industry
by Dana-Adriana Iluţiu-Varvara and Claudiu Aciu
Sustainability 2022, 14(9), 5488; https://doi.org/10.3390/su14095488 - 3 May 2022
Cited by 27 | Viewed by 10408
Abstract
The industrial pollution caused by metallurgical waste accumulation has a negative impact on the three environmental factors: soil, air and water. Therefore, the correct management of these wastes would lead to: protection of the environmental factors, the saving of natural resources and sustainability [...] Read more.
The industrial pollution caused by metallurgical waste accumulation has a negative impact on the three environmental factors: soil, air and water. Therefore, the correct management of these wastes would lead to: protection of the environmental factors, the saving of natural resources and sustainability of the steel industry. The purpose of this paper is to assess the chemical and mineralogical compositions of metallurgical wastes landfilled in the Păgida slag dump (Alba County, Romania), for sustainability of the steel industry and metal conservation. The chemical compositions of the two waste samples were analyzed by the XRF (X-ray fluorescence) technique. According to the chemical characterization, magnesium oxide (MgO) has potential to be used as an additional and raw material in the cement industry. The presence of oxides such as CaO, SiO2 FeO and Al2O3 in the compositions of the metallurgical waste samples indicate that they have the potential for use as clinker materials in cement production. The iron and manganese contents from metallurgical wastes can be reused in the iron and steel industry. The presence of V2O5 and TiO2 is connected with the making of stainless steel, and for this reason they have the potential to be reused in the stainless steel industry. The predominant chemical compounds are SiO2, Fetotal, Cao and MgO. The mineralogical compositions were analyzed by the XRD (X-ray diffraction) technique. The mineralogical compounds presenting reuse potential in different domains are Fayalite, Magnetite, Magnesioferrite and Periclase. The mineralogical compounds from metallurgical wastes can be reused as: raw and/or additional materials in the process from which they originate (steelmaking); raw and/or additional materials in road construction and concrete production; pigments in paints; micronutrients in fertilizers; ore of iron, etc. Then, the theoretical assessments of the recovery potentials of the metals were estimated for slag dumps. Copper (Cu), vanadium (V), molybdenum (Mo) and nickel (Ni) have high recovery potential. The total economic value of the recovery potential of metals from slag dumps was assessed to be USD 1175.7440 million. Full article
(This article belongs to the Special Issue Urban and Industrial Solid Waste Management)
Show Figures

Figure 1

14 pages, 7722 KiB  
Article
Effect of CuO and Graphene on PTFE Microfibers: Experimental and Modeling Approaches
by Maroof A. Hegazy, Hend A. Ezzat, Ibrahim S. Yahia, Heba Y. Zahran, Hanan Elhaes, Islam Gomaa and Medhat A. Ibrahim
Polymers 2022, 14(6), 1069; https://doi.org/10.3390/polym14061069 - 8 Mar 2022
Cited by 20 | Viewed by 3258
Abstract
The surface of pure polytetrafluoroethylene (PTFE) microfibers was modified with ZnO and graphene (G), and the composite was studied using ATR-FTIR, XRD, and FESEM. FTIR results showed that two significant bands appeared at 1556 cm−1 and 515 cm−1 as indications for [...] Read more.
The surface of pure polytetrafluoroethylene (PTFE) microfibers was modified with ZnO and graphene (G), and the composite was studied using ATR-FTIR, XRD, and FESEM. FTIR results showed that two significant bands appeared at 1556 cm−1 and 515 cm−1 as indications for CuO and G interaction. The SEM results indicated that CuO and G were distributed uniformly on the surface of the PTFE microfibers, confirming the production of the PTFE/CuO/G composite. Density functional theory (DFT) calculations were performed on PTFE polymer nanocomposites containing various metal oxides (MOs) such as MgO, Al2O3, SiO2, TiO2, Fe3O4, NiO, CuO, ZnO, and ZrO2 at the B3LYP level using the LAN2DZ basis set. Total dipole moment (TDM) and HOMO/LUMO bandgap energy ΔE both show that the physical and electrical characteristics of PTFE with OCu change to 76.136 Debye and 0.400 eV, respectively. PTFE/OCu was investigated to observe its interaction with graphene quantum dots (GQDs). The results show that PTFE/OCu/GQD ZTRI surface conductivity improved significantly. As a result, the TDM of PTFE/OCu/GQD ZTRI and the HOMO/LUMO bandgap energy ΔE were 39.124 Debye and ΔE 0.206 eV, respectively. The new electrical characteristics of PTFE/OCu/GQD ZTRI indicate that this surface is appropriate for electronic applications. Full article
(This article belongs to the Collection Reinforced Polymer Composites)
Show Figures

