Spatial Distribution of Physical and Chemical Properties of Deep Sea Water in Xisha, South China Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Survey Area and Stations
2.2. Sample Collection and Storage
2.3. Physical and Chemical Property Detection
2.4. Testing of Trace Elements
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of Horizontal Distribution of Deep Sea Water in Xisha
3.1.1. Temperature, Salinity, and pH
3.1.2. Dissolved Oxygen
3.1.3. Nutrients
3.1.4. Heavy Metals
3.1.5. Trace Elements
3.2. Characteristics of Vertical Distribution of Deep Seawater in Xisha Sea Area
3.2.1. Temperature, Salinity, and pH
3.2.2. Dissolved Oxygen
3.2.3. Nutrients
3.2.4. Heavy Metals
3.2.5. Trace Elements
4. Conclusions
- The survey area is situated at a considerable distance from the mainland and is thus mainly affected by human activities on the islands and reefs in Xisha waters. The surface seawater quality was found to be excellent and to meet first-class seawater survey standards, which is consistent with the findings of previous surveys.
- The concentrations of various nutrient salts in the surface seawater of the Xisha Sea were relatively low. As the depth increased, the concentrations of various nutrient salts also increased in a gradual manner. Deep seawater contained relatively high nutrient and trace element concentrations, which provides an optimal environment for the growth of deep sea organisms and the maintenance of the ecosystem.
- This investigation elucidated the horizontal and vertical changes in the physical and chemical properties of deep seawater in the Xisha Sea, thereby providing theoretical support for the desalination and comprehensive utilization of seawater.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmad, F.; Saeed, Q.; Shah, S.M.U.; Gondal, M.A.; Mumtaz, S. Environmental sustainability: Challenges and approaches. Nat. Resour. Conserv. Adv. Sustain. 2022, 243–270. [Google Scholar]
- Group, M. Development strategy for China’s marine engineering science and technology to 2035. China Eng. Sci. 2017, 19, 108–117. [Google Scholar]
- Yang, H.; Liu, Q. A Review of Research on Ocean Circulation in the South China Sea. Adv. Earth Sci. 1998, 13, 5. (In Chinese) [Google Scholar]
- Wang, D.; Wang, Q.; Cai, S.; Shang, X.; Peng, S.; Shu, Y. Advances in research of the mid-deep South China Sea circulation. Sci. China Earth Sci. 2019, 62, 1192–2004. (In Chinese) [Google Scholar] [CrossRef]
- Nakasone, T.; Akeda, S. The application of deep sea water in Japan. In Proceedings of the 28th UJNR Aquaculture Panel Symposium, Kihei, HI, USA, 10–12 November 1999; UJNR Technical Report. Volume 28, pp. 69–75. [Google Scholar]
- Mohd Nani, S.Z.; Majid, F.A.A.; Jaafar, A.B.; Mahdzir, A.; Musa, M.N. Potential health benefits of deep sea water: A review. Evid. -Based Complement. Altern. Med. 2016, 2016, 6520475. [Google Scholar] [CrossRef]
- Takeuchi, H.; Yoshikane, Y.; Takenaka, H.; Kimura, A.; Islam, J.M.; Matsuda, R.; Ishizuka, S. Health effects of drinking water produced from deep sea water: A randomized double-blind controlled trial. Nutrients 2022, 14, 581. [Google Scholar] [CrossRef]
