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Abstract: Geochemical baselines are crucial to explore mineral resources and monitor environmental
changes. This study presents the first Laos geochemical baseline values of 69 elements. The National-
scale Geochemical Mapping Project of Lao People’s Democratic Republic conducted comprehensive
stream sediment sampling across Laos, yielding 2079 samples collected at 1 sample/100 km2, and
69 elements were analyzed. Based on the results of LGB value, R-mode factor analysis, and scatter plot
analysis, this paper analyzes the relationship between the 69 elements and the geological background,
mineralization, hypergene processes and human activities in the study area. The median values of
element contents related to the average crustal values were: As, B, Br, Cs, Hf, Li, N, Pb, Sb, Zr, and
SiO2, >1.3 times; Ba, Be, Cl, Co, Cr, Cu, F, Ga, Mn, Mo, Ni, S, Sc, Sr, Ti, Tl, V, Zn, Eu, Al2O3, Tot.Fe2O3,

MgO, CaO, and Na2O, <0.7 times; and Ag, Au, Bi, Cd, Ge, Hg, I, In, Nb, P, Rb, Se, Sn, Ta, Th, U, W, Y,
La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and K2O, 0.7–1.3 times. R-mode factor analysis
based on principal component analysis and varimax rotation showed that they fall into 12 factors
related to bedrock, (rare earth, ferrum-group, and major Al2O3 and K2O elements; mineralization–Au,
Sb, and As) and farming activities–N, Br, S, and C). This study provides basic geochemical data for
many fields, including basic geology, mineral exploration, environmental protection and agricultural
production in Laos.

Keywords: Laos; national scale; geochemical baseline; 69 elements; stream sediment

1. Introduction

Geochemical mapping has proven to be a cost-effective exploration method for mineral
resources [1–8]. Geochemists from all over the world have carried out a series of studies
on sample collection, analysis and testing, map making and other means of geochemical
mapping, and achieved essential results. The geochemical mapping method is the most
effective method for the rapid exploration and evaluation of mineral resources [1–9]. In
China, national geochemical mapping has been carried out for more than 40 years [6,7,10,11].
Since 1978, more than 2000 ore deposits have been identified by follow-up exploration within
targets delineated by China’s National Geochemical Mapping Project [11–14]. Geochemical
mapping approaches have not only focused on mineral exploration but also on the concerns
of the environment, human health, land use, and others. Thus, many elements are being
given multipurpose applications. The China Geochemical Baselines (CGB) Project, with the
determination of 76 elements carried out from 2008 to 2014 [15] is the only project to meet the
requirements for the analysis of 71 chemical elements by the global geochemical baselines [16].
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The National-Scale Geochemical Mapping Project in Lao People’s Democratic Republic
(PDR) (collectively, NGMPL) was supported financially and technically by China according
to the agreement between China and Laos, implemented during 2015–2018. A total of
2079 stream sediment samples were collected at an average density of 1 sample/100 km2

from the entire territory of Laos. In this paper, based on the statistics obtained by NGMPL,
the Laos Geochemical Baseline (LGB) values of 69 elements are presented. We further
discuss the effects of geological background, mineralization, hypergene processes, and
human activities on the concentrations of these 69 elements through a comparison of
the average crustal (CA) values [17,18] and CGB [19]. The baseline data are important
for the evaluation and development of mineral resources, agriculture, and environment
monitoring in Laos. The geochemical background values of 69 elements were compared
with the crustal abundance and CGB values. The results show that under the influence
of geological background, tectonics, magmatic activity and supergenesis, the results of
statistical analysis of elemental parameters and R-type factor analysis have their own
characteristics. The enrichment of elements has a good indicative significance for the
deposits. The baseline data are of importance for the evaluation and development of
mineral resources, agriculture, and environment monitoring in Laos.

2. Geological Background

Laos is located in the north-central part of the south-central Asian peninsula, with
80% of its territory occupied by mountains and the rest by basins and plains. It has a
tropical and subtropical monsoon climate, with extremely developed vegetation, strong
modern weathering and accumulation, and little bedrock exposure, which limits geological
investigations due to inconvenient transportation. The strata exposed in Laos are mainly
Paleozoic, followed by the Mesozoic and Cenozoic. The Paleozoic strata are mainly de-
veloped in the northern and eastern areas. The Mesozoic strata are mainly composed of
Middle and Upper Triassic marine tuffs, sandstones, and siltstones exposed in the Xam
Nua area, followed by Jurassic marine deposits in the southern valley. The Eocene strata
developed in the northern intermountain valleys, and lignite seams are present; the Quater-
nary strata are widely distributed in the gullies. Tectonically, Laos belongs to the Indochina
plate, which is a complex and unified land mass composed of many small blocks and
interconnected zones. It is divided into seven tertiary geotectonic units from west to east
(Figure 1): the Jinghong-Sukhothai, Simao-Phitsanulok, Vientiane-Kontum, Truong Son,
DienBienPhu-Loei, Sepon-TamKy, and Ailaoshan-Song Ma [20–29].