Graphical abstract

39 pages, 19761 KiB  
Article
Mineralogy and Geochemistry of Deep-Sea Sediments from the Ultraslow-Spreading Southwest Indian Ridge: Implications for Hydrothermal Input and Igneous Host Rock
by Xian Chen, Xiaoming Sun, Zhongwei Wu, Yan Wang, Xiao Lin and Hongjun Chen
Minerals 2021, 11(2), 138; https://doi.org/10.3390/min11020138 - 29 Jan 2021
Cited by 14 | Viewed by 5422
Abstract
Detailed mineralogical and geochemical characteristics of typical surface sediments and hydrothermal deposits collected from the ultraslow-spreading Southwest Indian Ridge (SWIR) were studied by high-resolution XRD, SEM-EDS, XRF, and ICP-MS. The SWIR marine samples can be generally classified into two main categories: surface sediment [...] Read more.
Detailed mineralogical and geochemical characteristics of typical surface sediments and hydrothermal deposits collected from the ultraslow-spreading Southwest Indian Ridge (SWIR) were studied by high-resolution XRD, SEM-EDS, XRF, and ICP-MS. The SWIR marine samples can be generally classified into two main categories: surface sediment (biogenic, volcanic) and hydrothermal-derived deposit; moreover, the surface sediment can be further classified into metalliferous and non-metalliferous based on the metalliferous sediment index (MSI). The chemical composition of biogenic sediment (mainly biogenic calcite) was characterized by elevated contents of Ca, Ba, Rb, Sr, Th, and light rare earth elements (LREE), while volcanic sediment (mainly volcanogenic debris) was relatively enriched in Mn, Mg, Al, Si, Ni, Cr, and high field strength elements (HFSEs). By contrast, the hydrothermal-derived deposit (mainly pyrite-marcasite, chalcopyrite-isocubanite, and low-temperature cherts) contained significantly higher contents of Fe, Cu, Zn, Pb, Mn, Co, Mo, Ag, and U. In addition, the metalliferous surface sediment contained a higher content of Cu, Mn, Fe, Co, Mo, Ba, and As. Compared with their different host (source) rock, the basalt-hosted marine sediments contained higher contents of Ti–Al–Zr–Sc–Hf and/or Mo–Ba–Ag; In contrast, the peridotite-hosted marine sediments were typically characterized by elevated concentrations of Mg–Cu–Ni–Cr and/or Co–Sn–Au. The differences in element enrichment and mineral composition between these sediment types were closely related to their sedimentary environments (e.g., near/far away from the vent sites) and inherited from their host (source) rock. Together with combinations of certain characteristic elements (such as Al–Fe–Mn and Si–Al–Mg), relict hydrothermal products, and diagnostic mineral tracers (e.g., nontronite, SiO2(bio), olivine, serpentine, talc, sepiolite, pyroxene, zeolite, etc.), it would be more effective to differentiate the host rock of deep-sea sediments and to detect a possible hydrothermal input. Full article
(This article belongs to the Special Issue Genesis and Exploration for Submarine Sulphide Deposits)
Show Figures

Figure 1

Back to TopTop