- Dickson, R.R.; Gmitrowicz, E.M.; Watson, A.J. Deep-water renewal in the northern North Atlantic. Nature 1990, 344, 848–850. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, Y.; Wu, D.; Ma, L.; Zhang, Y.; Zhang, Q.; Huang, X. Development Status and Prospects of Deep Seawater Comprehensive Utilization Industry. IOP Conf. Ser. Earth Environ. Sci. 2019, 384, 012030. [Google Scholar] [CrossRef]
- Hwang, H.S.; Kim, H.A.; Lee, S.H.; Yun, J.W. Anti-obesity and antidiabetic effects of deep sea water on ob/ob mice. Mar. Biotechnol. 2009, 11, 531–539. [Google Scholar] [CrossRef]
- Qiu, J.; Wang, J.; Wang, J.; Si, X.; Chen, J. Role, Development and Utilization of Deep Sea Water. Ocean. Dev. Manag. 2017, 34, 97. (In Chinese) [Google Scholar]
- Fu, Z.Y.; Yang, F.L.; Hsu, H.W.; Lu, Y.F. Drinking deep seawater decreases serum total and low-density lipoprotein–cholesterol in hypercholesterolemic subjects. J. Med. Food 2012, 15, 5–541. [Google Scholar] [CrossRef] [PubMed]
- Sheu, M.J.; Chou, P.Y.; Lin, W.H.; Pan, C.H.; Chien, Y.C.; Chung, Y.L.; Wu, C.H. Deep sea water modulates blood pressure and exhibits hypolipidemic effects via the AMPK-ACC pathway: An in vivo study. Mar. Drugs 2013, 11, 2183–2202. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.L.; Chang, Y.Y.; Chiu, C.H.; Yang, K.T.; Wang, Y.; Fu, S.G.; Chen, Y.C. Cardiovascular protection of deep-seawater drinking water in high-fat/cholesterol fed hamsters. Food Chem. 2011, 127, 46–1152. [Google Scholar] [CrossRef] [PubMed]
- Miyamura, M.; Yoshioka, S.; Hamada, A.; Takuma, D.; Yokota, J.; Kusunose, M.; Nishioka, Y. Difference between deep seawater and surface seawater in the preventive effect of atherosclerosis. Biol. Pharm. Bull. 2004, 27, 1784–1787. [Google Scholar] [CrossRef]
- Chang, M.H.; Tzang, B.S.; Yang, T.Y.; Hsiao, Y.C.; Yang, H.C.; Chen, Y.C. Effects of deep-seawater on blood lipids and pressure in high-cholesterol dietary mice. J. Food Biochem. 2011, 35, 241–259. [Google Scholar] [CrossRef]
- Ha, B.G.; Shin, E.J.; Park, J.E.; Shon, Y.H. Anti-diabetic effect of balanced deep-sea water and its mode of action in high-fat diet induced diabetic mice. Mar. Drugs 2013, 11, 4193–4212. [Google Scholar] [CrossRef]
- Mac Takahashi, M.; Huang, P. Novel renewable natural resource of deep ocean water (DOW) and their current and future practical applications. Kuroshio Sci. 2012, 2000, 101–113. [Google Scholar]
- Chung, K.T.; Lee, S.H. Current status of applied Korean patents regarding the deep sea water. Korean J. Food Nutr. 2009, 22, 261–271. [Google Scholar]
- Ma, X.; Duan, M.; Duan, D.; Qiu, J.; Cao, J. A Study on Comprehensive Evaluation of Multiple-depth Sea Water Quality in the South China Sea. IOP Conf. Ser. Earth Environ. Sci. 2021, 809, 012013. [Google Scholar] [CrossRef]
- Zhu, Z.Y.; Zhang, J.; Wu, Y.; Zhang, Y.Y.; Lin, J.; Liu, S.M. Hypoxia off the Changjiang (Yangtze River) Estuary: Oxygen depletion and organic matter decomposition. Mar. Chem. 2011, 125, 108–116. [Google Scholar] [CrossRef]
- Ram, A.; Jaiswar, J.R.M.; Rokade, M.A.; Bharti, S.; Vishwasrao, C.; Majithiya, D. Nutrients, hypoxia and mass fishkill events in Tapi Estuary, India. Estuar. Coast. Shelf Sci. 2014, 148, 48–58. [Google Scholar] [CrossRef]