The Jinghong-Sukhothai volcanic arc mainly develops Upper Carboniferous-Triassic
terrigenous clastic rocks, tuffs and volcanic rocks. The geochemical data of Middle and
Lower Triassic volcanic rocks show land margin arc features, and these early strata suffered
late folding to form a NE folding zone and are covered by Late Triassic terrigenous sand-
stone unconformity. The intrusive rocks are mainly Early to Middle Triassic Island Arc and
Late Triassic S granites [27]. The Simao-Phitsanulok block mainly consists of the Upper
Triassic foreland basin-phase coal-bearing milarite sedimentary and Jurassic-Paleocene red
terrestrial clastic rock system. The Upper Triassic-Cretaceous terrestrial salt-bearing red
clastic rock system is unconformably overlain by the Carboniferous-Permian terrestrial clas-
tic rock-carbonate rock and volcanic rock system [27,30,31]. The Vientiane-Kontum block is
strongly magmatic, with granitic intrusive rock types mainly developed from Precambrian
to Mesozoic. Large, rifted overflow basalts developed in Cenozoic, and the Mesozoic
basin is mainly a set of Triassic-Paleocene terrestrial salt-bearing red-bedded rock systems.
The Mekong fold belt is mainly composed of Paleozoic strata, developing a Cambrian-
Silurian shallow metamorphic volcanic-sedimentary rock system. The Kontum block is an
ancient land mass, composed of a crystalline basement and cover [27,30,31]. During the
formation of the Truong Son block, magmatic activity was exceptionally strong, mainly
developing Precambrian intermediate and advanced metamorphic rocks and Ordovician-
Cretaceous sedimentary and igneous rocks. The mixed lithified hornblende interspersed
with black cloud plagioclase and crystalline gneisses developed in the Yuan Paleogene; the
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calc-alkaline volcanic-intrusive rocks of Devonian-Carboniferous active land margin-island
arc type and granites of Early-Middle Permian collisional orogeny and Late Carboniferous-
Permian are mainly developed in the Phanerozoic. Carbonatite-land-derived clastic sed-
imentary rock systems and island-arc calc-alkaline volcanic rock systems such as basalt
and andesite [27,32]. The DienBienPhu-Loei suture is composed of metamorphic peri-
dotites, mafic rocks, basal lava and radiolarian siliciclastic rocks from bottom to top. In
Laos, ultramafic rocks are only found in the intersection of the DienBienPhu Fracture
Zone and the Nam Kham Valley in Luang Prabang East [27,30,31]. The Sepon-TamKy
suture is distributed in a north-western direction, and the serpentine green mixed rock
assemblage represented by ultramafic, magnesian and terrestrial clastic rocks is exposed.
The serpentine green mixed rock bodies are exposed intermittently along the suture zone
in the form of tectonic lenses owing to late strong tectonic deformation [27,32]. A relatively
complete ophiolite sequence is developed in the Ailaoshan-Song Ma procedure, with meta-
morphic peridotite, stacked crystal miscellaneous rocks, basal lava, and radiolarian-bearing
siliciciclastic rocks from the bottom to the top in order [27,30,33]. The magma belts are
mostly located in subduction zones, collision zones, and other areas of strong plate tectonic
activity, forming tectonic magma belts with geotectonic significance. These tectonic magma
belts are closely related to the formation of mineral resources in the region.

Minerals 2022, 12, x FOR PEER REVIEW 3 of 21 
 

 

 
Figure 1. Tectonic sketch of Laos (modified from [27,28]). Tectonic units: 1—Jinghong-Sukhothai arc; 
2—Simao-Phitsanulok block; 3—Vientiane-Kontum block; 4—Truong Son block; 5—DienBienPhu-
Loei suture; 6—Sepon-TamKy suture; 7—Ailaoshan-Song Ma procedure. Faults: F1—Lancangjiang-
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Truong Son-Da Nang fault; F6—Song Lan fault; F7—Song Ma fault. 
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Figure 1. Tectonic sketch of Laos (modified from [27,28]). Tectonic units: 1—Jinghong-Sukhothai arc;
2—Simao-Phitsanulok block; 3—Vientiane-Kontum block; 4—Truong Son block; 5—DienBienPhu-
Loei suture; 6—Sepon-TamKy suture; 7—Ailaoshan-Song Ma procedure. Faults: F1—Lancangjiang-
Ban Namkham fault; F2—Nam Beng fault; F3—Louangphrabang fault; F4—Phu Pulei fault; F5—
Truong Son-Da Nang fault; F6—Song Lan fault; F7—Song Ma fault.

3. Materials and Methods
3.1. Sampling

Sampling for the NGMPL took place during the period of 2015–2018. The sampling
densities of geochemical mapping were dependent on the map scale. The guideline used for
determining the sampling density in a geochemical mapping project was based on the map
scale, along with the following criteria: each square-centimeter area should have at least
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one datum on the map. For example, in a geochemical map generated at a 1:1,000,000 scale,
each 1 cm × 1 cm area in the map is equal to one 10 km × 10 km field sampling cell.
For GPS convenience and sample management, one sample will be taken from each
1:25,000 map sheet, i.e., each sampling cell is 7.5′ (long.) by 5.0′ (lat.), approximately
100 km2 (Figure 2a). The guidelines used for designing the sampling layout were as fol-
lows: (1) sampling sites should be distributed as evenly as possible throughout the survey
area; (2) each sample site should be at only one position, thereby allowing control of the
maximum area of a sampling cell (Figure 2b).
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Figure 2. Grid cell (a) and sample location layout (b). Black arrows indicate the directions of the river.

The preference for sampling media was stream sediment, thus active stream sediment
samples were taken at the riverbed surface at a depth range of 0–25 cm (excluding materials
from the organic layer where present) in hilly and mountainous terrains. Regoliths or
soils were the preferred sampling media from the top layer of soil horizon B, usually at a
depth of 20–40 cm in plain terrains. The grain size of the samples was determined to be
−10 mesh (2 mm), which can delineate the geochemical anomalies of key ore-prospecting
elements [17]. Samples were sieved through −10 mesh on-site or in field camps after
natural drying. In total, 2079 samples (including ~5% field duplicates) were collected
during the NGML project (Figure 3).
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3.2. Laboratory Chemical Analysis

The raw samples were dried in an oven at 45 ◦C in the laboratory. An 80 g sample
was weighed and ground in an agate ball mill to a −200 mesh. The samples were analyzed
for 69 elements using ICP-OES, ICP-MS, and XRF in combination with other methods:
ICP-OES for seven elements (CaO, MgO, Na2O, Be, Li, Mn, and Sr); ICP-MS for 29 elements
(Bi, Cd, Cs, Hf, In, Mo, Pb, Sc, Ta, Te, Th, Tl, U, W, La, Y, Ce, Dy, Er, Eu, Gd, Ho, Lu, Nd, Pr,
Sm, Tb, Tm, and Yb); XRF for 20 elements (SiO2, Al2O3, Tot. Fe2O3, KO2, Ba, Br, Cl, Co, Cr,
Cu, Ga, Nb, Ni, P, Rb, S, Ti, V, Zn, and Zr); AFS for five elements (As, Hg, Sb, Se, and Ge);
ES for Ag, B, and Sn; ISE for F; and GF-AAS for trace gold (Tables 1 and 2) [34]. Analytical
accuracy and precision for laboratory quality were strictly controlled by laboratory replicate
samples and standard reference materials [15].

Table 1. Analysis methods used for the NGMPL.