- Chen, C.T.A.; Wang, S.L.; Wang, B.J.; Pai, S.C. Nutrient budgets for the South China Sea basin. Mar. Chem. 2001, 75, 281–300. [Google Scholar] [CrossRef]
- Koike, I.; Ogawa, H.; Nagata, T.; Fukuda, R.; Fukuda, H. Silicate to Nitrate Ratio of the Upper Sub-Arctic Pacific and the Bering Sea Basin in Summer: Its Implication for Phytoplankton Dynamics. J. Oceanogr. 2001, 57, 253–260. [Google Scholar] [CrossRef]
- Louanchi, F.; Najjar, R.G. Annual cycles of nutrients and oxygen in the upper layers of the North Atlantic Ocean. Deep. Sea Res. Part. II Top. Stud. Oceanogr. 2001, 48, 2155–2171. [Google Scholar] [CrossRef]
- Jian-Yu, N.; Fang-Guo, W.; Xu-Ying, Y.; Min-Hui, Z.; Hong-Qiao, Z. Nutrients distribution in the South Indian Ocean. Geoscience 2011, 25, 322. [Google Scholar]
- Zaynab, M.; Al-Yahyai, R.; Ameen, A.; Sharif, Y.; Ali, L.; Fatima, M. Health and environmental effects of heavy metals. J. King Saud. Univ. -Sci. 2022, 34, 101653. [Google Scholar] [CrossRef]
- Joseph, L. Distribution of Dissolced Oxygen in the Summer Thermocline. J. Mar. Res. 1972, 30, 138–147. [Google Scholar]
- Lin, H.; Han, W.; Wang, H.; Cheng, S. Seasonal features of the dissolved oxygen maximum in vertical distribution in the Nansha Islands. Haiyang Xuebao 2001, 23, 5. (In Chinese) [Google Scholar]
- Bruland, K.W. Trace elements in seawater. Chem. Oceanogr. 1983, 8, 157–200. [Google Scholar]
- Nyamukamba, P.; Moloto, M.J.; Tavengwa, N.; Ejidike, I.P. Evaluating physicochemical parameters, heavy metals, and antibiotics in the influents and final effluents of South African wastewater treatment plants. Pol. J. Environ. Stud. 2019, 28, 1305–1312. [Google Scholar] [CrossRef]
- Andreae, M.O.; Froelich Jr, P.N. Arsenic, antimony, and germanium biogeochemistry in the Baltic Sea. Tellus B Chem. Phys. Meteorol. 1984, 36, 101–117. [Google Scholar] [CrossRef]
- Hanying, D.; Juan, S.U.; Shengzhen, Z.; Shaoxia, L.; Guanyu, C.; Fan, W. Investigating the contents and sources of heavy metals in winter season in the Xisha waters of South China Sea. J. Trop. Oceanogr. 2023, 42, 169–177. [Google Scholar]
- Xie, S.; Jiang, W.; Sun, Y.; Yu, K.; Feng, C.; Han, Y.; Wei, C. Interannual variation and sources identification of heavy metals in seawater near shipping lanes: Evidence from a coral record from the northern South China Sea. Sci. Total Environ. 2023, 854, 158755. [Google Scholar] [CrossRef] [PubMed]
- Cui, D.Y.; Wang, J.T.; Tan, L.J.; Dong, Z.Y. Impact of atmospheric wet deposition on phytoplankton community structure in the South China Sea. Estuar. Coast. Shelf Sci. 2016, 173, 1–8. [Google Scholar] [CrossRef]
- Xu, F.; Tian, X.; Yin, F.; Zhao, Y.; Yin, X. Heavy metals in the surface sed-iments of the northern portion of the South China Sea shelf: Distribution, contamination, and sources. Environ. Sci. Pollut. Res. 2016, 23, 8940–8950. [Google Scholar] [CrossRef]
- Xiaodong, L.; Liguang, S.; Xuebin, Y.; Yuhong, W. Heavy metal distributions and source tracing in the lacustrine sediments of Dongdao Island, South China Sea. Acta Geol. Sin. -Engl. Ed. 2008, 82, 1002–1014. [Google Scholar] [CrossRef]
- Sanders, J.G. Arsenic cycling in marine systems. Mar. Environ. Res. 1980, 3, 257–266. [Google Scholar] [CrossRef]