Analysis Method Items Elements Measured

Inductively coupled plasma optical emission
spectrometry (ICP-OES) 7 CaO, MgO, Na2O, Be, Li, Mn, Sr

X-ray fluorescence spectrometry (XRF) 20
SiO2, Al2O3, Tot. Fe2O3, KO2, Ba, Br, Cl,
Co, Cr, Cu, Ga, Nb, Ni, P, Rb, S, Ti, V, Zn,

Zr

Inductively coupled plasma mass
spectrometry (ICP-MS) 29

Bi, Cd, Cs, Hf, In, Mo, Pb, Sc, Ta, Te, Th, Tl,
U, W, La, Y, Ce, Dy, Er, Eu, Gd, Ho, Lu, Nd,

Pr, Sm, Tb, Tm, Yb

Atomic fluorescence spectrometry (AFS) 5 As, Hg, Sb, Se, Ge

Emission spectrometry (ES) 3 Ag, B, Sn

Ion selective electrode (ISE) 1 F

Colorimetry (COL) 1 I

Oxidative combustion and gas
chromatography (GC) 2 C, N

Graphite furnace/Flame atomic absorption
spectrometry (GF-AAS) 1 Au

Table 2. Detection limits of the 69 elements. SiO2, Al2O3, Tot. Fe2O3, MgO, CaO, Na2O, K2O, and
C are expressed in %; Ag, Au, Cd, and Hg are expressed in µg/kg; other elements are expressed in
mg/kg; LoD = limit of detection.

ID Element
Minimum Requirement

ID Element
Minimum Requirement

Analysis Method LoD Analysis Method LoD

1 Ag ES 20 36 Sr ICP-OES 5
2 As AFS 1 37 Ta ICP-MS 0.1
3 Au GF-AAS 0.2 38 Te ICP-MS 0.01
4 B ES 1 39 Th ICP-MS 1.0
5 Ba XRF 5 40 Ti XRF 10
6 Be ICP-OES 0.5 41 Tl ICP-MS 0.1
7 Bi ICP-MS 0.05 42 U ICP-MS 0.1
8 Br XRF 1.0 43 V XRF 5
9 Cd ICP-MS 20 44 W ICP-MS 0.2

10 Cl XRF 20 45 Zn XRF 2
11 Co XRF 1 46 Zr XRF 2
12 Cr XRF 5 47 Y ICP-MS 1
13 Cs ICP-MS 1 48 La ICP-MS 1
14 Cu XRF 1 49 Ce ICP-MS 1
15 F ISE 100 50 Pr ICP-MS 0.1
16 Ga XRF 2 51 Nd ICP-MS 0.1
17 Ge AFS 0.1 52 Sm ICP-MS 0.1
18 Hf ICP-MS 0.2 53 Eu ICP-MS 0.1
19 Hg AFS 2 54 Gd ICP-MS 0.1
20 I COL 0.5 55 Tb ICP-MS 0.1
21 In ICP-MS 0.02 56 Dy ICP-MS 0.1
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Table 2. Cont.

ID Element
Minimum Requirement

ID Element
Minimum Requirement

Analysis Method LoD Analysis Method LoD

22 Li ICP-OES 1 57 Ho ICP-MS 0.1
23 Mn ICP-OES 10 58 Er ICP-MS 0.1
24 Mo ICP-MS 0.2 59 Tm ICP-MS 0.1
25 N GC 20 60 Yb ICP-MS 0.1
26 Nb XRF 2 61 Lu ICP-MS 0.1
27 Ni XRF 2 62 SiO2 XRF 0.1
28 P XRF 10 63 Al2O3 XRF 0.05
29 Pb ICP-MS 2 64 Tot. Fe2O3 XRF 0.05
30 Rb XRF 5 65 MgO ICP-OES 0.05
31 S XRF 30 66 CaO ICP-OES 0.05
32 Sb AFS 0.05 67 Na2O ICP-OES 0.05
33 Sc ICP-MS 1 68 K2O XRF 0.05
34 Se AFS 0.01 69 TC GC 0.1
35 Sn ES 1.0

3.3. R-Mode Factor Analysis

Factor analysis is a statistical technique of data reduction used to explain the correla-
tions between observed variables in terms of a smaller number of unobserved variables
called factors [35–37]. In this study, an R-mode factor analysis, based on principal compo-
nent analysis and varimax rotation, was performed on the database (n = 2079) to evaluate
relationships among all the elements, and factors with eigenvalues >1 were extracted. Prior
to the factor analysis, the BDL values were replaced with 0.5 of the detection limits. The
centered log-ratio (clr) transformation proposed by Aitchison [38] was performed on the
raw data using the CoDaPack [39,40], which is widely used for processing compositional
data [41–43]. In addition, the clr-transformed data, rather than the raw data, was normally
distributed and it satisfied the preconditions for factor analysis (Figure 4a–d).
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4. Results

The concept of geochemical background, which originally emerged in exploration
geochemistry [44–46], generally represents the average value in the natural levels (i.e., not
affected by human activities). There are numerous ways to express background concentra-
tions, e.g., arithmetic mean (AM), GM, median, upper confidence limit (UCL) of the mean,
upper baseline concentration (UBC), and nth percentile [47]. However, the related soils or
sediments are no longer “natural”, given that human-induced changes have historically
occurred owing to agriculture and industry. A baseline is used when measuring present
levels so that future changes can be recognized or quantified. The establishment of baseline
values of chemical elements in soils or sediments is a critical issue [19,45]; as Zoback [48]
states, “How do we recognize and understand changes in natural systems if we do not
understand the range of baseline levels?” Laos is dominated by agriculture, but not much
by modern industry. Therefore, the background is less affected by industry and human
activities. The background is used in the context of measuring levels so that any future
changes can be quantified. In this study, the median value was accepted as the LGB values
of the 69 elements in the stream sediments collected in Laos because the median value is
the most robust statistical value of the median trend [19,49].

Table 3 presents the statistical results. The LGB values of As, B, Br, Cs, Hf, Li, N, Pb,
Sb, Zr, and SiO2 are 1.3 times the average crustal values [17]. Ba, Be, Cl, Co, Cr, Cu, F, Ga,
Mn, Mo, Ni, S, Sc, Sr, Ti, Tl, V, Zn, Eu, Al2O3, Tot. Fe2O3, MgO, CaO, and Na2O are less
than 0.7 times the average crustal values.