- Vallee, B.L.; Auld, D.S. Zinc: Biological functions and coordination motifs. Acc. Chem. Res. 1993, 26, 543–551. [Google Scholar] [CrossRef]
- Vance, D.; Baar, H.J.W.D.; Zhao, Y.; Abouchami, W. Biogeochemical cycling of zinc and its isotopes in the Southern Ocean. Geochim. Et. Cosmochim. Acta J. Geochem. Soc. Meteorit. Soc. 2014, 125, 653–672. [Google Scholar]
- Wen, L.S.; Jiann, K.T.; Santschi, P.H. Physicochemical speciation of bioactive trace metals (Cd, Cu, Fe, Ni) in the oligotrophic South China Sea. Mar. Chem. 2006, 101, 104–129. [Google Scholar] [CrossRef]
- Bruland, K.W. Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific. Earth Planet. Sci. Lett. 1980, 47, 176–198. [Google Scholar] [CrossRef]
- Hawkings, J.R.; Wadham, J.L.; Tranter, M.; Raiswell, R.; Benning, L.G.; Statham, P.J. Ice sheets as a significant source of highly reactive nanoparticulate iron to the oceans. Nat. Commun. 2014, 5, 3929. [Google Scholar] [CrossRef] [PubMed]
- Kuma, K.; Nishioka, J.; Matsunaga, K. Controls on iron (III) hydroxide solubility in seawater: The influence of pH and natural organic chelators. Limnol. Oceanogr. 1996, 41, 396–407. [Google Scholar] [CrossRef]
- Hu, M.; Yang, Y.; Martin, J.-M.; Yin, K.; Harrison, P.J. Preferential uptake of Se (IV) over Se (VI) and the production of dissolved organic Se by marine phytoplankton. Mar. Environ. Res. 1997, 44, 225–231. [Google Scholar] [CrossRef]
- Cooke, T.D.; Bruland, K.W. Aquatic chemistry of selenium: Evidence of biomethylation. Environ. Sci. Technol. 1987, 21, 1214–1219. [Google Scholar] [CrossRef]
Depth | Pressure | Temperature | Salinity | DO | pH | ||
---|---|---|---|---|---|---|---|
Depth | Pearson correlation | 1 | 0.999 ** | −0.903 ** | 0.536 ** | −0.859 ** | −0.900 ** |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | ||
N | 90 | 90 | 90 | 90 | 90 | 90 |
Depth | DIN | Phosphate | Silicate | ||
---|---|---|---|---|---|
Depth | Pearson correlation | 1 | 1.000 ** | 0.941 ** | 0.991 ** |
Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | ||
N | 90 | 90 | 90 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, X.; Chen, M.; Lu, D.; Guo, X.; Tian, F.; Li, X.; Huang, L.; Ji, C.; Xia, C.; Huang, M.; et al. Spatial Distribution of Physical and Chemical Properties of Deep Sea Water in Xisha, South China Sea. Water 2024, 16, 2988. https://doi.org/10.3390/w16202988
Fang X, Chen M, Lu D, Guo X, Tian F, Li X, Huang L, Ji C, Xia C, Huang M, et al. Spatial Distribution of Physical and Chemical Properties of Deep Sea Water in Xisha, South China Sea. Water. 2024; 16(20):2988. https://doi.org/10.3390/w16202988
Chicago/Turabian StyleFang, Xiaochen, Mei Chen, Dongyu Lu, Xudong Guo, Fei Tian, Xuelin Li, Lei Huang, Chunsheng Ji, Changfa Xia, Mianyu Huang, and et al. 2024. "Spatial Distribution of Physical and Chemical Properties of Deep Sea Water in Xisha, South China Sea" Water 16, no. 20: 2988. https://doi.org/10.3390/w16202988
APA StyleFang, X., Chen, M., Lu, D., Guo, X., Tian, F., Li, X., Huang, L., Ji, C., Xia, C., Huang, M., Wang, Y., He, X., Tian, L., & Zhang, H. (2024). Spatial Distribution of Physical and Chemical Properties of Deep Sea Water in Xisha, South China Sea. Water, 16(20), 2988. https://doi.org/10.3390/w16202988