Table 3. Statistical parameters of the 69 elements and their comparisons with the CA and CGB from
NGMPL. SiO2, Al2O3, Tot. Fe2O3, MgO, CaO, Na2O, K2O, and C are expressed in %; Ag, Au, Cd, and Hg
are expressed inµg/kg; other elements are expressed in mg/kg; Q: percentile of the data set (Q50: median);
Min: minimum concentration; Max: maximum concentration; CA: crust average value [17,18]; CGB: China
Geochemical Baselines value [19]; LGB/CA = Q50 (median)/CA; LGB/CGB = Q50 (median)/CGB.

Element
LGB Values of 69 Elements

CA CGB
Enrichment/Depletion Coefficient

Min. Q25 Q50 Q75 Q85 Max. LGB/CA LGB/ CGB

Ag 19 50 61 75 87 10,000 56 77 1.1 0.8
As 1 2 5 9 12 2755 3 9 1.7 0.6
Au 0.1 0.6 1.0 1.5 2.0 914.0 1.3 1.3 0.8 0.8
B 2 21 34 52 63 334 11 43 3.1 0.8

Ba 11 151 243 345 421 4673 456 512 0.5 0.5
Be 0.1 0.8 1.2 1.7 2.0 7.1 1.9 2.0 0.6 0.6
Bi 0.03 0.10 0.18 0.29 0.36 46.62 0.18 0.30 1.0 0.6
Br 0.1 1.1 1.5 2.1 2.8 36.6 0.9 2.2 1.7 0.7
Cd 1 37 63 107 150 41,650 80 137 0.8 0.5
Cl 21 51 61 73 81 5615 244 78 0.3 0.8
Co <1 5 9 14 18 243 27 11 0.3 0.8
Cr 2 26 43 62 78 24,101 135 53 0.3 0.8
Cs <1 2 3 5 7 26 2 6 1.5 0.5
Cu 1 10 16 26 33 459 27 20 0.6 0.8
F 21 182 271 374 441 2717 553 488 0.5 0.6

Ga 1 7 10 14 16 44 16 15 0.6 0.7
Ge 0.3 1.1 1.3 1.4 1.5 2.5 1.3 1.3 1.0 1.0
Hf 0.8 3.9 6.1 9.8 12.4 76.2 3.7 6.5 1.6 0.9
Hg 3 18 29 50 68 806 30 26 1.0 1.1

I 0.2 0.5 0.7 1.2 1.8 32.6 0.7 1.1 1.0 0.6
In <0.01 0.03 0.04 0.06 0.07 10.16 0.05 0.05 0.8 0.8
Li 1 14 22 30 35 134 16 30 1.4 0.7

Mn 75 262 391 622 809 14,212 774 569 0.5 0.7
Mo 0.1 0.3 0.4 0.7 0.9 25.4 0.8 0.7 0.5 0.6
N 67 266 411 725 989 5290 56 707 7.3 0.6

Nb <1 6 9 12 14 64 8 13 1.1 0.7
Ni 1 9 15 24 30 237 59 24 0.3 0.6
P 42 199 312 439 526 4157 436 570 0.7 0.5

Pb 2 10 15 22 27 4695 11 22 1.4 0.7
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Table 3. Cont.

Element
LGB Values of 69 Elements

CA CGB
Enrichment/Depletion Coefficient

Min. Q25 Q50 Q75 Q85 Max. LGB/CA LGB/ CGB

Rb 3 31 52 83 103 381 49 96 1.1 0.5
S 19 52 72 113 153 2346 404 245 0.2 0.3

Sb 0.05 0.30 0.50 0.88 1.23 1284.94 0.20 0.73 2.5 0.7
Sc <1 5 8 12 14 49 22 10 0.4 0.8
Se 0.02 0.06 0.10 0.19 0.25 3.17 0.13 0.17 0.8 0.6
Sn 0.6 1.4 1.9 2.5 3.2 100.0 1.7 3.0 1.1 0.6
Sr 1 25 43 66 82 584 320 197 0.1 0.2
Ta 0.1 0.5 0.7 1.0 1.1 5.4 0.7 1.0 1.0 0.7
Te <0.01 0.02 0.04 0.04 0.05 1.25 – 0.04 – 1.0
Th 0.3 3.6 6.0 9.3 11.7 51.1 5.6 11.0 1.1 0.5
Ti 229 1921 2888 4009 4771 32,015 4200 3498 0.7 0.8
Tl <0.1 0.2 0.3 0.5 0.7 2.6 0.5 0.6 0.6 0.5
U 0.2 1.0 1.5 2.3 2.8 17.8 1.3 2.5 1.2 0.6
V 4 36 59 89 109 569 138 70 0.4 0.8
W 0.1 0.6 0.9 1.4 1.8 37.2 1.0 1.6 0.9 0.6
Zn 4 28 47 66 77 2524 72 66 0.7 0.7
Zr 23 119 188 268 323 1886 132 230 1.4 0.8
Y 2 11 16 23 26 340 19 24 0.8 0.7
La 2 14 20 28 33 319 20 33 1.0 0.6
Ce 4 25 36 53 63 385 43 64 0.8 0.6
Pr 0.5 3.2 4.5 6.6 7.7 57.7 4.9 7.6 0.9 0.6
Nd 1.7 11.9 17 24.1 28.3 177.6 20.0 28.2 0.9 0.6
Sm 0.3 2.3 3.3 4.7 5.5 37.6 3.9 5.3 0.8 0.6
Eu 0.1 0.5 0.7 1.0 1.2 7.8 1.1 1.1 0.6 0.6
Gd 0.3 2.1 3.1 4.3 4.9 34.9 3.7 4.6 0.8 0.7
Tb 0.1 0.4 0.5 0.7 0.8 6.1 0.6 0.8 0.8 0.6
Dy 0.3 2.0 3.0 4.2 4.8 38.3 3.6 4.5 0.8 0.7
Ho 0.1 0.4 0.6 0.8 0.9 7.4 0.8 0.9 0.8 0.7
Er 0.2 1.2 1.7 2.4 2.7 20.3 2.1 2.5 0.8 0.7
Tm <0.1 0.2 0.3 0.4 0.4 2.8 0.3 0.4 1.0 0.8
Yb 0.2 1.2 1.7 2.4 2.7 16.7 1.9 2.6 0.9 0.7
Lu <0.1 0.2 0.3 0.4 0.4 2.4 0.3 0.4 1.0 0.8

ΣLREE 9.16 56.68 81.09 117.89 138.88 984.62 92.90 139.20 0.9 0.6
ΣHREE 2.79 18.42 27.19 38.13 43.71 469.14 32.25 40.70 0.8 0.7
ΣREE 11.95 75.10 108.28 156.02 182.95 1453.76 125.15 179.90 0.9 0.6
SiO2 12.1 69.3 76.4 82.8 85.7 94.3 60.7 66.7 1.3 1.1

Al2O3 0.55 6.50 10.21 12.89 14.42 27.72 15.88 11.90 0.6 0.9
Tot.

Fe2O3
0.20 2.10 3.60 5.41 6.56 29.09 7.59 4.20 0.5 0.9

MgO 0.02 0.39 0.60 0.89 1.09 7.00 4.72 1.43 0.1 0.4
CaO 0.01 0.15 0.24 0.46 0.78 42.83 6.39 2.74 0.0 0.1

Na2O 0.03 0.20 0.41 0.65 0.82 3.31 3.10 1.75 0.1 0.2
K2O 0.07 0.80 1.30 1.95 2.36 6.88 1.79 2.36 0.7 0.6
TC <0.1 0.2 0.4 0.8 1.2 10.0 – 1.3 – 0.3

Further, the LGB values of Ag, Au, Bi, Cd, Ge, Hg, I, In, Nb, P, Rb, Se, Sn, Ta, Th, U,
W, Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and K2O are 0.7–1.3 times of the
average crustal values (Table 4 and Figure 5).

The LGB values of As, B, Br, Cs, Hf, Hg, I, N, Sb, Se, Sn, and W are 1.3 times of the CGB
values [17], while that of Ba, Cl, Co, Cr, Cu, F, Ga, Mn, Ni, P, S, Sc, Sr, Te, V, Zn, La, Ce, Pr,
Nd, Sm, Eu, Al2O3, Tot. Fe2O3, MgO, CaO, Na2O, and K2O are 0.3 times of the CGB values.
The CGB values of Ag, Au, Be, Bi, Cd, Ge, In, Li, Mo, Nb, Pb, Rb, Ta, Th, Ti, Tl, U, Zr, Y, Gd,
Tb, Dy, Ho, Er, Tm, Yb, Lu, SiO2, and C are 0.7–1.3 times of the CGB values [19] (Table 4
and Figure 5). Kaiser–Meyer–Olkin (KMO) and Bartlett’s sphericity tests were adopted to
evaluate the adequacy of the data set for factor analysis. A KMO value of 0.927 (greater than
the recommended minimum value of 0.5) and the significance of Bartlett’s sphericity test
(x2 = 271,391.511, p = 0.000) indicate the effectiveness of factor analysis and correlations
among the variables. The factor analysis showed that the 69 elements fell into 12 factors ex-
plaining 77.93 % of the total variability (Table 5). Factor 1 explaining the largest proportion
(11.02 %) of total variability, consists of positive loadings (Bi, Th, U, W, Cs, K2O, Rb, and
Tl), which indicate potassium salt deposits and negative loadings (V, Cr, Cu, Ni, Co, Ti, and
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Tot. Fe2O3), which indicate the weathering of basic volcanic rocks. Factor 2 (accounting for
8.83 % of the variance) consists of positive loadings (Er, Tm, Ho, Yb, Lu, Y, Dy, Tb, and Gd),
which indicate bedrocks rich in heavy rare earth. Factor 3 (accounting for 6.55 % of the
variance) consists of positive loadings (SiO2, Ge, Cl, Ag, and Zr), which indicate Ag-related
mineralization. Factor 4 (accounting for 5.54 % of the variance) consists of positive loadings
(La, Ce, Pr, Nd, Sm, and Gd), which indicate bedrock rich in light rare earth. Factor 5
(accounting for 5.07 % of the variance) consists of positive loadings (TC, N, S, Br, I, and
Se), which may be related to farming activities. Factor 6 (accounting for 3.15% of the total
variance) consists of positive loadings (Sr and Na2O), which may be related to biogenic
products and depositional conditions besides source rock characteristics [50,51]. Factor
7 (Ta-Nb association) and Factor 8 (Li-B association), accounting for 3.14% and 2.91% of
the total variance, respectively, indicate their highly similar geochemical behaviors. Factor
9 (Sb-As association), accounting for 2.34% of the total variance, indicates hydrothermal
activities and possibly serves as an indicator of mineral exploration. Factor 10 (Al2O3),
accounting for 2.24% of the total variance, indicates Al2O3-rich areas caused by strong
weathering. Factor 11 (Mo) and Factor 12 (Au), accounting for 1.57% and 1.14% of the total
variance, respectively, indicate Mo- and Au-related mineralization, respectively.

Table 4. Statistical parameter enrichment/depletion coefficient of the 69 elements with the CA and
CGB from NGMPL. SiO2, Al2O3, Tot. Fe2O3, MgO, CaO, Na2O, K2O, and C are expressed in %; Ag,
Au, Cd, and Hg are expressed in µg/kg; other elements are expressed in mg/kg; Q: percentile of
the data set (Q50: median); Min: minimum concentration; Max: maximum concentration; CA: crust
average value [17,18]; CGB: China Geochemical Baselines value [19]; LGB/CA = Q50 (median)/CA;
LGB/CGB = Q50 (median)/CGB.

Depletion
0.7–1.3

Enrichment

<0.7 >1.3

LGB/CA

Ba, Be, Cl, Co, Cr, Cu, F,
Ga, Mn, Mo, Ni, S, Sc, Sr,
Ti, Tl, V, Zn, Eu, Al2O3,
Tot. Fe2O3, MgO, CaO,
Na2O

Ag, Au, Bi, Cd, Ge, Hg, I,
In, Nb, P, Rb, Se, Sn, Ta,
Th, U, W, Y, La, Ce, Pr,
Nd, Sm, Gd, Tb, Dy, Ho,
Er, Tm, Yb, Lu, K2O

As, B, Br, Cs, Hf, Li,
N, Pb, Sb, Zr, SiO2

LGB/CGB

Ba, Cl, Co, Cr, Cu, F, Ga,
Mn, Ni, P, S, Sc, Sr, Te, V,
Zn, La, Ce, Pr, Nd, Sm,
Eu, Al2O3, TFe2O3, MgO,
CaO, Na2O, K2O

Ag, Au, Be, Bi, Cd, Ge, In,
Li, Mo, Nb, Pb, Rb, Ta, Th,
Ti, Tl, U, Zr, Y, Gd, Tb, Dy,
Ho, Er, Tm, Yb, Lu, SiO2

As, B, Br, Cs, Hf, Hg,
I, N, Sb, Se, Sn, W

Table 5. Results of the factor analysis based on the clr-transformed data and the selected factors
based on threshold of 0.6 (the absolute threshold value).

Factor Element
Association Relations Eigenvalue % of Variance Cumulative %

Factor 1 Bi-Th-U-W-Cs-K2O-Rb-Tl-(V-Cr-Cu-Ni-Co-Ti-Tot. Fe2O3) Acid rocks, Basic
volcanic rocks 11.02 15.98 15.98

Factor 2 Er-Tm-Ho-Yb-Lu-Y-Dy-Tb-Gd Bedrocks 8.83 12.79 28.77
Factor 3 SiO2-Ge-Cl-Ag-Zr Mineralizations 6.55 9.49 38.26
Factor 4 La-Ce-Pr-Nd-Sm-Gd Bedrocks 5.54 8.03 46.29
Factor 5 TC-N-S-Br-I-Se Farming activities 5.07 7.35 53.64
Factor 6 Sr-Na2O Bedrocks 3.15 4.57 58.20
Factor 7 Ta-Nb Bedrocks 3.14 4.55 62.75
Factor 8 Li-B Bedrocks 2.91 4.22 66.97
Factor 9 Sb-As Mineralizations 2.34 3.39 70.36
Factor 10 Al2O3 Bedrocks 2.24 3.25 73.61
Factor 11 Mo Mo mineralizations 1.57 2.27 75.88
Factor 12 Au Au mineralizations 1.41 2.05 77.93
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5. Discussion
5.1. Elements Related to Bedrock

The enrichment/depletion coefficients of the major elements are ranked as follows:
SiO2 > K2O > Al2O3 > TFe2O3 > MgO > Na2O > CaO (Table 3 and Figure 5). The concentra-
tions of major elements are controlled by both bedrock and weathering processes. All the
major elements of SiO2 in stream sediments were enriched, whereas CaO was significantly
depleted. SiO2 content in stream sediment shows a pronounced variability from 12.07
to 94.34%, with a median of 76.43%, which is related to the bedrock geology (sandstone,
granite, granodiorite and their metamorphosed equivalents), and also to quartz-rich su-
perficial deposits. Zhu [23] reported a large area of Mesozoic sandstone in northwestern
and southern Laos, and a major granite area in northern Laos. The enrichment of SiO2
is related to the residue of quartz-rich sand (while the other elements are leached and
bedrocks of sandstone and granites). During the supergenesis of heavy precipitation with
an average annual precipitation of 3700 mm in the subtropical region, Ca, Mg, and Na
leached, and the median values were significantly lower than that of the crustal abundance.
The significantly depleted CaO value when compared with the average crustal and CGB
value is contributed by the dissolution of carbonate minerals. The median value of Al2O3
is 10.21% with a range of 0.55% to 27.72%. The enrichment of Al2O3 is mainly caused by
the weathering of carbonate and basaltic rocks. Bauxite deposits were reported by Zhu [23]
mainly distributed in the Boloven Plateau, which is located in southern Laos. The mining
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area is of high temperature and rainy, the physical weathering of the source layer, especially
the chemical weathering and biological weathering, is very strong, the plateau topography
is gentle, there is no fault fold in the area, the structure is simple, suitable for the formation
of bauxite. It is known that bauxite belongs to Lateritic bauxite. It is a high-quality lateritic
gibbsite bauxite deposit formed in a low-lying area after basalt weathering.

There is a negative correlation between the Rb-K2O-Tl-Cs-Th-Be-Ba-U-W association
and the V-Cr-Cu-Ni-Co-Ti-TFe2O3 association in Factor 1 (Figure 6). The V-Cr-Cu-Ni-Co-Ti-
TFe2O3 association represents the weathering of basic volcanic rocks, which were originally
depleted in Bi, Th, U, W, Cs, K2O, Rb, and Tl; weathering further leaches these elements
from the basic volcanic rocks. However, the potassium salt deposits are strongly depleted
in V, Cr, Cu, Ni, Co, Ti, and TFe2O3 and enriched in Bi, Th, U, W, Cs, K2O, Rb, and Tl [52,53].

Minerals 2022, 12, x FOR PEER REVIEW 12 of 21 
 

 

5. Discussion 
5.1. Elements Related to Bedrock 

The enrichment/depletion coefficients of the major elements are ranked as follows: 
SiO2 > K2O > Al2O3 > TFe2O3 > MgO > Na2O > CaO (Table 3 and Figure 5). The concentra-
tions of major elements are controlled by both bedrock and weathering processes. All the 
major elements of SiO2 in stream sediments were enriched, whereas CaO was significantly 
depleted. SiO2 content in stream sediment shows a pronounced variability from 12.07 to 
94.34%, with a median of 76.43%, which is related to the bedrock geology (sandstone, 
granite, granodiorite and their metamorphosed equivalents), and also to quartz-rich su-
perficial deposits. Zhu [23] reported a large area of Mesozoic sandstone in northwestern 
and southern Laos, and a major granite area in northern Laos. The enrichment of SiO2 is 
related to the residue of quartz-rich sand (while the other elements are leached and bed-
rocks of sandstone and granites). During the supergenesis of heavy precipitation with an 
average annual precipitation of 3700 mm in the subtropical region, Ca, Mg, and Na 
leached, and the median values were significantly lower than that of the crustal abun-
dance. The significantly depleted CaO value when compared with the average crustal and 
CGB value is contributed by the dissolution of carbonate minerals. The median value of 
Al2O3 is 10.21% with a range of 0.55% to 27.72%. The enrichment of Al2O3 is mainly caused 
by the weathering of carbonate and basaltic rocks. Bauxite deposits were reported by Zhu 
[23] mainly distributed in the Boloven Plateau, which is located in southern Laos. The 
mining area is of high temperature and rainy, the physical weathering of the source layer, 
especially the chemical weathering and biological weathering, is very strong, the plateau 
topography is gentle, there is no fault fold in the area, the structure is simple, suitable for 
the formation of bauxite. It is known that bauxite belongs to Lateritic bauxite. It is a high-
quality lateritic gibbsite bauxite deposit formed in a low-lying area after basalt weather-
ing. 

There is a negative correlation between the Rb-K2O-Tl-Cs-Th-Be-Ba-U-W association 
and the V-Cr-Cu-Ni-Co-Ti-TFe2O3 association in Factor 1 (Figure 6). The V-Cr-Cu-Ni-Co-
Ti-TFe2O3 association represents the weathering of basic volcanic rocks, which were orig-
inally depleted in Bi, Th, U, W, Cs, K2O, Rb, and Tl; weathering further leaches these ele-
ments from the basic volcanic rocks. However, the potassium salt deposits are strongly 
depleted in V, Cr, Cu, Ni, Co, Ti, and TFe2O3 and enriched in Bi, Th, U, W, Cs, K2O, Rb, 
and Tl [52,53]. 

 
Figure 6. Biplot of Factor 1 (Bi−Th−U−W−Cs−K2O−Rb−Tl−(V−Cr−Cu−Ni −Co−Ti−TFe2O3)) vs. Factor 
2 (Er−Tm−Ho−Yb−Lu−Y−Dy−Tb−Gd association). Circles indicate elements. 

Figure 6. Biplot of Factor 1 (Bi−Th−U−W−Cs−K2O−Rb−Tl−(V−Cr−Cu−Ni −Co−Ti−TFe2O3))
vs. Factor 2 (Er−Tm−Ho−Yb−Lu−Y−Dy−Tb−Gd association). Circles indicate elements.

5.2. Rare Earth Elements

The baseline values of rare earth elements (REEs) (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy,
Ho, Er, Tm, Yb, Lu, and Y) are generally consistent with the average crustal values (Table 3
and Figure 5). The REEs exhibit light rare earth element (LREE) enrichment and heavy
rare earth element (HREE) depletion, with a negative Eu anomaly curve. The distribution
pattern is similar to that of the CGBs with LREE enrichment, flat HREE distributions, and
a negative Eu anomaly (Figure 7). The negative Eu anomaly may be due to the leaching
of Eu with Ca, in which CaO is significantly depleted in the stream sediments mentioned
above; the isomorphism of Eu and Ca exists when the Eu valence state is +2. The results of
the factor analysis are consistent with the REE patterns. The LREEs (La, Ce, Pr, Nd, and
Sm) and HREEs (Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) belong to Factors 4 and 2, respectively;
Gd belongs to factors 2 and 4, because the loadings of Gd in both factors 2 and 4 are high,
0.62 and 0.71, respectively; and Eu does not belong to any factor (Figure 8).
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The low concentrations of REEs in stream sediments are caused by quartz dilution as
well as REEs activation during warm and wet weathering [55,57–59]. The ratio of LREEs to
HREEs is consistent with that of the average crustal value and slightly lower than that of
the CGB value (Table 6).

In tropical terrains, the ions absorbed into clays tend to feature more HREEs than
LREEs [60]. Thus, HREEs account for a higher percentage of REEs in Laos’ tropical zone
than in China’s temperate and subtropical zones. The areas with high concentrations of
REEs are in the north on the border between China and Laos, which is consistent with
new anomalies delineated and ion-adsorption type REE deposits discovered in Yunnan
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Province, China [60,61]. This extension of the rare earth metallogenic belt may host ion-
adsorption type REEs deposits that are distributed along the Truong Son-Da Nang fault,
and the spatial distribution correlates with the granite distribution in the Truong Son block
and its intersection area with the Sepon–TamKy suture zone. These findings hold promise
for the subsequent exploration of rare earth minerals in Laos.

Table 6. Rare earth element characteristic parameter table.

ΣREE
(mg/kg)

ΣLREE
(mg/kg)

ΣHREE
(mg/kg) L/H δEu δCe (La/Sm)N (Gd/Yb)N (La/Yb)N

NGMPL 108.28 81.09 27.19 2.98 0.71 0.94 3.80 1.47 8.09
CGB 179.90 139.20 40.70 3.42 0.68 0.99 4.02 1.46 9.10
Crust
average 125.15 92.90 32.25 2.88 0.89 1.06 3.31 1.61 7.55

5.3. Elements Related to Mineralization

Au and Sn are the most important mineral commodities in Laos. The baselines of Au
(1.04 µg/kg) are lower than the average crustal values (1.3 µg/kg) (Table 3 and Figure 5).
It seems that the depletion of Au is not consistent with the rich gold deposits of Laos.
The histogram graph (Figure 4a,b) shows that gold had abnormal distributions, and the
boxplots indicate a certain number of samples distributed over Q75, which implies that
the high concentrations of gold may be related to gold mineralization. The R-mode factor
analysis indicated that Au was represented only in Factor 12, suggesting the absence
of significant correlations between Au and other elements (Table 5 and Figure 9). Gold
deposits are widely distributed in Laos and are mainly of alluvial, porphyry, quartz vein,
and Carlin types. Residual and alluvial-flood gold deposits are the most numerous and
widely distributed in Laos. Alluvial gold deposits are mainly concentrated in northern
Louangphrabang, the southwest border including Thailand, and the area of Ban Thong kha
in the central part of the country. Most of the rivers eroded the pre-Mesozoic metamorphic
strata intruded by Mesozoic rocks, and the gold may be associated with the gold- bearing
quartz veins in the metamorphic rocks [7,23,26,29,62]. Elemental compositions of different
types of gold deposits are quite distinct, and even elemental composition of the same type
of gold ore deposits may have a large difference; hydrothermal gold deposits may have high
concentrations of volatile elements and metal sulfides, while alluvial-flood gold deposits
may have high concentrations of platinum group elements and heavy minerals [63–70]. In
addition, Au is highly active in supergene environments. Gold in primary Au deposits
can experience mobilization, migration, and reprecipitation under the action of physical,
chemical, and biogeochemical processes [71–75]. The diversity of gold ore types and the
complexity of metallogenic processes in Laos, and the high mobility of gold in supergene
environments indicate no obvious correlation between gold and other elements.

The high concentrations of Sn are highly consistent with the distribution of tin de-
posits in Laos. The Nam Pathene tin-high concentration area in Khammuane province
is the largest tin mine-producing area in Laos [29] and the mine is located in the Nam
Pathene area, tectonically at the intersection of the Truong son block and the Sepon–TamKy
suture, extending the Truong son–Da Nang fault [23]. The types of tin ore deposits are
predominantly alluvial, followed by skarn and hydrothermal.

The study shows that intense hydrothermal activities play an important role in the
formation of minerals such as Cu, Pb, and Zn [76]. However, the factor analysis failed to
characterize the significance of these elements; Pb, Zn, and Sn were absent from all the
factors which may be caused by the complexity of the metallogenic process and bedrocks,
and the significant differences in their geochemical behaviors in the supergene environment.
(Table 5 and Figure 10). Wang et al.’s [77] study shows that Cu in Laos is unevenly dis-
tributed; generally, it is high in the north and low in the south. Most of the copper deposits
in Laos are skarn-type, hydrothermal or porphyry types, which are mainly controlled by
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magmatic hydrothermal and tectonic conditions [25,78]. Most of the Pb-Zc deposits belong
to the hydrothermal type, which was formed chiefly during the Late Mesozoic period [76].
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The factor analysis results showed mineralization-related element assemblages (Factor
9: Sb-As association). The baseline values of Sb and As (0.5 and 4.9 mg/kg, respectively)
were much higher than the average crustal values (RCC > 1.3); they were significantly
enriched. Higher As concentrations (>11.7 mg/kg) are mostly influenced by lithology,
mineralization, mining, and smelting activities. The study of [79,80] showed that As could
be derived from pyrite. Zhu [23] reported a large area of contact with metasomatic and
hydrothermal iron deposits in northern and central Laos. Pyrite and other metal sulfides
are unevenly distributed in some ores. High concentrations of Sb (1.23 mg/kg) in stream
sediment occur with Au-Cu-Sn-Sb-Pb mineralization. The richest Sb occurs in the Nam
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Paten tin deposit area with 1285 mg/kg of Sb [29]. The enrichment of Sb and As in stream
sediments can be an indicator of tin mineral deposits.

5.4. Elements Impacted by Human Activities

The elements C, N, P, and toxic metals, such as Hg and Cd, were found to be easily
impacted by human activities. The median of N (411 mg/kg) was much higher than
the average crustal value (56 mg/kg) with the most significant enrichment. Figure 11a
represents the correlation between N and C. The scatter diagram indicates that most of
the N and C samples fall in the same field of farming activities and a small proportion
of samples in the field demonstrate a good correlation with CaO (Figure 11d), which is
contributed by the limestone composition of calcite minerals (CaCO3). Phosphorus has a
good correlation with N and C, indicating that the concentration of N, C, and P are mainly
impacted by human activities [53,81] (Figure 11b,c).
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The baseline value of Hg (29.1 µg/kg) is basically consistent with the average crustal
value (30.0 µg/kg). High concentrations of Hg (>67.8 µg/kg) are mainly distributed in
northern Laos as a result of gold mining activities that use Hg to extract Au (reference) [29].
There is a long history of gold mining and processing in Laos, which has caused Hg
pollution in the Mekong River and its tributaries and has added a certain degree to the
Hg concentration in the surrounding environment [20,82]. The enriched concentrations of
mercury are also related to Au, Cu, Pb-Zn, and other minerals along the Louangphrabang,
Nam Beng Truong, and Son-Da Nang faults [83].
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5.5. Halogen Elements Linked to Climate

The coefficient values of the halogen elements are ranked as follows (Table 3 and
Figure 5): Br > I > F > Cl. The baseline value of Br (1.5 mg/kg) is higher than the average
crustal value (0.88 mg/kg). The diagram represents a positive correlation between Br and
C (Figures 12 and 13).
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The enrichment of Br may be linked to absorption by organic carbon in soils or sed-
iments. The baseline value of I (0.7 mg/kg) is consistent with the average crustal value
(0.7 mg/kg). However, the baseline values of F and Cl (271 and 61 mg/kg) were lower
than the average crustal values. Br was significantly enriched, whereas Cl was signifi-
cantly depleted. The natural sources of F in the environment are mainly the weathering of
fluoride-bearing minerals [84]. A variety of low-temperature hydrothermal deposits have
been developed in areas with high F concentrations (>441 mg/kg). There are sedimentary
metamorphic coal mines in the area, and the F concentration in coal, claystone, and other
rocks (biotite) in the region is generally high [52,83,85–87]. However, Laos has abundant
rainfall and a high-density network of rivers, and F and Cl are easily leached and trans-
ported with drainage water [88]. Therefore, the F and Cl concentrations throughout Laos
were well below the average crustal values.
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The main limitation of this study is that it focused only on the baseline values of the
69 elements and did not consider their spatial distribution. Therefore, it is essential to
describe the spatial distribution of the 69 elements in future research.

6. Conclusions

The NGMPL, which covered the entire national territorial area of Laos for sediment
sampling and conducted laboratory chemical analyses of 69 elements, has provided high-
quality geochemical baseline data. The LGB values of 69 elements obtained from the
NGMPL indicate that the medians of Ag, Au, Bi, Cd, Ge, Hg, I, In, Nb, P, Rb, Se, Sn, Ta,
Th, U, W, Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, and K2O are consistent
with the average crustal values; As, B, Br, Cs, Hf, Li, N, Pb, Sb, Zr, and SiO2 are enriched,
while Ba, Be, Cl, Co, Cr, Cu, F, Ga, Mn, Mo, Ni, S, Sc, Sr, Ti, Tl, V, Zn, Eu, Al2O3, Tot.
Fe2O3, MgO, CaO, and Na2O are depleted. Factor analysis shows that the 69 elements can
be divided into 12 factors. The origin and enrichment/depletion of elements in different
factors related to bedrock (rare earth elements, ferrum-group elements, and the major
elements), mineralization (Au, Sb, As, etc.), and farming activities (N, Br, S, and C) are
discussed in the context of geological background, mineralization, hypergene processes,
and human activities.
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